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Abstract
The reduced density matrix functional theory (RDMFT) is a remarkable tool for studying
properties of ground states of strongly interacting quantum many body systems. As it gives access
to the one-particle reduced density matrix of the ground state, it provides a perfectly tailored
approach to studying the Bose–Einstein condensation (BEC) or systems of strongly correlated
electrons. In particular, for homogeneous BECs as well as for the Bose–Hubbard dimer it has been
recently shown that the relevant density functional exhibits a repulsive gradient (called the
Bose–Einstein condensation force) which diverges when the fraction of non-condensed bosons
tends to zero. In this paper, we show that the existence of the Bose–Einstein condensation force is
completely universal for any type of pair-interaction and also in the non-homogeneous gases. To
this end, we construct a universal family of variational trial states which allows us to suitably
approximate the relevant density functional in a finite region around the set of the completely
condensed states. We also show the existence of an analogous repulsive gradient in the fermionic
RDMFT for the N-fermion singlet sector in the vicinity of the set of the Hartree–Fock states.
Finally, we show that our approximate functional may perform well in electron transfer
calculations involving low numbers of electrons. This is demonstrated numerically in the
Fermi–Hubbard model in the strongly correlated limit where some other approximate functionals
are known to fail.

1. Introduction

The Bose–Einstein condensate (BEC) has been theoretically predicted by Bose and Einstein [1, 2] in 1924.
Seventy years passed before it was finally realised experimentally by Wieman and Cornell and independently
by Ketterle in gases of ultracold atoms [3, 4]. Nowadays, the BEC provides a widely-used experimental
testing ground for quantum many-body theories, especially superfluidity, superconductivity [7–9] and the
laser phenomenon [5, 6]. In this work, we focus on the description of the BEC via the density functional
theories. Our developed methods for the BEC are subsequently extended to systems of strongly interacting
electrons in the singlet sector.

The most successful and renowned functional theory is perhaps the one which uses the
Hohenberg–Kohn density functional [13] (see also [14]). The natural variable of the Hohenberg–Kohn
density functional is the single-particle density which unfortunately is not suitable for the purpose of this
paper [15]. One of the reasons is that the single-particle densities of the fully condensed quantum states can
range through all possible densities. In other words, it is not possible to decide whether a given
single-particle density describes a BEC condensate or not. Thus, one needs to use a more sophisticated
generalization of the Hohenberg–Kohn density functional, namely the reduced density matrix functional
theory (RDMFT) due to Gilbert [16] and Levy [17]. RDMFT uses the single-particle reduced density matrix
as its natural variable and hence is able to recover quantum correlations exactly. All density functional
theories suffer the issue that their respective functionals are extremely challenging to find and hence they
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are usually not known. Remarkable exceptional cases in RDMFT where the functional is actually known
analytically include the Bose–Hubbard dimer occupied by two bosons [18] and the singlet sector of the
Fermi–Hubbard dimer for two spinful electrons [19, 20]. The common practical strategy is thus to find
suitable approximations to the relevant density functional. In RDMFT it is often the case that approximate
functionals for some specific systems often lead to progress in finding more complicated approximate
functionals for more general systems. For instance, in the fermionic RDMFT this has been the case with the
well-known Hartree–Fock functional [28] which in turn led to the discovery of the Müller and Power
functionals [29, 30] which in turn inspired numerous more complicated hierarchies of functionals [31, 32].
It is also a crucial task to construct approximate functionals that are simple enough to make explicit
calculations tractable, but accurate enough to capture some desired information about the exact functional.
Our presented work makes effort in this direction. Our results build on the recent tremendous progress in
the foundations of both bosonic and fermionic RDMFT [18, 21–23], especially in RDMFT for bosons and
homogeneous BEC, where the remarkable concept of the repulsive BEC force has been introduced. In
particular, it has been shown that the gradient of the relevant density functional in the space of the reduced
density matrices diverges repulsively in the regime of the BEC as the inverse of the square root of the
fraction of the non-condensed bosons. This provided an alternative and more fundamental explanation for
the existence of the quantum depletion in the homogeneous condensate [23] (see also [25–27] for the
underlying theory) and in the Bose–Hubbard dimer [18]. This is compared with the celebrated theories by
Bogoliubov [10] and Gross–Pitaevskii [11] which work in the dilute or weakly interacting regime as well as
in the high density regime for charged bosons and that have been recently verified experimentally [12].

Our work shows that the repulsive BEC force is present also in non-homogeneous BEC, showing that
the presence of the BEC force is an universal phenomenon making the above alternative explanation of the
quantum depletion complete for any system of pairwise interacting bosons. Our arguments are remarkably
versatile and they can be extended to other physical systems. In particular, similar methods are employed to
prove the existence of an analogous phenomenon for the singlet fermionic systems. Our construction
coincides with the exact functional in the dimer case (two fermions occupying two sites/orbitals) known
from previous works [19]. We numerically test the accuracy of our approximate functional in the
Fermi–Hubbard model. For two fermions (N = 2) we show that the approximate functional gives very
accurate values of the ground state energy. For the Fermi–Hubbard chains, we employ the approximate
functional for calculating the electron transfer. In particular, for the half-filled chain of length four, our
functional recovers the exact electron transfer in the strongly correlated limit with a good accuracy.
Remarkably, this is in contrast with the Müller and Power functionals [29, 30] which are known to fail even
in the dimer case [19]. This shows that our proposed functional or its generalizations (see section 8) may be
useful in electron transfer calculations, a task which has been pointed out as one of the current challenges of
the RDMFT [32, 33].

For the sake of clarity, we would like to make precise what is the form of the most general bosonic
Hamiltonian with pairwise interactions that we consider. We work in the discrete setting and consider
quantum systems of N bosons occupying d sites interacting according to Hamiltonians of the form

Ĥ = ĥ + Ŵ , (1)

where ĥ is the single-particle term which comprises of hopping and local potentials while Ŵ is an arbitrary
pair interaction. Thus, the most general form of ĥ is

ĥ =

d∑
i<j

(
tijbib

†
j + tijbjb

†
i

)
+

d∑
i=1

vin̂i,

where ti,j are (possibly complex) hopping amplitudes and vi are on-site potentials. Recall that the creation

and annihilation operators bi, b†j satisfy the bosonic commutation rules [bi, b†j ] = δi,j, [b†i , b†j ] = [bi, bj] = 0

and n̂i := b†i bi is the occupation number operator associated with site i. Similarly, the most general form of
the pair interaction reads

Ŵ =

d∑
i,j,k,l=1

Ωijklbibjb
†
kb†l + h.c., (2)

where Ωijkl are complex parameters.

2. A brief recap of the RDMFT

The setting of the RDMFT is to fix the interaction term Ŵ in equation (1) and consider a family of
Hamiltonians Ĥ(h) = ĥ + Ŵ . One of the key objects in RDMFT is the one-particle reduced density matrix
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(denoted here shortly by 1RDM) which in the case of N bosons occupying d sites is a d × d Hermitian
matrix assigned to any state |Ψ〉 whose entries read

γ
(
|Ψ〉
)

i,j
= 〈Ψ| bjb

†
i |Ψ〉 . (3)

For any one particle Hamiltonian ĥ =
∑

i,jhi,jbib
†
j we have

〈Ψ| ĥ |Ψ〉 =
∑

i,j

hi,jγ
(
|Ψ〉
)

j,i
= Tr

(
hγ
(
|Ψ〉
))

,

where h is simply the matrix of coefficients [hi,j]. The set of all 1RDMs coming from reductions of the pure
states (also called the N-representable 1RDMs) will be denoted by Γ, i.e.

Γ := {γ| γ = γ
(
|Ψ〉
)

for some |Ψ〉}. (4)

Note that not every γ ∈ Γ is the 1RDM of the ground state of Ĥ(h) for some h. Thus, it is also necessary to
consider the set of so-called v-representable 1RDMs associated with Ŵ which is the set Γv ⊂ Γ of 1RDMs
stemming from ground states of Hamiltonians Ĥ(h).

Following Levy [17], Gilbert [16] and Lieb [14] one defines the RDMFT functional F(γ) defined on Γv

as follows. Consider the ground state energy of Ĥ(h) as a function of h, Egs(h). For any γ ∈ Γv we define

F(γ) :=Egs(h) − Tr (hγ) .

