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Abstract

This paper investigates the effect of displacement constraints on the attenuation
performance of tuned mass dampers (TMDs) used in boring and turning applica-
tions. A simplified piecewise-smooth mechanical model is investigated through
time domain simulations and hybrid periodic orbit continuation, first under har-
monic excitation, then under regenerative cutting load. A quasi-frequency re-
sponse function is derived for impacting TMDs through composition of different
families of period-1 orbits, then an acceptability map for turning is formulated
based on the appearance of cutting-edge contact-loss and fly-over events. The
bi-stable domain boundaries are determined through two parameter continua-
tion of contact-loss grazing events. It is shown that in both cases arising rigid
body collisions can significantly hinder TMD damping performance and lead to
resonance problems or machine tool chatter.

Keywords: chatter, tuned mass damper, piecewise-smooth, impact, fly-over,
continuation

1. Introduction

Tuned mass dampers have been successfully implemented in industrial ma-
chining solutions [1, 2], such as the boring bars discussed in [3]. These TMDs
with the optimal tuning induce a significant increase in the stable regions of
the regeneration-delay stability charts, while also raising the critical depth of
cut, similarly to Figure 1.(c). Consequently, material removal rate and the tool
length to diameter ratio can both be increased compared to regular boring bars,
while maintaining safe, chatter free operation.

The use of tuned-mass dampers (TMDs) is a simple and powerful approach
to solve industrial resonance problems. In principle installing a mass and spring
system with optimal tuning can completely cancel out resonant vibrations by
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utilizing the antiresonance phenomenon. Unfortunately, in practice this simple
solution is only applicable when the natural frequency of the system and the
operational bandwidth of excitation is constant and known. In machining ap-
plications both of these parameters often vary due to changing spindle speeds
or tooling and fixture configurations.

If during operation, the operational frequency deviates from the point of
antiresonance the aforementioned device suffers a sharp deterioration in its at-
tenuation performance [4], which becomes even more significant as the newly
introduced resonant frequency is approached. To overcome this issue, Den Har-
tog [5] showed that by introducing a certain amount of damping the opera-
tional frequency range can be greatly expanded with a relatively small sacrifice
of absorber performance, thus introducing the concept of the modern TMD.
Den Hartog also derived closed form expressions for the optimal tuning of such
devices to achieve the lowest vibration amplitude across the whole excitation
frequency range.

In machining applications the stability of cutting and the appearance of
unwanted harmful vibrations (chatter) is connected in a simplified manner to
the real part of the frequency response function (FRF) of the machine tool.
Consequently, as shown by Sims [6] optimizing the TMD tuning for minimizing
either peak of the FRF’s real part, the robustness of the cutting process can be
increased even further. Since this tuning method provides the highest critical
depth of cut, below which the operation is stable on the entire spindle speed
domain, it is frequently used in TMDs designed for machining applications.

A comparison of the discussed tuning methods (damping free, Den Hartog,
Sims) is presented on Figure 1. As seen here on panel (b) and (c), tuning
for antiresonance results the highest peaks in the real part of the FRF and
consequently leads to the lowest critical depth of cut, making it inconvenient
for machine tools.

In boring applications, for optimal performance, tuned mass dampers have
to be placed close to the cutting edge [7, 8]. Due to the lack of space, this means
installing the TMD inside a tube segment of the boring bar. This is a simple
and effective technique, however it also weakens the structure of the bar and
restricts the free displacement of the TMD.

Given large enough tool vibrations these constructional constraints will lead
to inevitable collisions between the TMD and the inner surface of the boring bar,
after which the system becomes non-linear and piecewise-smooth. Intuitively
it is unclear how this will affect the absorbing performance of the TMD. On
one hand the restriction of the TMD will lead to less energy displaced to the
additional TMD mode and dissipated through viscose damping, but on the other
hand the inelastic impacts might be able to compensate for it.

As demonstrated in several studies, the energy dissipated during rigid body
collisions is a practical approach of vibration attenuation and chatter suppres-
sion for boring and turning operations. The effectiveness of impact dampers is
shown by bending, impact, and cutting tests in [9], by a neural network based
tool-wear predictor in [10], and by analytic investigation using the method of
multiple scales in [11]. With high vibration amplitudes the constrained TMD
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Figure 1: Comparison of TMD tunings. Panel (a) shows the mechanical model of the TMD
designed to reduce resonant vibrations of m1. Panel (b) presents the absolute value (M) and

real part (R) of the resulting system dimensionless FRFs
(

X1(Ω)

m1ω2F (Ω)

)
, while panel (c) shows

the spindle speed - depth of cut stability charts of turning based on these FRFs.

will behave and dissipate energy similarly to these impact dampers.
This paper aims to uncover how the arising impacts affect the stability maps

of turning and boring. As is common in the literature [3, 8, 11] to empasize
the underlying behaviour, the machine tool assembly is reduced to a 2 degree
of freedom (DoF) piecewise-linear vibro-impact oscillator, focusing only on the
first, most dominant mode.

The dynamic behaviour of low-DoF vibro-impact oscillators has been thor-
oughly researched. In [12] and [13], hybrid return maps and Floquet theory are
employed to investigate a flexible beam subjected to rigid amplitude constraints
and a constrained inverted pendulum placed on a linear oscillator respectively.
In [14], the shooting method is employed for bifurcation analysis of the free vi-
brations of a conservative 2-DoF piecewise-linear vibro-impact oscillator. Stick-
ing solutions and Zeno behaviour (impact chatter) are investigated in [15] and
[16] by detailed numerical studies.

Such mechanical systems are often described by their piecewise-smooth pe-
riodic orbits, built up from continuous segments separated by discrete im-
pact events (hybrid-periodic orbits). These can be analysed through piecewise-
smooth Poincaré return maps [12, 13], shooting methods [14] or collocation [17].
They exhibit rather intricate dynamic phenomena, such as grazing and sliding
bifurcations, Zeno behaviour (often called chatter), and sudden transitions to
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chaos. Due to high parameter sensitivity and discontinuous changes in system
dynamics, both numerical and analytic investigation requires a great deal of
effort and care.

Applying the aforementioned methods to the mechanical model of boring
with a constrained TMD is far from straightforward. The cutting forces in-
troduce a regenerative effect, which converts the governing equation of motion
into a piecewise-smooth delay differential equation, and on high vibration am-
plitudes, the possible contact loss of the cutting edge also has to be accounted
for. This leads to a new non-smooth event and requires the storing of workpiece
profiles from past revolutions [18, 19].

There are open source continuation packages available for hybrid-dynamic
systems (which have both continuous and discrete dynamics) such as PyDSTool
[20], TC-HAT [17] and the COCO hpo package [21]. However, for the level of
customizability needed in this application, a problem specific hybrid periodic
orbit correction and continuation scheme was written. Since the phase space of
delay differential equations is infinite dimensional, the shooting and Poincaré
return map methods require some form of discretization in time. Consequently,
spectral collocation was used for the analysis and continuation of hybrid periodic
orbits, as it provides good convergence properties [22, 23] and the orbit has to
be discretized either way.

Aided and guided by time domain simulation results, the developed spectral
collocation scheme was first used on the piecewise-linear vibro-impact oscilla-
tor model, in the presence of harmonic excitation. By following period-1 or-
bits with different number of impacts, a quasi-frequency response function was
constructed for the constrained TMD. Then the numerical methods were gen-
eralised to account for delayed terms, contact-loss events, and fly-over modes.
An approximate non-smooth stability map of turning was formulated through
time domain simulations, and was validated by two parameter continuation of
hybrid periodic orbits with grazing bifurcations on the event surface of cutting
edge contact-loss.

The remainder of this paper is structured as follows. In section 2 the me-
chanical model of boring with a constrained tuned mass damper is derived, ac-
counting for rigid body collisions, cutting edge contact-loss and fly-over modes.
Section 3 discusses the time domain simulation routines, the boundary value
problem formulation of hybrid periodic orbits, and the operation of the con-
tinuation algorithm. Section 4 displays the results achieved by these numerical
methods, and finally section 5 presents conclusions.

2. Model description

When formulating the mechanical model of boring with a constrained TMD,
only the first, dominant mode of the machine tool assembly was taken into
account, thus reducing the problem to the 2 DoF piecewise-linear vibro-impact
oscillator shown on Figure 2(a). Here m1, b1 and k1 represent the modal mass,
damping and stiffness of the machine tool, m2, b2 and k2 are the TMD mass,
damping and stiffness, while d is the TMD clearance and r is the coefficient of
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(a) (b)

Figure 2: Panel (a) piecewise-linear vibro-impact oscillator model. Panel (b) calculation of
actual feed rate accounting for contact loss events and fly-over modes. h(t) = 0 in fly-over
segments denoted by dashed lines.

restitution. The F (t) excitation will later represent either a harmonic load or
the regenerative cutting force.

Considering instantaneous, inelastic impacts according to the Newton’s im-
pact law, the governing equation of motion is

if |x1 − x2| < d[
m1 0
0 m2

] [
ẍ1

ẍ2

]
+

[
b1 + b2 −b2
−b2 b2

] [
ẋ1

ẋ2

]
+

[
k1 + k2 −k2

−k2 k2

] [
x1

x2

]
=

[
F (t)

0

]
,

if |x1 − x2| = d[
ẋ+

1

ẋ+
2

]
=

[
m1(r+1)
m1+m2

− r m2(r+1)
m1+m2

m1(r+1)
m1+m2

m2(r+1)
m1+m2

− r

] [
ẋ−1
ẋ−2

]
.