Then, by the variational principle we have

Egs(h) = min
γ∈Γv

(Tr (hγ) + F(γ)) . (5)

The following two notable problems arise: (i) we do not know what the set Γv is and (ii) we do not know
what F(γ) is Levy has proposed to circumvent this problem by extending the domain of the RDMFT
functional and the domain of the search (5) to all (possibly non-physical) 1RDMs from Γ [17] and define
the extended functional F̃ as

F̃(γ) := min
|Ψ〉�→γ

〈Ψ| Ŵ |Ψ〉 , (6)

where the minimization is done over all pure states whose 1RDM is γ. Functional F̃ has the following two
properties: (P1) F̃(γ) + Tr (hγ) � Egs(h) for every h and γ ∈ Γ, (P2) F̃(γgs) + Tr

(
hγgs

)
= Egs(h), if γgs is

the 1RDM of the ground state of Ĥ(h). Properties P1 and P2 imply that for γ ∈ Γv we have F̃(γ) = F(γ).
Thus, functionals F as well as F̃ are universal, i.e. they are independent of h. The do however depend on
the interaction Ŵ .

Finally, let us point out that by equation (6) the functional F̃(γ) is upper bounded by 〈Ψ| Ŵ |Ψ〉 for any
|Ψ〉 whose 1RDM is γ. We will strongly rely on this elementary fact in the following parts of the paper.

3. The repulsive gradient in the Bose–Hubbard dimer

In this section we introduce the main concepts and build some key intuitions that we will develop further in
the remaining parts of the paper. A simple and intuitive explanation of the relevant repulsive gradient in the
RDMFT functional that we are going to focus on in this section comes from the Bose–Hubbard dimer. This
is a system of two sites labelled by the numbers i = 1, 2 with the corresponding creation operators b†1, b†2 and
the interaction given by ŴBH = n̂2

1 + n̂2
2, where n̂i is the particle number operator at the site i. To simplify

things further, we will assume that the system at hand involves only N = 2 bosons and consider only real
wave functions. Then, the corresponding two-boson states can be written in the position basis as the
superposition

|Ψ〉 = a1 |2(1)〉+ a2 |1(1), 1(2)〉+ a3 |2(2)〉 , a2
1 + a2

2 + a2
3 = 1,

where the basis states are |2(i)〉 =
(

b†i

)2
|vac〉, |1(1), 1(2)〉 = b†2b†1 |vac〉. According to equation (3) the 1RDM

of |Ψ〉 is a 2 × 2 real symmetric matrix whose coefficients are given by

γ
(
|Ψ〉
)
=

(
γ1,1 γ1,2

γ1,2 γ2,2

)
=

(
2a2

1 + a2
2

√
2a2(a1 + a3)√

2a2(a1 + a3) a2
2 + 2a2

3

)
. (7)

Remarkably, the above relations can be inverted in order to express the wave function’s coefficients in terms
of the variables γi,j leading to an exact expression for the Levy’s RDMFT functional according to

3
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Figure 1. The exact RDMFT functional for the N = 2 Bose–Hubbard dimer. (a) The plot of F̃BH(γ). (b) The domain of the
functional is a disk of unit radius which we parametrise by the variables D and φ. (c) A radial cut of the plot for φ = π/4
showing the cusp singularity of the functional at the boundary of its domain (D → 0).

equation (6). This fact has been studied in the literature—see [18] for the complete derivation and [19] for
a similar treatment of the two-electron Fermi–Hubbard dimer. The resulting expression for the exact
RDMFT functional reads

F̃BH(γ) = 4 −
1 +
√

1 − γ2
1,2 − (γ1,1 − 1)2

γ2
1,2 + (γ1,1 − 1)2

, γ2
1,2 + (γ1,1 − 1)2 � 1. (8)

Obtaining exact expressions for the RDMFT functionals is generally not possible for larger systems as the
multi-particle wave functions are parametrised by many more variables than the respective 1RDMs which
makes realising the minimization in equation (6) in an exact way very difficult.

According to equation (8) the domain of the RDMFT functional for the N = 2 dimer is the disk of unit
radius γ2

1,2 + (γ1,1 − 1)2 � 1. This fact comes solely from the condition that the 1RDM γ has to be
positive-semidefinite. Importantly, the 1RDMs which lie on the boundary of the disk have the property that
γ2 = 2γ, i.e. they have the eigenvalues ν1 = 2, ν2 = 0. In other words, such 1RDMs come from the states
which are completely condensed in a single mode |ψ〉 being some linear combination of the spatial modes
|1〉 and |2〉. In this paper, we will be mainly interested in the behaviour of the functional F̃BH(γ) when γ is
close to the set of 1RDMs which come from such completely condensed states. In contrast to the dimer, in
higher dimensions the 1RDMs of the completely condensed states form only a subset of the boundary of the
domain of the RDMFT functional. However, in the simple example at hand we can visualise the exact
functional (figure 1(a)) and see what exactly is happening in the vicinity of its boundary (figure 1(c)).
Namely, we see that the gradient of F̃BH(γ) diverges at the boundary of its domain (this is often called a
cusp singularity).

More precisely, we introduce the distance and angle variables, D ∈ [0, 1] and φ ∈ [0, 2π] (figure 1(b)),
which parametrise the disk such that

γ1,1 = 1 + (1 − D) cos φ, γ1,2 = (1 − D) sin φ,

see figure 1(a). Using the above parametrisation in equation (8) we get that

∂F̃BH(γ(D,φ))

∂D
= − 1 − D√

D(2 − D)
sin2 φ,

which diverges as − sin2 φ√
2

1√
D

in the leading order when D → 0. This repulsive divergence of the RDMFT
functional at the boundary of its domain has been confirmed to exist in many more physical systems
including the N-boson Bose–Hubbard dimer, homogeneous BECs (where it is called the BEC force
[18, 23, 24]) and translationally invariant one-dimensional fermionic systems [21] (where it is called the
exchange force). It has been conjectured that it is a property of generic interacting many-body systems. In
this paper, we show that this is indeed the case. However, as we are not able to write down the exact
functional for a general system and simply compute its derivative, we need to find an appropriate bound for
the RDMFT functional whose diverging gradient will imply that the gradient of the exact RDMFT
functional diverges as well when D → 0. To this end, for any 1RDM γ we construct an ansatz state |Ψ(γ)〉
such that γ is the 1RDM of the state |Ψ(γ)〉. With such an ansatz at hand, we simply bound the exact
functional by

F̃(γ) � 〈Ψ(γ)| Ŵ |Ψ(γ)〉

4
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and show that the bound diverges repulsively when the (appropriately defined) distance variable D tends to
0. Let us also remark that the distance variable D has the interpretation as the depletion parameter. To see
this, we find the eigenvalues of γ to be ν1 = 2 − D and ν2 = D. Thus, D is the number of bosons that are
outside of the highest occupied mode.

Let us next show how this strategy works out for the N-boson Bose–Hubbard dimer. We assume that the
1RDMs are normalised to tr γ = N. This implies that the set of 1RDMs is a disk of the radius N/2 given by
the inequality (γ1,1 − N/2)2 + γ2

1,2 � N2/4. Thus, we use the parametrisation of γ(D,φ) which reads

γ1,1 =
N

2
+

(
N

2
− D

)
cos φ, γ1,2 =

(
N

2
− D

)
sin φ. (9)

We will construct the ansatz state |Ψ(γ(D,φ))〉 ≡ |Ψ(D,φ)〉 in the basis of eigenmodes of γ(D,φ) =
(N − D) |φ〉〈φ|+ D|φ⊥〉〈φ⊥|, where

|φ〉 = cos

(
φ

2

)
|1〉+ sin

(
φ

2

)
|2〉, |φ⊥〉 = − sin

(
φ

2

)
|1〉+ cos

(
φ

2

)
|2〉.

The ansatz is the following superposition of the completely condensed state in the mode |φ〉 with the
doubly-excited state

|Ψ(D,φ)〉 =
√

2 − D

2
|N(φ)〉 −

√
D

2

∣∣(N − 2)(φ), 2(φ⊥)

〉
.

It is straightforward to verify that the state |Ψ(D,φ)〉 gives the correct 1RDM (9) which is diagonal in the
|φ〉, |φ⊥〉 basis and whose diagonal entries in this basis are N − D and D. By evaluating the expression
〈Ψ(D,φ)| Ŵ |Ψ(D,φ)〉 we get the following upper bound for the RDMFT functional for any D � 2

F̃BH(D,φ) � 2 − D

2
〈N(φ)| ŴBH |N(φ)〉 −

√
D(2 − D)

〈
(N − 2)(φ), 2(φ⊥)

∣∣ ŴBH |N(φ)〉

+
D

2

〈
(N − 2)(φ), 2(φ⊥)

∣∣ ŴBH

∣∣(N − 2)(φ), 2(φ⊥)

〉
.