(1)

For the representation of the regenerative cutting force, a simple linear or-
thogonal cutting model was used

F (t) = Kcrwh(t), (2)

where Kcr is the radial cutting edge coefficient, w is the depth of cut and h(t)
is the actual feed rate. Considering large vibrations and fly-over segments, h(t)
can be calculated as illustrated on Figure 2(b).

h̄(t) = min
k

(kh0 − x1(t) + x1(t− kτ)),

h(t) =

{
0, if h̄(t) < 0,

h̄(t), if h̄(t) ≥ 0,

(3)

where k = 1, 2, . . . , n, vf and h0 = 2π
Ω vf is the prescribed feed and feed rate,

while τ = 2π
Ω is the time needed for one full workpiece revolution.
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To reduce the number of system parameters, Eq. (1) can be nondimension-
alized using the inverse of the natural frequency of the dominant mode of the

machine tool as a time unit t̃ := ω1t =
√

k1
m1
t, and either the equilibrium clear-

ance or the prescribed feed rate as a displacement unit. Consequently the two
excitation cases considered will take the following forms

d̃ := 1, f(t̃) := f cos(Ωt̃+ φ), f :=
F

ω2
1m1d

, (4)

for harmonic (x̃ := 1
d ), and

d̃ :=
d

h0
, f(t̃) := w̃h̃(t̃), , w̃ :=

Kcrw

ω2
1m1

, h̃(t̃) :=
h(t̃)

h0
. (5)

for regenerative cutting force (x̃ := 1
h0
x). Dropping the tildes results in the

nondimensionalized equation of motion

if |x2 − x1| < d[
1 0
0 µ

] [
ẍ1

ẍ2

]
+

[
2ζ + 2χµ −2χµ
−2χµ 2χµ

] [
ẋ1

ẋ2

]
+

[
1 + ϕ2µ −ϕ2µ
−ϕ2µ ϕ2µ

] [
x1

x2

]
=

[
f(t)

0

]
,

if |x2 − x1| = d[
ẋ+

1

ẋ+
2

]
=

[
r+1
1+µ − r

µ(r+1)
1+µ

r+1
1+µ

µ(r+1)
1+µ − r

] [
ẋ−1
ẋ−2

]
,

(6)

where ζ := b1
2ω1m1

is the oscillator damping ratio.

The tuned mass damper frequency tuning ϕ := ω2

ω1
=

√
k2/m2√
k1/m1

and stand-

alone damping ratio χ := b2
2ω1m2

is assumed to be tuned according to the closed
form formulas of Sims [6]

ϕ =

√
µ+ 2 +

√
2µ+ µ2

2(1 + µ)2
, χ =

√
3µ

8(1 + µ)
, (7)

with the mass ratio µ = m2

m1
as a given parameter.

Sims tuning was selected as it provides the highest critical depth of cut for
the simple turning operation, as seen on Figure 1.(c), and its frequently used in
commercially available boring bars [3]. A major part of this paper is devoted
to show how the performance of these devices deteriorates from the results of
linear stability analysis when displacement constraints are accounted for.

3. Numerical methods

For displacement constrained TMDs, the governing equation of motion (6) is
a hybrid, piecewise-linear ordinary (ODE) or delay differential equation (DDE),
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depending on the form of excitation: (4) or (5). Investigating such equations
is often too complicated to do so analytically, therefore numerical methods are
employed for the analysis of system dynamics. This section presents the nu-
merical methods used for time domain simulation and hybrid periodic orbit
continuation of Eq. (6).

3.1. Time domain simulation

To get a general feel of system dynamics, first a time domain simulation
scheme was formulated, exploiting the ODE/DDE solver and event handling
functionalities of the DifferentialEquations.jl [24] Julia package.

First, Eq. (6) was converted to first order form using u = [x1, x2, ẋ1, ẋ2]ᵀ.
On smooth segments, this results in

u̇ = Au + b, (8)

where

A =


0 0 1 0
0 0 0 1

−1− ϕ2µ ϕ2µ −2ζ − 2χµ +2χµ
ϕ2 −ϕ2 2χ −2χ


and b = [0, 0, f(t), 0]ᵀ, and at non-smooth event times (|u2 − u1| = d) the
impact map becomes

u+ = Ru−, (9)

with

R =


1 0 0 0
0 1 0 0

0 0 r+1
1+µ − r

µ(r+1)
1+µ

0 0 r+1
1+µ

µ(r+1)
1+µ − r

 .
To simulate the solution of (6), Eq. (8) was integrated using the Tsit5

(Tsitouras 5/4 Runge-Kutta) method, while detecting and applying (9) when a
zero crossing is found in the impact condition using a root finding algorithm.

Most of the time this provided adequate results, however due the appear-
ance of Zeno behaviour (impact chatter), with the available limited numerical
precision, impact events sometimes went undetected, leading to solutions with
no physical meaning. As demonstrated by Nordmark and Piiroinen [25] these
infinite impact sequences can be detected, and their completion, which requires
a finite amount of time, can be predicted. If chatter events are complete, the
solution will transition to a sliding one, where the two degrees of freedom evolve
in unison until a separation condition is met.

Consequently an additional condition was implemented in the event handling
algorithm, to check for possible chatter sequences. If ∆ti < ε, where ∆ti is the
time elapsed between two subsequent impacts, the integration is stopped and
continued as a sliding solution, determined by integrating

u̇∗ =
1

1 + µ

([
0 1
−1 −2ζ

]
u∗ +

[
0
f(t)

])
(10)
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until the separation condition u̇∗2 = ±ϕ2d is reached. This corresponds to the
time instant when the spring force of k2 overcomes the inertial force. Here u∗ =
[u1, u3]ᵀ, which at the end is transformed back as u = [u∗1, u

∗
1 ± d, u∗2, u∗2]ᵀ,

depending on which event surface, the complete impact chatter phenomenon
took place on. Finally the integration of (8) is resumed in the aforementioned
fashion.

3.2. Boundary value problem of hybrid periodic orbits

Time domain simulation is a powerful tool, however due to the non-linear,
initial condition and parameter dependent behaviour of Eq. (6), cannot provide
a reliable general picture of system dynamics. For further numerical analysis a
hybrid periodic orbit continuation scheme was formulated, based on the spectral
collocation methods described by Trefethen in [22].

Periodic orbits of initial value problems can also be obtained as solutions of
appropriate boundary value problems (BVPs), with infinite-dimensional bound-
ary conditions in the case of DDEs [26]. For periodic orbits of piecewise-smooth
systems, the same can be achieved, either through smoothing the non-smooth
effects [19], or applying inner boundaries for all such events [18].

First of all, formulating the appropriate BVP requires the adequate dis-
cretization of the hybrid periodic orbits. As the solution on the smooth seg-
ments of orbits is generally not periodic, the use of Chebyshev polynomials is
a straightforward choice. It provides a homogenous interpolation within the
intervals, and allows spectral differentiation, which converges fast and is easily
rescaleable with interval lengths.

Figure 3: Boundary value problem formulation of hybrid periodic orbits of turning with a
constrained tuned mass damper. Using a scaled Chebyshev mesh of size N , on n segments
with m coordinate dimensions. Therefore, i = 1 . . . N , j = 1 . . . n, k = 1 . . .m, and the orbit
is described by kuj,i state variables and tj event times. Blue and orange lines show the first
two dimensions of the state in a possible orbit (n = 4, N = 10, m = 4). The grey area denotes
the time spent in fly-over, which in some cases can be reduced to the green grazing point. If
this coincides with an impact event a blue double event point can be formulated.
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name condition boundary

impact |2uj,N − 1uj,N | = d uj+1,1 = Ruj,N

contact-loss 1− 1uj,N + 1u(tj,τ ) uj+1,1 = uj,N

contact-loss 1− 1uj,N + 1u(tj,τ )
uj+1,1 = uj,N

grazing − 3uj,N + 3u(tj,τ )

impact and |juN2 − 1uj,N | = d

uj+1,1 = Ruj,Ncontact-loss 1− 1uj,N + 1u(tj,τ )

grazing − 3uj,N + 3u(tj,τ )

Table 1: List of event and segment boundary types considered, illustrated with the same
colours on Figure 3. The condition column defines the event surface, while the boundary
column describes the smooth or non-smooth event map.

The first step of discretization is to assign segment boundaries to each non-
smooth event, as illustrated in Table 3. By default this can either be an impact,
or a contact-loss event. Later on, for two parameter continuation, more compli-
cated contact-loss grazing, and impact contact-loss grazing boundaries will be
defined as well. These points all come with one or more conditions to ensure
their existence, and a continuity law, which will provide the necessary boundary
conditions for proper formulation of the BVP. These event types and their re-
spective constraints are listed on Figure 1. Since these events and consequently
the segment boundaries are allowed to move, their times are included as free
variables when formulating the governing BVP. The event conditions provide
the extra constraints necessary to keep it fully defined.