The upper bound is equal to the exact functional at D = 0 and its gradient diverges repulsively when
D → 0 proportionally to −1/

√
D in the leading order which implies the desired result. It is however crucial

to be assured that
〈

(N − 2)(φ), 2(φ⊥)

∣∣ Ŵ |N(φ)〉 is generically strictly positive. Otherwise, the entire argument
breaks down as there are no other terms in the bound that give the repulsive gradient. This is done by a
straightforward but rather tedious calculation which relies on expressing the interaction ŴBH = n̂2

1 + n̂2
2 in

terms of the creation and annihilation operators bφ = cos(φ/2)b1 + sin(φ/2)b2 and
bφ⊥ = − sin(φ/2)b1 + cos(φ/2)b2. This way, we find that

〈
(N − 2)(φ), 2(φ⊥)

∣∣ Ŵ |N(φ)〉 =
√

N(N − 1)

2
sin2 φ � 0,

thus the above overlap vanishes only when φ ∈ {0,π}. A similar calculation allows us to obtain expressions
for the remaining expectation values of ŴBH . The resulting upper bound for the RDMFT functional is
plotted for N = 4 and N = 10 in figure 2. It is given by the formula

F̃BH(D,φ) � 1

4
N (1 + 3N + (N − 1) cos(2φ)) − sin2 φ

√
N(N − 1)

2

√
D(2 − D)+

− D

2
(N − 2)(1 + 3 cos(2φ)). (10)

Finally, the resulting bound for the gradient of the functional reads

∂F̃BH(γ(D,φ))

∂D
� −sin2 φ

√
N(N − 1)

2

1 − D√
D(2 − D)

− 1

2
(N − 2)(1 + 3 cos(2φ)). (11)

The above bound for the gradient can be compared with the results of [18] where the first term of the
expansion of the gradient in the powers of D has been obtained. The results agree with equation (11) up to
some factors of N which come from the different choices of the normalisation of 1RDMs.

To end this section, let us remark that analytic bounds for the exact RDMFT functional are potentially
very useful tools in approximately solving complex physical systems. This is because the functional is
universal for all the single-particle terms ĥ in equation (1). For the Hubbard model the single-particle terms
include the external on-site potentials and all the possible hopping terms. Thus, quite remarkably, an
approximate functional can be applied to the Hubbard model of any geometry. Moreover, finding the

5
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Figure 2. Plots of the upper bound (10) for the RDMFT functional for the Bose–Hubbard dimer with (a) N = 4 bosons and
(b) N = 10 bosons. Note, that the bound is defined only when the distance from the boundary is less than 2. In particular, this
means that whenever N > 4 the bound is defined on the subset of the set of all the 1RDMs given by the annulus of the inner
radius N/2 − 2.

ground state energy boils down to the easy task of finding the minimum of a surface (just like the surfaces
on figures 2 and 1(a), but generally of a higher dimension) which is tilted by the single-particle terms of the
Hamiltonian. In particular, for the dimer this boils down to the almost trivial task of finding the minimum
of a two-dimensional surface—independently of the number of bosons N.

4. The spectral simplex ΔN,d

This section is devoted to explaining some key geometric properties of the set Γ defined in equation (4).
One of the main difficulties in RDMFT is the need of optimization over set Γ which is in general a
complicated non-convex set. However, in contrast to its fermionic counterpart [37, 40–42], set Γ for bosons
is convex and has a tractable description in terms of a geometric object which we call the spectral simplex
and denote by ΔN,d. Before we define ΔN,d, we need to take a closer look at a particular set of operations
called the single-particle unitaries. The single-particle unitaries are unitary operators generated by

single-particle Hermitian operators, i.e. they are operations of the form Û = eiÂ, where Â =
∑d

i,j=1Ai,jbib
†
j

with Ai,j = A∗
j,i (the star denotes the complex conjugate). The matrix of coefficients [Ai,j] will be denoted by

A. It is a Hermitian d × d matrix, thus U = eiA is a unitary d × d matrix. Hence, with a given matrix A we
have associated a single-particle unitary Û and a d × d unitary U. While Û acts on N-boson wave functions,
matrix U acts on 1RDMs via conjugation. Importantly, these two actions are equivalent, namely

γ
(
Û |Ψ〉

)
= Uγ

(
|Ψ〉
)

U†. (12)

In particular, any 1RDM γ can be diagonalised by the above operations. This means that set Γ is
parametrised by the spectra of 1RDMs coming from pure states of N bosons. Note that the spectrum of any
1RDM (n1, n2, . . . , nd) has to satisfy

0 � ni � N and n1 + · · ·+ nd = N. (13)

These constraints define the spectral simplex ΔN,d (see figure 3). Simplex ΔN,d is the convex hull of d
vertices (N, 0, . . . , 0), (0, N, 0, . . . , 0), . . . , (0, . . . , 0, N). It turns out that any point of the simplex
corresponds to the spectrum of a 1RDM. To see this, consider state

|Ψα〉 :=
d∑

i=1

αi|N(i)〉,

where |N(i)〉 := 1√
N!

(
b†i

)N
|vac〉 and α = (α1, . . . ,αd) is a vector of real numbers whose squares sum up to

one. The 1RDM of |Ψα〉 is diagonal and it reads

γ
(
|Ψα〉

)
= diag

(
Nα2

1, Nα2
2, . . . , Nα2

d

)
.

6
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Figure 3. The spectral simplex for d = 3.

Figure 4. The role of parameters {αi}d−1
i=1 and ε in the ansatz state (15) depicted for d = 3 and N = 3. The dots denote the

spectra of 1RDMs corresponding to the basis states.

Thus, by changing the parameters α we can reach any convex combination of simplex’s vertices. Stated
another way, the above fact means that any d × d density matrix γ (i.e. a positive-definite Hermitian matrix
of trace N) is the 1RDM of a pure bosonic state of the form Û |Ψα〉 for some single-particle Û and
some α.

For a given typical d × d density matrix γ there exist many N-boson pure quantum states that have such
a γ as their 1RDM. However, this changes diametrically when we consider a special subset of Γ which is
defined as the set of 1RDMs of completely condensed states of N bosons. All such completely condensed
states are of the forms Û |N(1)〉 where Û is a single-particle unitary. By the property (12) the 1RDM of a
completely condensed state is of the form UγBECU†, where

γBEC := γ
(
|N(1)〉

)
= diag (N, 0, . . . , 0) .

Thus, we define
ΓBEC :=

{
UγBECU†| U − d × d unitary

}
.

Importantly, set ΓBEC is in a one-to-one correspondence with the set of completely condensed states and the
correspondence is UγBECU† ↔ Û |N(1)〉. Hence, when computing Levy’s functional (6) no minimization is
required and we have

F̃(UγBECU†) = 〈N(1)| Û†ŴÛ |N(1)〉 . (14)

7
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5. The exposition of the main result

The proposed variational ansatz state is a combination of the completely condensed state |N(1)〉 and a
weighted superposition of states with two bosons outside the condensate. Its precise normalised form reads

|Ψε,σ〉 =
1√

1 + ε2

(
1 +

σε√
2N(N − 1)

b2
1

d−1∑
i=1

αi

(
b†i+1

)2
)
|N(1)〉 , (15)

where the variational parameters are ε � 0 and σ = ±1. Numbers {αi}d−1
i=1 are arbitrary fixed numbers

whose role is to probe all directions inside the simplex. They are all nonnegative and satisfy α2
1 + · · ·+

α2
d−1 = 1. Parameter ε determines the Euclidean distance of γε := γ

(
|Ψε〉
)

from the 1RDM of the
completely condensed state, γBEC = diag (N, 0, . . . , 0). To see this, recall that the distance between two
matrices is given by the Hilbert–Schmidt measure

D(γ, γ ′) =
√

Tr ((γ − γ ′)2). (16)

It is straightforward to see that γε is diagonal and its precise form reads

γε =
1

1 + ε2
diag

(
N(1 + ε2) − 2ε2, 2ε2α2

1, . . . , 2ε2α2
d−1

)
.

Thus, numbers {αi}d−1
i=1 are in a one-to-one correspondence with the possible directions from vertex γBEC to

the interior of the simplex ΔN,d (see figure 4). A straightforward calculation shows that

Dε :=D(γBEC, γε) = βd
ε2

1 + ε2
, (17)

where βd := 2
√

1 + α4
1 + · · ·+ α4

d−1. Note that the number of non-condensed bosons in γε is exactly

N − NBEC = 2ε2/(1 + ε2), thus Dε has the physical interpretation as the depletion parameter

Dε =
1

2
βd(N − NBEC).