Now the only thing left to do is to apply the continuously smooth equation
of motion (8) for the inner points of each segment. This was achieved using the
first N − 1 rows and all N columns of the Chebyshev spectral differentiation
matrix D defined in chapter 6 of [22]. Doing so results in the following set of
(N − 1)× n×m equations

2

tj − tj−1
D kuj,i = A kuj,i + b(tj,i), (11)

where i = 1, . . . , N−1 is the mesh index within smooth segments, j = 1, . . . , n is
the inex of segments within the orbit, and k = 1, . . . ,m indexes the coordinate
dimensions. Assuming an m coordinate dimensions (m = 4 in this case), on n
smooth segments, with N mesh points in each. In (11), all N mesh points are
necessary for the spectral derivation, however in the BVP only N − 1 equations
are considered as the N th terms are be defined by the boundary conditions
provided in Table 1. Due to the periodicity of the orbits, j − 1 maps to n if
j = 0 and j + 1 maps to 1 for j = n.

Unfortunately the calculation of b(tj,i) is not trivial, especially in the regen-
erative case. If b(tj,i) is defined using (4), assuming harmonic excitation, the
calculation requires an extra phase variable φ, and consequently an additional
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phase condition tn = l 2πΩ , l ∈ N.
When the regenerative force from Eq. (5) is considered, the calculation of

f(t) is not so straightforward. Evaluating the actual feed rate is rather compli-
cated, especially when contact-loss events and fly-over segments are present. In
such cases, finding the time instant within the periodic orbit, corresponding to
the current surface of the workpiece at time t, can be achieved as

tτ = min
m
{t−mτ + lT ≥ 0}, l = 0, 1, 2, . . . (12)

where m is the lowest integer, when tτ lands in a segment without fly-over.
Consequently on the discrete mesh, the actual feed rate is

h(tj,i) = m− 1ui,j + 1u(tj,i,τ ), (13)

or 0 if tj,i is part of a segment in fly-over.
Generally tj,i,τ will not land on an existing mesh point and ku(tj,i,τ ) has to

be interpolated exploiting the same Chebyshev polynomials used for the spectral
differentiation. Therefore,

ku(tj,i,τ ) =

N−1∑
l=0

al cos

(
l arccos

(
2
tj,i,τ − t0

∆t
− 1

))
, (14)

where t0 = tm,1 and ∆t = tm,N − tm,1 are the start point and length of the mth

solution segment containing tj,i,τ . N is the degree of interpolation and the al
coefficients are derived using discrete Chebyshev transform

al =
1

N − 1

(
1

2

(
(−1)l kum,1 + kum,N

)
+

N−1∑
n=2

kum,n cos

(
lπ
n− 1

N − 1

))
. (15)

In summary the formulated BVP consists of n×N ×m+n state variables kuj,i
and tj (also φ if the excitation is harmonic), and the same amount of equality
constraints, n× (N −1)×m coming from (11), n×m from boundary conditions
and n from event conditions shown in Table 1 (+1 phase condition).

3.3. Continuation algorithm

Due to the adaptive nature of the mesh and the complexity of calculating
h(t), for the solution of the previously formulated BVP, the NLSolve.jl Julia
nonlinear solver package was employed [27]. For better convergence and nu-
merical stability, an option to define extra segment boundaries one workpiece
revolution after impact events (at timp + τ) was added. However, this option
was seldom used, due to the increase of state dimension significantly slowing
down the calculations.

Through the solution of the boundary value problem, single parameter con-
tinuation of hybrid periodic orbits became possible. By simple incremental
modification of a system parameter, and repeated correction of the solution,
branches of different families of periodic orbits could be followed. Since no
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saddle-node (fold) type bifurcations of periodic orbits are expected, only natu-
ral parameter continuation was implemented.

Unfortunately this continuation scheme has a few limitations. First, it re-
quires rigorous initialization by defining the exact sequence of occurring events,
which cannot change through the course of continuation, and second, the phys-
ical meaning of the orbits is not guaranteed by the equality constraints of the
BVP alone. Consequently, additional inequality conditions must be defined and
evaluated at every parameter step. The violition of these will indicate graz-
ing bifurcations, where the continuation must be stopped and continued with a
different sequence of events.

In the case of the impact event surface, two types of grazing bifurcation can
happen. Either an already existing impact disappears, by the relative velocity
reaching zero, or a new impact event appears, by the state reaching the event
surface within the segments. These events can be detected by the violation of
either

|4um,N − 3um,N | > 0 or |2uj,i − 1uj,i| < d, (16)

where m marks all segments with impact boundaries at their end.
The situation is similar for the contact-loss event surface. An existing pair of

contact-loss events and a the enclosed fly-over segment might disappear, by the
length of the segment becoming zero, or a new fly-over section might emerge
from a breach of the event surface in an in-contact segment. These can be
detected when

h(tm,i) > 0 or |tl − tn| > 0, (17)

is violated. Here m denotes all non-fly over segments, while l and n mark all
possible combinations of contact loss event times. A similar condition to the
second half of (17) was implemented between all segment boundaries to detect
changes in the sequence of events.