Note that distance D is invariant with respect to conjugating its arguments by a d × d unitary U. Hence, Dε

is also equal to the distance from γ
(
Û |Ψε〉

)
= UγεU† to the 1RDM of the corresponding completely

condensed state γ
(
Û |N1〉

)
= UγBECU† (see figure 5). The ansatz state (15) provides an upper bound for

the RDMFT functional of the form

F̃
(
UγεU

†) � 〈Ψε,σ| Û†ŴÛ |Ψε,σ〉 .

The above bound is defined for any 1RDM γ in the finite region around the set ΓBEC consisting of the
1RDMs that satisfy the condition N − NBEC � 2. This is because any such γ can be written as UγεU

† for
some U and γε that are determined via the diagonalisation of γ. What is more, the matrix UγBECU†

minimises the distance from γ to the set ΓBEC. The above upper bound has a particularly simple form,
namely

〈Ψε,σ| Û†ŴÛ |Ψε,σ〉 =
F̃
(
UγBECU†)+ c1σε + c2ε

2

1 + ε2
. (18)

where constants c1, c2 depend on, N, d, parameters {αi}d−1
i=1 as well as the precise form of Ŵ and the unitary

U. The expressions for c1 and c2 can be viewed as the following combinations of the two-body integrals
c1 = 2

∑d−1
k=1αk RIk, c2 =

∑d−1
k=1α

2
kIk,k + 2

∑d−1
k<l=1αk,l RIk,l, where

Ik :=
1√

2N (N − 1
〈N(1)| Û†ŴÛb2

1

(
b†k+1

)2
|N(1)〉 ,

Ik,l :=
1

2N(N − 1)
〈N(1)| b2

l+1

(
b†1

)2
Û†ŴÛb2

1

(
b†k+1

)2
|N(1)〉 .

The two-body integrals can be obtained as closed-form expressions if d = 2, while for d > 2 they are
computable as convergent series. Importantly, in the following sections we argue that the coefficient c1 is
generically nonzero. Using equation (17) this yields the following upper bound for the functional in terms
of the distance Dε < βd

F̃
(
UγεU

†) � (1 − Dε

βd

)
F̃
(
UγBECU†)+ c1σ

√
Dε

βd

(
1 − Dε

βd

)
+ c2

Dε

βd
. (19)

8
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Figure 5. The distance Dε is invariant with respect to conjugation. Matrix UγBECU† minimises the distance from UγεU
† to the

set ΓBEC. Parameter ε parametrises the shortest path.

Figure 6. The upper bound (19) forces the gradient of the RDMFT functional to diverge repulsively when Dε → 0+.

The final key observation is that the upper bound in equation (19) is exact for ε = 0. Hence, while
approaching the completely condensed state by taking ε � 1 (and hence Dε � 1), the gradient of the upper
bound with respect to the distance Dε is also an upper bound for the gradient of the exact functional (see
figure 6). Furthermore, the binary parameter σ can be chosen so that the gradient of the expression (19) is
repulsive for small Dε and diverges to −∞ as − |c1|

2
√

βd

1√
Dε

in the leading order, a result anticipated in earlier

works [18, 23].

6. Calculating the coefficient c1

In this section we provide arguments for the crucial fact that thanks to the specific form of our proposed
ansatz state the coefficient c1 in the bound (19) is generically non-zero.

Although our proof of the bound (19) is elementary and requires only minimal assumptions about the
Hamiltonian, it becomes heavy with calculations in its most general instance. However, most of the key
arguments appear already when considering a dimer, d = 2. Hence, it will be most instructive to gradually
increase the generality of our considerations, beginning with the Bose–Hubbard dimer, then moving to a
dimer with an arbitrary pair interaction and finally formulating the proof in its full generality.

6.1. The Bose–Hubbard dimer
The interaction term for the Bose–Hubbard Hamiltonian on d sites reads

Ŵ (d)
BH = V

d∑
i=1

n̂2
i

with V ∈ R being a real parameter. V > 0 corresponds to an on-site repulsion, while V < 0 corresponds to
an on-site attraction. The most difficult part of the proof of bound (19) relies on computing U†ŴBHU . The
general strategy is to express the interaction term in terms of generators of the unitary group and then use
some well-known facts concerning conjugation of the generators by unitary matrices (in particular, the
correspondence with rotations in (d2 − 1)-dimensions [34]). Let us next show how this strategy is realized
in the case of the Hubbard dimer where ŴBH = V(n̂2

1 + n̂2
2). Our first goal is to express ŴBH in terms of the

9
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SU(2) generators

X̂ := b†1b2 + b†2b1, Ŷ := i
(
−b†1b2 + b†2b1

)
, Ẑ := b†1b1 − b†2b2 = n̂1 − n̂2. (20)

In the following, we will often arrange the above generators into a vector R̂ =
(
R̂1, R̂2, R̂3

)
, where R̂1 = X̂,

R̂2 = Ŷ , R̂3 = Ẑ. In the above uniform notation, the generators satisfy the standard SU(2) commutation
relations, i.e. [R̂i, R̂j] = 2iεijkR̂k, where εijk is the Levi-Civita symbol (not to be confused with the real
parameter ε).

With the above notation established, the Bose–Hubbard interaction term can be written as

Ŵ (2)
BH =

V

2

(
N̂2 + Ẑ2

)
,

where N̂ is the total particle number operator. For d > 2, we analogously define Ẑij = n̂i − n̂j to obtain

Ŵ (d)
BH =

V

d

⎛
⎝N̂2 +

∑
i<j

Ẑ2
ij

⎞
⎠ .

Let us next take a slight detour and revisit some algebraic properties of conjugation in d = 2. By

definition, any unitary operator for d = 2 can be written in terms of generators (20) as Û = eiαr·R̂, where r
is a vector in three dimensions of unit length. Recall the following key formula for the conjugation in d = 2

e−iαr·R̂R̂je
iαr·R̂ =

3∑
i=1

Ci,j(α, r)R̂i. (21)

Matrix [Ci,j](α, r) is real and is well-known to describe a rotation by angle 2α about the axis r [34]. The
exact expressions for its entries can be found e.g. in [35].

In particular, for the Bose–Hubbard dimer, we have

〈Ψε,σ| Û†Ŵ (2)
BHÛ |Ψε,σ〉 =

V

2

(
N2 +

〈
ΦU

ε,σ|ΦU
ε,σ

〉)
,

where
∣∣ΦU

ε,σ

〉
:= Û†ẐÛ |Ψε,σ〉. Formula (21) applied for j = 3 gives

〈
ΦU

ε,σ|ΦU
ε,σ

〉
=

3∑
i,j=1

Ci,3Cj,3 〈Ψε,σ| R̂jR̂i |Ψε,σ〉

=

3∑
i=1

C2
i,3 〈Ψε,σ| R̂2

i |Ψε,σ〉 .

The last line of the above equation follows from the fact that 〈Ψε,σ| R̂jR̂i |Ψε,σ〉 = 0 whenever j = 3 and

i �= 3 or i = 3 and i �= 3. This is because |Ψε,σ〉 is a superposition of |N1〉 and b2
0

(
b†1

)2
|N1〉, so there have to

be two different annihilations in R̂jR̂i to get a nonzero expectation value. Moreover, |Ψε,σ〉 is a real vector,
thus 〈Ψε,σ| (X̂Ŷ + Ŷ X̂) |Ψε,σ〉 = 0. Next, we check the following facts by a straightforward calculation

X̂ |Ψε,σ〉 = Nε

((√
N + σε

√
2(N − 1)

)
|N − 1, 1〉+ σε

√
3(N − 2)|N − 3, 3〉

)
,

Ŷ |Ψε,σ〉 = iNε

((√
N − σε

√
2(N − 1)

)
| (N − 1, 1〉+ σε

√
3(N − 2)|N − 3, 3〉

)
,

Ẑ |Ψε,σ〉 = Nε

(
N|N, 0〉+ σε(N − 4)|N − 2, 2〉

)
, (22)

where we used the shorthand notation |K, L〉 for the normalised state
(

b†1

)K(
b†2

)L
|vac〉. The above

calculation is key for our proof. Namely, computing expectation values of R̂2
i generates terms proportional

to ε due to the fact that squares of the form
(√

N ± σε
√

2(N − 1)
)2

appear on the way. Collecting all

10
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contributions proportional to ε and ε2, we find the following constants from equation (18).