Grazing events detected by all these inequality conditions can also be fol-
lowed with the formulated continuation scheme. This is done in two parameters,
by the introduction of an extra constraint and adding one of the system parame-
ters to the state of the BVP. In case of turning with a constrained TMD, grazing
bifurcations on the contact-loss event surface are the most important, as they
indicate the margin of solutions with large amplitude vibrations and interrupted
cutting, also known as chatter.

The extra condition was introduced on a new type of segment boundary,
where to guarantee the grazing of the contact-loss event surface, apart from the
h(t) = 0 condition, its derivative was also prescribed to be zero d

dth(t) = 0. This
assures a local extrema in feed rate and thus a grazing event. On discretized
orbits, these conditions take the form shown in Table 1.

In some special cases an impact and a contact-loss grazing event were found
to coincide, leading to a new segment boundary type, shown in Table 1 and
Figure 3 with colour blue. This event however, is only a by-product of the
discretization scheme and the fixed order of non-smooth events. Nevertheless
its two parameter continuation provided promising results, even though only
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two of its three existence conditions could be satisfied by the solution of the
governing BVP.

4. Results

Working with piecewise-smooth systems is always a difficult and delicate
task. To help speed up this process the numerical investigation of both models
began with solving a large batch of initial value problems, to get a general
sense of system dynamics. Based on the information gathered from these runs,
searching for hybrid-periodic orbits became a lot easier.

Time domain simulations were also employed in the initialization phase of
all continuation tasks, as the previously formulated BVP is highly sensitive
of the initial state, especially when it comes to event times and event order.
Consequently, the general order of investigation was to initialize an orbit by
time domain simulation, correct and follow it to grazing events via continuation,
then simulate new initial orbits and repeat the process until the target parameter
domain is covered.

4.1. Quasi-frequency response function

First the simpler and easier to handle harmonically excited (4) case was
examined. The most important and interesting characteristic of this model
is its excitation frequency Ω dependence. In linear case, without constraints,
this would be the frequency response function (FRF). Due to the nonlinearities
arising from TMD collisions, this description is no longer valid, but the response
amplitude’s frequency dependence can still be investigated via hybrid periodic
orbit continuation. Furthermore the phase and therefore the real and imaginary
parts can also be approximated by applying the Hilbert transform on artificial
time signals generated by the repetition of resulting periodic orbits.

Through continuation of different families of periodic orbits, quasi-frequency
response functions (QFRFs) were formulated for the piecewise-linear vibro-
impact oscillator, while varying system parameters between runs. The effect
of dimensionless excitation amplitude f (which is inversely proportional to the
TMD clearance d) and damping ratio ζ, is presented on Figure 4(a) and (b).
Concerning the rest of the parameters, µ and thus χ and ϕ were considered as
given values, while r was found to have no noticeable effect on the shape of the
function. Within orbits, the coefficient of restitution did not affect the vibration
amplitude, only the number of impacts per period.

The original frequency response function is denoted by a grey line on Figure
4(a). From the continuation results, it is clearly visible, that the system suffers
a significant loss in damping performance if the displacement of the TMD is
constrained. The negative peak of the real part cancelled out by Sims tuning
[6] reappears. This will be shown to have severe consequences on the stability
properties of the boring process.

The QFRFs take on a shape similar to the FRF of a slightly detuned 1 DoF
system. This behaviour is similar to the one demonstrated in [28] for impact
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Figure 4: Periodic orbit continuation results for the harmonically excited vibro-impact oscilla-
tor. Panel (a) presents the quasi-frequency response function (QFRF) on different excitation
amplitudes (equivalent to modifying 1

d
), with µ = 0.05, ζ = 0.02, r = 0.9 and dotted: f =

0.1, dashed: f = 0.2, solid: f = 0.5. Here M is the absolute value and R is the real part of
the dimensionless (quasi-)frequency response function ( 1

m1ω
2
1
QFRF ), Ω is the dimensionless

excitation frequency and n is the number of impacts found in the followed orbits. The solid
grey line shows the original, unconstrained linear FRF, while the dashed grey line denotes the
effect of a Lanchester damper (χ→ ∞). Panel (b) shows the same graph on different damping
ratios, with µ = 0.05, f = 0.5, r = 0.9 and dotted: ζ = 0.1, dashed: ζ = 0.05, dash-dot: ζ =
0.02, solid: ζ = 0.1. Panel (c) displays two critical, branch terminating, grazing orbits (µ =
0.05, ζ = 0.02, f = 0.5, r = 0.9), while panel (i-v) show periodic orbits with n = 2, 4, 6, 8,
and 10 impacts. (µ = 0.05, ζ = 0.01, f = 0.5, r = 0.9)