F̃
(
UγBECU†) = NV

2

(
N
(
1 + C2

3,3

)
+ C2

1,3 + C2
2,3

)
,

c1 = V
√

2N(N − 1)
(
C2

1,3 − C2
2,3

)
,

c2 =
V

2

(
N2 + (5N − 8)

(
C2

1,3 + C2
2,3

)
+ (N − 4)2C2

3,3

)
.

Using the axis-angle representation of the rotation matrix [Ci,j](r,α) [35], we obtain explicitly

c1 = V
√

2N(N − 1)
(
(r2

1 − r2
2)
(
4r2

3 sin4(α) − sin2(2α)
)
+ 8r1r2r3 sin2(α) sin(2α)

)
.

6.2. The dimer with an arbitrary interaction
The most general interaction from equation (25) for d = 2 can always be recast into a combination of R̂iR̂j

with the complex coefficients Ωi,j = ωi,j + iτ i,j. Taking into account that the interaction Ŵ is Hermitian, we
have Ŵ =

∑
i�jŴ i,j, where

Ŵi,j = ωi,j

(
R̂iR̂j + R̂jR̂i

)
+ iτi,j

(
R̂iR̂j − R̂jR̂i

)
.

In particular, if Ω3,3 is the only nonzero coefficient, we recover the Bose–Hubbard interaction (up to a
constant term).

Applying the conjugation formula (21) to such a most general Ŵ , we obtain

Û†ŴÛ =
∑
k�l

(
ω̃k,l

(
R̂kR̂l + R̂lR̂k

)
+ iτ̃ k,l

(
R̂kR̂l − R̂lR̂k

))
, (23)

where

ω̃k,l =
∑
i�j

ωi,j

(
Ck,iCl,j + Ck,jCl,i

)
,

τ̃ k,l =
∑
i�j

τi,j

(
Ck,iCl,j − Ck,jCl,i

)
.

The rest of the proof proceeds in a very similar way to the Bose–Hubbard case. Namely, we notice that
〈Ψε,σ|

(
R̂kR̂l + R̂lR̂k

)
|Ψε,σ〉 = 0 whenever k �= l. Similarly, 〈Ψε,σ|

(
R̂kR̂3 − R̂3R̂k

)
|Ψε,σ〉 = 0 whenever k �= 3.

Moreover, the only terms proportional to ε (i.e. contributing to c1 from equation (18)) come from
components of equation (23) with k = l �= 3. Thus, using equation (22) we obtain

c1 = 2
√

2N(N − 1)
(
ω̃1,1 − ω̃2,2

)
.

Closed forms of the remaining coefficients from the bound (18) read

F̃
(
UγBECU†) = N

(
Nω̃3,3 + ω̃2,2 + ω̃1,1 − 4τ̃ 1,2

)
c2 = (5N − 8)

(
ω̃1,1 + ω̃2,2

)
+ ω̃3,3(N − 4)2 − 2τ̃ 1,2(N − 4).

6.3. The general case
Our previous considerations concerning an interacting dimer generalise fairly straightforwardly to d > 2.
Firstly, we have more generators of the single-particle unitary operations. Their forms are completely
analogous to the dimer case, namely for every pair 1 � i < j � d we define the following operators forming
the SU(d) algebra

X̂i,j := b†i bj + b†j bi, Ŷ i,j := i
(
−b†i bj + b†j bi

)
, Ẑi,j := b†i bi − b†j bj = n̂i − n̂j. (24)

Thus, we have 3d(d − 1)/2 generators. However, the number of linearly independent generators is d2 − 1
due to the relations Ẑi,j + Ẑj,k = Ẑi,k. We will also arrange all generators in a linear order and use a single
greek symbol to enumerate the generators, so that the set of linearly independent generators can be written

in a uniform way as {R̂μ}d2−1
μ=1 . Thus, in full analogy to the dimer case, we can write a general pair

interaction as Ŵ =
∑

μ�νŴμ,ν , where

Ŵμ,ν = ωμ,ν

(
R̂μR̂ν + R̂ν R̂μ

)
+ iτμ,ν

(
R̂μR̂ν − R̂ν R̂μ

)
(25)

11
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with ωμ,ν and τμ,ν being some given real constants.

Conjugating R̂μ by a single-particle unitary of the form Û = eiÂ with Â =
∑

μaμR̂μ results with the
transformation

e−iÂR̂νeiÂ =

d2−1∑
μ=1

Cμ,ν(A)R̂μ, (26)

where coefficients Cμ,ν(A) are real and can be computed by taking the exponent of the so-called
adjoint action adA

(
Rμ

)
:= [A, Rμ]. The coefficient matrix [Cμ,ν(A)] describes a rotation in d2 − 1

dimensions [34]. Thus, we get

Û†ŴÛ =
∑
γ�δ

(
ω̃γ,δ

(
R̂γR̂δ + R̂δR̂γ

)
+ iτ̃ γ,δ

(
R̂γR̂δ − R̂δR̂γ

))
, (27)

where

ω̃γ,δ =
∑
μ�ν

ωμ,ν

(
Cγ,μCδ,ν + Cγ,νCδ,μ

)
,

τ̃ γ,δ =
∑
μ�ν

τμ,ν

(
Cγ,μCδ,ν − Cγ,νCδ,μ

)
.

Let us remark that the coefficients in equations (26) and (27) depend only on the Lie algebra element A, not
on the particular representation. In particular, the same equations hold for the fermionic systems described
in in section 7.

The rest of the proof relies on keeping track of contributions proportional to ε and ε2 in expressions of
the type 〈Ψε,σ| R̂γR̂δ |Ψε,σ〉. The calculation is tedious, but straightforward, thus we move it to appendix A.1.
For the sake of completeness, below we write down the explicit expression for c1 from equation (18). As it
turns out, the only contributions to c1 come from expressions 〈Ψε,σ| R̂2

γ |Ψε,σ〉, where R̂γ = X̂1,k or

R̂γ = Ŷ1,k for some k. Thus, the result is completely analogous to the formula describing c1 in the dimer

case. Denote by ω(x)
k the coefficient ω̃γ,γ in equation (27) which multiplies X̂2

1,k. Similarly, define ω(y)
k as the

coefficient ω̃γ,γ in equation (27) which multiplies Ŷ2
1,k. Then, as explained in appendix A.1

c1 = 4
√

2N(N − 1)
d−1∑
k=1

αk

(
ω(x)

k − ω
(y)
k

)
, (28)

where {αk}d−1
k=1 are parameters of the ansatz state (15).

7. Repulsive gradient in the fermionic RDMFT for the singlet sector

In this section we show that an analogous repulsive gradient force is present in systems of interacting
spin-1/2 fermions for Hamiltonians preserving the total spin which we assume to be zero by selecting the
singlet sector. The fermions occupy d sites/orbitals with the corresponding annihilation operators
{ai↑, ai↓}d

i=1. We start by defining the auxiliary operators fi,j which will be helpful in carrying the
calculations in an almost complete analogy to the bosonic case.

fi,j :=
∑

σ∈{↑,↓}
a†jσaiσ , 1 � i � j � d.

The one-particle reduced density matrix is given by

γ
(
|Ψ〉
)

i,j
=
∑
σ

〈Ψ| a†iσajσ |Ψ〉 = 〈Ψ| f †i,j |Ψ〉 .

The single-particle operators form an SU(d) algebra and are represented on the singlet sector as

X̂f
i,j := fi,j + f †i,j, Ŷ f

i,j := i
(

fi,j − f †i,j

)
, Ẑf

i,j :=
[

f †i,j, fi,j

]
=
∑
σ

(
n̂iσ − n̂jσ

)
, (29)

where i < j. As before, for any single-particle unitary Û the one-particle reduced density matrices transform
equivariantly according to the formula γ

(
Û |Ψ〉

)
= Uγ

(
|Ψ〉
)

U†. We also consider the spectral polytope
PM,d which is the polytope formed by the spectra of the one-particle reduced density matrices of the singlet

12
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Figure 7. The polytope PM,d for M = 2 and d = 4. The extreme vertices form an octahedron. The ansatz state (31) has
occupation numbers that lie on the red dashed line connecting the Hartree–Fock point with the red dot defined as the convex
combination of the vertices (2, 0, 2, 0), (0, 2, 2, 0), (0, 2, 0, 2) and (2, 0, 0, 2) with the weights α2

2,3, α2
1,3, α2

1,4 and α2
2,4 respectively.

states of N = 2M fermions occupying d orbitals (or sites). Importantly, the polytope PM,d has a tractable
description [37]—it is defined only by the Pauli constraints

0 � ni � 2,
d∑

i=1

ni = 2M,

where ni = ni↑ + ni↓ is the number of fermions occupying the ith orbital. Clearly, PM,d is not a simplex

when d > 3 or M > 1. It is a convex hull of
(

d
M

)
vertices whose occupation numbers ni ∈ {0, 2} and sum

up to 2M (see figure 7).
For 1 � i1 < i2 < · · · < iM � d we define the corresponding singlet Hartree–Fock state as

|i1↓, i1↑, . . . , iM↓, iM↑〉 := a†i1,↓a†i1↑ . . . a†iM↓a†iM↑ |vac〉 .