dampers, which states that on large vibration amplitudes the system behaves
as if the moving mass was fixed directly to the vibration attenuated structure.
Special dampers, where the stand alone damping ratio is regarded as infinite
(χ → ∞), also known as Lanchester dampers, cause the two bodies to move
in unison and produce a similar characteristics. This is demonstrated with a
dashed grey line on Figure 4(a).

For low f or high ζ values the QFRF can be constructed by following a single
2 impact, period 1 orbit. Changing these values leads to the quasi-frequency
response function being segmented into multiple branches of different impact
numbers by grazing bifurcations. For example a branch of 2 impact periodic
orbits can terminate in the grazing events shown on Figure 4(c).

There is a wide range of existing orbits, with a wide variety of impact num-
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bers and orders. Due to the symmetricity of the system and the two impact
surfaces, these are all either symmetric or come in mirrored pairs. The number
of collisions increases with the vibration amplitude, theoretically up to infin-
ity as Zeno behaviour and sliding solutions are reached [25]. The system can
also exhibit more complicated behaviours, such as quasi-periodic solutions, but
these were not investigated as the formulated numerical methods were unable
to handle them.

Considering the intricacy and difficulty of uncovering all possible periodic
orbits, the numerical investigation was restricted to symmetric orbits with even
number of impacts, such as the ones presented on Figure 4(i-v). Due to nu-
merical limitations, initializing orbits becomes more and more difficult as the
number of impacts increases. Consequently, only orbits with up to 10 collisions
per period were considered. Nevertheless, despite all restrictions, following only
these orbits was able to provide a reasonably full and accurate picture of system
dynamics.

4.2. Stability map

If regenerative excitation (5) is present, uncovering all intricacies of system
dynamics becomes even more complicated and time consuming. Consequently,
the numerical investigation was focused only on determining parameter domains,
which lead to machining operations with acceptable workpiece surface quality.
In practice, this meant separating areas with solutions without contact-loss
events and fly-over segments, from the rest of the parameter space.

This process was started by solving a large batch of initial value problems,
within a binary search algorithm formulated for finding the minimal dimension-
less depth of cut w necessary for cutting edge contact loss. A result of this
search for a broad range of spindle speeds Ω is presented on Figure 5(b) with a
grey line.

Here the black line represents the linear stability map of turning with an un-
constrained TMD. Parameter combinations below this line ensure the existence
of a stable, constant steady state solution even for the constrained case. Never-
theless, it is found that given strict enough TMD displacement restrictions and
large enough perturbations, even here (grey area), the system can exhibit steady
state solutions with contact-loss events and fly-over. To ensure landing on such
solutions large energy initial conditions were used for the aforementioned w limit
search.

The other noteworthy result of the initial contact-loss limit search is the set
of green areas of Figure 5(b). Here despite the instability of the constant steady
state solution, the TMD displacement constraints can limit the tool vibration
amplitude to an acceptable level. Here the solutions take on a shape similar
to the one shown for impact dampers in [11]. Segments with and without
impacts follow one another in long periodic fashion, as the activation amplitude
of impacting orbits is repeatedly reached then lost due the energy dissipated
during collisions.

To validate the findings of the time domain simulation results, two parameter
(w-Ω) continuation of contact-loss grazing orbits was implemented. This process
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(a) (b)

Figure 5: Hybrid periodic orbit continuation results for turning with a constrained TMD (ζ =
0.02, µ = 0.05, r = 0.9, d = 0.5). Panel (a) shows the followed orbits. Starting with an initial
2 impact fly-over orbit, which is converted to a grazing orbit by single parameter continuation
in w (A → B → C). Then it is followed in two parameters w, Ω, branching out to different
more complicated orbits(→ D → E and → F → G → H). The colors black, red, green and blue
denote the same events as in Table 1. Panel(b) shows the formulated ”stability” map, where
the blue and green areas have solutions without contact loss, the grey areas are bi-stable and
the white area is unstable. Solid black line marks the linear stability map of 2 DoF turning,
dotted black line the original 1 DoF turning, and grey line the contact loss limit derived by
time domain simulations.

followed the steps presented on Figure 5(a). First the simplest possible type of
orbit necessary for prolonged large amplitude vibrations was initialized through
solving an initial value problem (A). Then this impacting, fly-over orbit was
followed in w close to a contact-loss grazing bifurcation (B). Here the orbit was
converted by replacing the two old contact-loss events with a new grazing one
(C). Then this orbit was followed in w-Ω, leading to an impact grazing event
(F) and the overlap of two segment boundaries (D).