Any point from the polytope PM,d can be written as the spectrum of the one-particle reduced density matrix
of the following combination of the Hartree–Fock states

|Ψ〉 =
∑

1�i1<i2<···<iM�d

αi1,...,iM |i1↓, i1↑, . . . , iM↓, iM↑〉 .

The one-particle reduced density matrix corresponding to the above state is easily seen to be diagonal and
to correspond to the convex combination of the polytope’s vertices with the coefficients |αi1,...,iM |2.

Any Hamiltonian conserving the total spin of 2M fermions occupying d orbitals when truncated to the
singlet sector can be written as

Ĥ =
∑
i<j

(
ti,jX̂

f
i,j + yi,jŶ

f
i,j + vi,jẐ

f
i,j

)
+ Ŵ + μN̂, (30)

where the interaction term Ŵ is an arbitrary linear combination of products of operators (29) with real
coefficients (i.e. a real polynomial in X̂f

i,j, Ŷ f
i,j and Ẑf

i,j). In particular, the Fermi–Hubbard interaction is

obtained as ŴFH =
∑

i<jVi,j

(
Ẑf

i,j

)2
, Vi,j ∈ R. For the attractive interaction (Vi,j < 0) the Hamiltonian (30)

with the Bose–Hubbard interaction and only real hopping terms (yi,j = 0) extended to the entire Fock space
is known to have a unique singlet ground state [36]. For the repulsive interaction, the ground state is a
singlet state only at the half-filling (N = d) and only when the graph defined by the hopping geometry is
bipartite with the two disjoint sets of vertices having the same cardinality. This is satisfied for instance for
the chain-geometry. In what follows, we will assume that Ŵ is a pair interaction, i.e. it only consists of
terms of degree 2 in the operators X̂f

i,j, Ŷ f
i,j and Ẑf

i,j.

13
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We consider the following variational ansatz state.

∣∣Ψf
ε,σ

〉
:=

1√
1 + ε2

⎛
⎝1 + σε

M∑
i=1

d∑
j=M+1

αi,ja
†
j↓a†j↑ai↑ai↓

⎞
⎠ |1↓, 1↑, . . . , M↓, M↑〉 , (31)

where σ ∈ {−1, 1} and αi,j are real parameters such that
∑M

i=1

∑d
j=M+1α

2
i,j = 1. The one-particle reduced

density matrix of the above ansatz state is diagonal and its entries γ
(
|Ψε,σ〉

)
k,k

= 〈Ψε,σ| n̂k↓ + n̂k↑ |Ψε,σ〉 read

γ
(∣∣Ψf

ε,σ

〉)
k,k

=
2

1 + ε2

⎛
⎝1 + ε2

d∑
j=M+1

α2
k,j

⎞
⎠ , 1 � k � M,

γ
(∣∣Ψf

ε,σ

〉)
l,l
=

2ε2

1 + ε2

M∑
i=1

α2
i,l, M < l � d.

Clearly, for ε = 0 the ansatz state is a Hartree–Fock state and γ
(∣∣∣Ψf

0,σ

〉)
= diag (2, . . . , 2, 0, . . . , 0) =: γHF.

If ε > 0, the parameters αi,j swipe through all possible directions coming out of the vertex γHF and going
inside the polytope PM,d (see figure 7). Consequently, for a fixed choice of the coefficients αi,j and for any
single-particle unitary Û the parameter ε parametrizes the shortest path from the point Uγ

(∣∣Ψf
ε,σ

〉)
U† to

the set of the Hartree–Fock states

ΓHF :=
{

UγHFU†| U − d × d unitary
}
.

Alternatively, one may think of the ansatz state Û
∣∣Ψf

ε,σ

〉
as having the form (31) where the annihilation

operators {ai↑, ai↓}d
i=1 are replaced by the natural orbital basis annihilators {ãi↑, ãi↓}d

i=1 ordered decreasingly
in terms of their corresponding natural occupation numbers. The relevant distance measure is the
Hilbert–Schmidt distance from equation (16). In particular, for any single-particle unitary Û we have

Dε := min
γ̃∈ΓHF

D
(
γ̃, γ
(
Û
∣∣Ψf

ε,σ

〉))
= D

(
γHF, γ

(∣∣Ψf
ε,σ

〉))
= δd

ε2

1 + ε2
,

where δd = 2

(∑M
i=1

(∑d
j=M+1α

2
i,j

)2
+
∑d

j=M+1

(∑M
i=1α

2
i,j

)2
)1/2

. By evaluating the sum of the d − M

lowest natural occupation numbers of the state Û
∣∣Ψf

ε,σ

〉
, we obtain N − NHF =

∑d
l=M+1γ

(
|Ψε,σ〉

)
l,l

. By the
number NHF we understand the total number of fermions occupying the M most occupied natural orbitals.
Using the fact that the squares of the coefficients αi,j sum up to one, we get that N − NHF = 2ε2/(1 + ε2)
and thus the distance Dε has the interpretation as

Dε =
1

2
δd (N − NHF) .

Our goal here is to show that the corresponding fermionic RDMFT functional is upper bounded in the
vicinity of the set ΓHF by

F̃
(
Uγ
(∣∣Ψf

ε,σ

〉)
U†) � (1 − Dε

δd

)
F̃
(
UγHFU†)+ cf

1σ

√
Dε

δd

(
1 − Dε

δd

)
+ cf

2

Dε

δd
. (32)

By the reasoning presented in section 5 this implies that the gradient of the RDMFT functional with respect

to the distance Dε diverges repulsively as − |cf
1|

2
√

δd

1√
Dε

in the vicinity of the Hartree–Fock point UγHFU†. To

this end, we show that the following holds

〈
Ψf

ε,σ

∣∣ Û†ŴÛ
∣∣Ψf

ε,σ

〉
=

F̃
(
UγHFU†)+ cf

1σε + cf
2ε

2

1 + ε2
(33)

for any pair-interaction Ŵ . As before, the parameters cf
1 and cf

2 are linear combinations of the appropriate
two-body integrals. For the most general interaction given by equation (25) the proof of equation (33) is
done using the conjugation formula (27). The details are deferred to appendix A.2. As it turns out, the only
contributions to cf

1 in the lhs of equation (33) come from the expressions 〈Ψε,σ| R̂2
γ |Ψε,σ〉, where R̂γ = X̂f

k,l

or R̂γ = Ŷ f
k,l for 1 � k � M and l > M. Thus, the result is completely analogous to the formula describing
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c1 in the bosonic case. Denote by ω(x)
k,l the coefficient ω̃γ,γ in equation (27) which multiplies

(
X̂f

k,l

)2
.

Similarly, define ω(y)
k,l as the coefficient ω̃γ,γ in equation (27) which multiplies

(
Ŷ f

k,l

)2
. Then,

cf
1 = 8

M∑
k=1

d∑
l=M+1

αk,l

(
ω(x)

k,l − ω
(y)
k,l

)
, (34)

where αk,l are the parameters of the ansatz state (31). Thus, the coefficient cf
1 is generically nonzero.