At the impact grazing event a new orbit was initialized through the same
process as A → B → C, but now with 4 impacts (G). The continuation of this
orbit lead to impact grazing events in both directions. The critical orbit (H)
indicates that this process could be repeated for 6, 8 and so on impact orbits,
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making up the sections missing from the w limit on Figure 5(b). Nevertheless,
this was not performed considering the difficulty and tediousness of the task due
to numeric limitations and parameter sensitivity.

At the other notable point (D) the continuation stops due to an inherent
limitation of the algorithm, as events cannot change order or pass through one
another. Here there are two possible ways to continue. Either a new double
event is formulated (D), or the order of events is switched (E). Both solutions
can be followed, however the latter will eventually lead to the former, as one of
the impact events eventually converges to the contact loss grazing point as w
is increased. Leading to the same issue as before with following C. The double
event of D has 3 existence conditions, which cannot be satisfied simultaneously
in two parameter continuation, however, the branch prescribing only the first
two, coincides well with the time domain simulation results, thus validating
them.

As seen on Figure 5(b), the same continuation routine was repeated around
Ω = 1.2 and Ω = 0.335 leading to similar results. Overall the time domain
simulation and continuation results coincidence quite well.

4.3. Bi-stable behaviour of constrained TMDs

(a) (b)

Figure 6: Bi-stable behaviour of turning at point a and b of Figure 5(b).

The bi-stable zones presented on Figure 5(b) pose a significant danger, since
here, even though linear stability analysis predicts safe operation, the system
is prone to harmful chatter vibrations. Given large enough perturbations, the
system no longer returns to its constant steady state solution, however, ends up
on a stable impacting periodic solution with contact loss and fly-over effects.

Figure 6 presents time domain simulation results, to illustrate this phe-
nomenon. Two bi-stable w - Ω combinations were picked, point a and b from
Figure 5(b), with ζ = 0.02, µ = 0.05, r = 0.9, and d = 0.5. The system was
perturbed by two impulses at t = 366.52 and t = 733.04, with the second one
being slightly larger than the first. After the first disturbance, the system set-
tles down to its constant steady state solution, however, the second one leads

16



ot exponentially growing vibrations which only become limited due to the onset
of fly-over events and chatter.

Such impulsive perturbations are relatively common in manufacturing prac-
tice. Material impurities or geometric faults can often lead to sudden entry
or separation of the cutting edge, producing impact like effects. Determining
the systems explicit tolerance against these disturbances would go a long way
towards optimal operation of boring bars with enclosed TMDs. Future work
should be concentrated on this issue.

Modern machine tools contain a large number of moving parts, in the form
of both passive and active elements, all subjected to some form of a motion
limiting constraint. Such as finite strokes of eg. inertial actuators, actuator
or control saturations, end switches and geometric limits. Operating machines
close to these boundaries can be unreliable and dangerous due to the arising
non-smooth effects caused by reaching these rigid limits. Bi-stable behaviours
similar to the one presented on Figure 6 might arise leading to severe wear of
moving parts and faulty machined workpieces.

The investigated displacement constrained passive tuned mass damper model
provides an illustrative example on the dangers of non-smooth effects. The
concept of avoiding collisions whenever possible can be generalised to all afore-
mentioned devices, by staying clear of actuator and input saturations, actuator
stroke limits, and geometric limits when operating industrial machine tools.

5. Conclusions

The effect of displacement limiting constrains is investigated on tuned mass
dampers subjected to harmonic excitation and regenerative cutting force. Through
time domain simulations and hybrid periodic orbit continuation, a quasi-frequency
response function for a piecewise-linear vibro-impact oscillator, and a contact
loss based stability map for boring with a constrained TMD is derived.

For this particular application, problem specific numerical schemes were con-
structed capable of handling both impact and contact-loss events, with special
attention to Zeno behaviour and grazing bifurcations. Continuation of contact-
loss grazing periodic orbits was found to be a reliable approach for determining
stability boundaries in the non-smooth case of boring.

The arising collisions are shown to be inherently harmful for vibration at-
tenuation. Despite the energy dissipated during impacts, the displacement con-
straints lead to a significant loss of attenuation performance. On the stability
map of boring, major bi-stable zones appear, where large enough perturbations
may lead to steady state solutions with contact loss, even though the constant
steady state solution is stable.

Overall, tuned mass damper collisions are demonstrated to be a significant
source of danger, which should be accounted for and avoided if possible when
operating boring bars with enclosed TMDs.
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