7.1. The form of the approximate functional
For any 1RDM γ the approximate functional is computed from the ansatz state (31) by using the
one-particle basis of the natural orbitals corresponding to the decreasingly ordered spectrum (i.e. the
natural occupation numbers) of γ. Denote by 2 � ν1 � ν2 � · · · � νd � 0 the decreasingly ordered
natural occupation numbers of γ. Then, γ is a d × d matrix γ =

∑d
i=1νi |φi〉〈φi| and we define the

operators {ãi↓, ãi↑}d
i=1 so that they refer to the annihilation operators corresponding to the natural orbitals

{|φi〉}d
i=1. According to the equation (31), after slight modifications, the corresponding ansatz state reads

∣∣Ψf
ε(γ)
〉

:=
1√

1 + ε2

⎛
⎝1 + ε

M∑
i=1

d∑
j=M+1

si,j
√
αi,jã

†
j↓ã†j↑ãi↑ãi↓

⎞
⎠ |HF(γ)〉 , (35)

where |HF(γ)〉 := |φ1↓,φ1↑, . . . ,φM↓,φM↑〉 and αi,j � 0,
∑M

i=1

∑d
j=M+1αi,j = 1 and si,j ∈ {−1, 1}. The

coefficients {αi,j} and ε are determined by demanding the 1RDM of
∣∣Ψf

ε,σ(γ)
〉

to have the natural
occupation numbers {νi}d

i=1. This leads to

ε =

(
2

N − NHF
− 1

)−1/2

, NHF :=
M∑

i=1

νi

and to the following linear equations for the αi,j’s:

d∑
j=M+1

αk,j = 1 − 2 − νk∑d
i=M+1νi

, 1 � k � M,
M∑

i=1

αi,l =
νl∑d

i=M+1νi

, M < l � d (36)

on top of the normalization. When d > 3, the solutions of the equation (36) together with the
normalization and the non-negativity conditions form a convex set of a positive dimension as the number
of unknowns exceeds the number of equations. Let us denote the space of {αi,j} satisfying the equation (36)
and the conditions αi,j � 0 by Δ(ν). The set Δ(ν) is a simplex of dimension (d − M)(M − 1) − M. The
approximate functional is computed as the minimum of the expectation value

〈
Ψf

ε(γ)
∣∣ Ŵ ∣∣Ψf

ε(γ)
〉

over all
solutions from the simplex Δ(ν). This ultimately boils down to the following expression

G(γ) = min
{αi,j}∈Δ(ν)

⎧⎨
⎩ 1

1 + ε2

⎛
⎝I0 + 2ε

M∑
i=1

d∑
j=M+1

si,j
√
αi,j RI(i,j) + ε2

M∑
i,k=1

d∑
j,l=M+1

si,jsk,l
√
αi,jαk,lI(i,j),(k,l)

⎞
⎠
⎫⎬
⎭ ,

(37)

where the two-fermion integrals read

I0(γ) := 〈HF(γ)| Ŵ |HF(γ)〉 , I(i,j)(γ) = 〈HF(γ)| Ŵã†j↓ã†j↑ãi↑ãi↓ |HF(γ)〉 ,

I(i,j),(k,l)(γ) = 〈HF(γ)| ã†k↓ã†k↑ãl↑al↓Ŵã†j↓ã†j↑ãi↑ãi↓ |HF(γ)〉

and
si,j = − sgn

(
RI(i,j)(γ)

)
.

Thus, the computation of G(γ) requires performing a convex minimization over the set Δ(ν). Importantly,
the region of applicability of the approximate functional is given by the condition NHF � N − 2. This is
always satisfied when N � 4, however when N > 4 the approximate functional is defined only on a subset of
the set of all the N-representable 1RDMs. Thus, we expect the approximate functional to perform best for
low particle numbers.
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For the dimer (d = 2), there is no convex optimization required and the functional (37) simplifies to

G(γ) =
1

1 + ε2

(
I0 − 2ε |RI2,2|+ ε2I(2,2),(2,2)

)
. (38)

In fact, this is the exact RDMFT functional whenever γ �= diag(1, 1). This is because any singlet state of two
spin-1/2 fermions with d = 2 whose one-body reduced density matrix is not the identity matrix necessarily
has the form (35) up to a relative phase, when written in the natural orbital basis. The expression (38) is
equivalent to the expressions for the exact density functional studied in other works [18, 19, 43]. Another
simplification arises when N = 2, regardless of d. Then, the coefficients {α1,j}d

j=2 follow immediately from
the equation (36) as

α1,j =
νj∑d

i=M+1νi

.

7.2. Electron transfer in the Fermi–Hubbard model
The repulsive Fermi–Hubbard chain is a good testing ground for our proposed approximate functional. The
ground state of N electrons on the Fermi–Hubbard chain of the length d = 2N (half-filling) is known to be
a singlet state [36]. The Hamiltonian reads

ĤHF =

d−1∑
i=1

ti,i+1

∑
σ∈{↑,↓}

(
a†iσa(i+1)σ + a†(i+1)σaiσ

)
+

d∑
i=1

∑
σ∈{↑,↓}

viniσ +

d∑
i=1

Vini↑ni↓

with Vi > 0 for all i. In the calculations to follow, we will assume an open chain with (i) uniform hopping
terms, i.e. ti,i+1 ≡ −t with t � 0 for all (i), (ii) uniform interaction strength, i.e. Vi ≡ V for all (i) and (iii)
the on-site potentials vi that change by even increments from v1 = 0 to vd = v, i.e. vi = v(i − 1)/(d − 1).
Then, up to a polynomial term in the total number of electrons, the Hamiltonian ĤFH is easily seen to have
the form

ĤHF = −t
d−1∑
i=1

X̂f
i,i+1 +

v

2

d−1∑
i=1

i(i − d)

d − 1
Ẑf

i,i+1 +
1

2d
V

d∑
i<j=1

(
Ẑf

i,j

)2
. (39)

The exact RDMFT functional in the dimer case (d = 2) has been studied in [19] where its performance
has been compared with other approximate density functionals. In particular, the authors of [19] studied
the electron transfer problem which asks about how the diagonal entries of the 1RDM of the ground state
for the Hamiltonian (39) depend on the on-site potential difference v between the endpoints of the chain. It
has been shown that the Müller and Power approximate density functionals [29, 30] give qualitatively
incorrect results for the electron transfer, where the failure is most visible in the strong interaction limit
(t � V). Other works show that approximate molecular density functionals generally fail to give the
qualitatively correct description of the electron transfer and point out that this is an important challenge to
improve the performance of the approximate functionals in this area [32, 33]. In the following part of this
section, we show that out proposed approximate density functional does indeed perform well in the
electron transfer calculations of small Hubbard chains. In particular, we show that our functional gives
accurate values of the ground state energy for the two-electron singlet systems and that show that it
describes the electron transfer with a remarkable accuracy for the four-electron chain with four sites.

By applying the functional (37) to the two-electron (N = 2) Fermi–Hubbard chain, we observed
numerically that for the uniform interaction and for all the sampled values of the parameters t ∈ [0, 1] and
v ∈ [−2, 2] of the Hamiltonian (39), the approximate functional G agreed with the exact functional within
the numerical accuracy. In other words, the ground state energy error

∣∣G(γgs) + tr hγgs − Egs

∣∣ was of the
mean order 10−14.5 (see figures 8(a) and (b)) which is the same as the error of the LU diagonalization
algorithm which was used in the calculation of Egs. Thus, the approximate functional coincides with the
exact functional for the Hubbard chain with the Hamiltonian (39) within the numerical accuracy range. We
also tested other geometries of the Hubbard model. In particular, for the Fermi–Hubbard model on d = 6
sites with a uniform repulsive interaction we sampled 103 values of the hopping and the on-site potentials.
There, the hopping and the on-site potentials were allowed to be arbitrary and they did not correspond to
the chain geometry. The above parameters were sampled from the flat distributions ti,j ∈ [−1, 1] and
vi ∈ [−2, 2]. For each set of the sampled parameters a minimization of the approximate density functional
G(γ) has been performed. This showed the mean energy error of the order 10−(13±3) (see figure 8(c)). This
number is to be compared with the error of the LU diagonalization algorithm which was used in the
calculation of Egs which was of the order 10−15 or with the typical difference between the lowest and the
highest eigenvalue of the random Hamiltonian which was of the order 101.
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Figure 8. The approximate functional (37) gives very accurate values for the ground state energy when N = 2 for the uniform
Fermi–Hubbard interaction. (a) The energy Emin = G(γgs) + tr hγgs (blue crosses) vs the exact ground state energy Egs (red dots)
for the chain of length d = 20 with the Hamiltonian (39). (b) The absolute errors between Emin and Egs from the plot (a). (c) The
distribution of the ground state energy errors for the Fermi–Hubbard model with d = 6 sites with all the hopping amplitudes
nonezro. The hopping amplitudes and the on-site potentials were randomly sampled 103 times. The resulting mean error was of
the order 10−(13±3). The maximum error for the sample was of the order 10−3, but for 77% of the sample the error was of the
order 10−14 or less.

Figure 9. The electron transfer for the Fermi–Hubbard chain with d = 4 sites and N = 4 electrons with the Hamiltonian (39)
computed using the exact diagonalization (red dots), the Hartree–Fock method (black pluses) and the approximate functional
(blue crosses). Dependence of γ i,i on the on-site potential difference v is plotted for the chosen values of the hopping amplitude:
t = 0.05 (strong interaction), t = 0.2 (medium interaction) and t = 1 (weak interaction). The top and the middle plots indicate
the failure of the Hartree–Fock method and the good accuracy of the approximate functional.

The above good results for the ground state energy of the two-electron systems are due to the fact that
the excitations of the tested systems exhibit localization in the natural orbital basis making the
superposition of doubly-excited Slater determinants in the ansatz state (31) an accurate guess for the
ground state of the system. The ground states of systems of N > 2 electrons generally involve higher
excitations and thus the correlation energy is expected to be recovered by our proposed functional only to a
small extent. This can be seen already in the half-filled chain of length four (N = d = 4) studied in the
remaining part of this section. However, as the numerical results show, the doubly-excited ansatz is enough
to recover the electron transfer in the ground state of this system.
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Figure 10. The minimised energy vs the on-site potential difference v for the half-filled Fermi–Hubbard chain with d = 4 sites
with the Hamiltonian (39) computed using the exact diagonalization (red dots), the Hartree–Fock method (black pluses) and the
approximate functional (blue crosses). The approximate functional generally does not recover the correlation energy. This is
most visible in the strongly correlated limit (t = 0.05) for the values of v close to 0. There, the fraction of the recovered
correlation energy is only about 70%.

For N = d = 4 equation (36) leads to the following expressions for the coefficients α1,3,α1,4,α2,3,α2,4 of
the ansatz state (35).

2 − ν2 − ν4

ν3 + ν4
� α1,3 � min

{
ν3

ν3 + ν4
,

2 − ν2

ν3 + ν4

}
, α1,4 =

2 − ν2

ν3 + ν4
− α1,3,

α2,3 =
ν3

ν3 + ν4
− α1,3, α2,4 = α1,3 −

2 − ν2 − ν4

ν3 + ν4
.

Thus, the minimization in equation (37) is done simply over the interval containing the coefficient α1,3. The
results for the ground state energy and the electron transfer are plotted in figures 9 and 10, where the
interaction strength has been fixed to V = 1 due to the fact that the physically meaningful quantity is the
ratio t/V. As we mentioned before, our approximate functional gives a qualitatively correct electron transfer
with a remarkably good accuracy, especially in the limit of the strong interaction. On the other hand, the
correlation energy is recovered only to a small extent as can be seen in figure 10.

Technical note: the numerical minimization of G(γ) over the set of 1RDMs has been done using the
adaptive Nelder–Mead method [38, 39] where the convergence threshold was the difference in function’s
arguments between iterations which was set to 10−8. Typically, the convergence was attained after about 104

iterations.

8. Summary and discussion

Using the ansatz states (15) and (31) we have constructed universal upper bounds (19) and (32) for the
bosonic and fermionic RDMFT functionals in a finite region around of the set of fully condensed
(respectively the Hartree–Fock) states for any pair interaction. The upper bounds depend on the
(generalised) depletion parameter which is the number of non-condensed bosons, N − NBEC, or the
number of fermions which do not occupy the N/2 highest occupied natural orbitals, N − NHF. Because the
upper bound coincides with the exact RDMFT functional when NBEC = N (all the bosons condensed) or
NHF = N (system in a Hartree–Fock state), the gradient of the upper bound is also an upper bound for the
gradient of the exact functional with respect to the depletion parameter. The gradient is shown to diverge
repulsively when NBEC → N (NHF → N respectively). This provides an alternative explanation for the
existence of the quantum depletion effect which uses only the very fundamental properties of the quantum
theory: the variational principle and the geometry of the set of one-particle reduced density matrices.

We also tested our proposed approximate functional by computing the electron transfer in small
Hubbard chains involving N = 2 and N = 4 electrons. We showed that in these systems the functional
performs remarkably better that some other widely used approximate functionals, and thus our results shed
some light on the possible ways of improving the performance of the density matrix functional methods in
the electron transfer computations. In particular, the ansatz states (15) and (31) take into account only
double excitations in the natural orbitals. Such ansatz states are expected to work well only in small systems
(like the ones tested in this paper) or in extremely inhomogeneous ones where the excitations are effectively
localised in a small part of the natural orbital basis. Our functional seems to perform well only in the
specific task of computing the electron transfer, as it generally does not recover the correlation energy in the
strong interaction limit, as seen in figure 10. A possible way of constructing more accurate functionals
would be to superpose Slater determinants with higher numbers of excitations, as one expects that the
number of excitations grows linearly with the size of the system. Finally, another practical potential use for
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our results could be a testing criterion for finding accurate density functionals—an accurate approximate
density functional should reproduce the repulsive gradient.

Let us remark that one of the main obstructions in finding the exact RDMFT functional is that it
requires a detailed knowledge of the geometry of the set of single-particle reduced density matrices. The
description of this set has been long-recognised as one of the most important fundamental problems in
quantum chemistry [44]. The solution of this problem in the late 2000s [37] provided new insights to the
RDMFT and it may lead to describing the counterparts of the quantum depletion effect for more general
systems of fermions or distinguishable particles using the generalised doubly-excited states [45]. Finally,
note that throughout the paper we are implicitly assuming that the Levy’s RDMFT functional F̃ is actually
differentiable at points from the set ΓBEC (ΓHF). Earlier works studying the exact RDMFT functional for
Hubbard dimers [18, 19] suggest that this is a reasonable assumption. However, we are not aware of any
mathematically rigorous proof of the fact that the extended functional is differentiable at ΓBEC (ΓHF) for any
pair interaction Ŵ . Perhaps so-called symplectic slice techniques used in [45] may shed some light on a
solution of this problem.
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Appendix A. Calculation of c1 for d � 2

A.1. The bosonic density functional
Recall the definition of our ansatz state

|Ψε,δ〉 = Nε

(
|N(1)〉+ σε

d−1∑
i=1

αi |(N − 2)(1), 2(i+1)〉
)

, (A.1)

where ε � 0, α2
1 + · · ·+ α2

d−1 = 1, σ = ±1 and the normalization constant reads Nε = 1/
√

1 + ε2. The
basis states are defined in terms of bosonic creation and annihilation operators

[bi, b†j ] = δi,j, [b†i , b†j ] = [bi, bj] = 0, n̂i := b†i bi

as

|(N1)(1), (N2)(2), . . . , (Nd)(d)〉 :=
1√

N1!N2! . . .Nd!

(
b†1

)N1
(

b†2

)N2
. . .
(

b†d

)Nd
|vac〉 .

We also have

bi |(N1)(1), . . . , (Ni)(i), . . . , (Nd)(d)〉 =
√

Ni |(N1)(1), . . . , (Ni − 1)(i), . . . , (Nd)(d)〉 ,

b†i |(N1)(1), . . . , (Ni)(i), . . . , (Nd)(d)〉 =
√

Ni + 1 |(N1)(1), . . . , (Ni + 1)(i), . . . , (Nd)(d)〉 .

Recall also the definitions of generators of the single-particle unitaries.

X̂i,j := b†i bj + b†j bi, Ŷ i,j := i
(
−b†i bj + b†j bi

)
, Ẑi,j := b†i bi − b†j bj = n̂i − n̂j. (A.2)

We aim to study in detail the expression 〈Ψε,δ| Û†ŴÛ |Ψε,δ〉 using expansion equation (27), i.e.

〈Ψε,δ| Û†ŴÛ |Ψε,δ〉 =
∑
γ�δ

(
ω̃γ,δ 〈Ψε,δ|

(
R̂γR̂δ + R̂δR̂γ

)
|Ψε,δ〉+ iτ̃ γ,δ 〈Ψε,δ|

(
R̂γR̂δ − R̂δR̂γ

)
|Ψε,δ〉

)
. (A.3)
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In particular, we want to extract all terms which yield the constant c1 from equation (18), i.e. terms which

are proportional to εN 2
ε in equation (A.3). To this end, we focus on the expression

(
b†l bk ± b†kbl

)
|Ψε,σ〉,

k � l, as its knowledge determines all the vectors R̂μ |Ψε,δ〉 and thus all the expectation values in
equation (A.3).

If k �= 1, then
(

b†l bk ± b†kbl

)
|N(1)〉 = 0. Furthermore, if k �= 1 and k �= i + 1 and l �= i + 1,(

b†l bk ± b†kbl

)
|(N − 2)(1), 2(i+1)〉 = 0. Thus, the only nonzero contributions to

(
b†l bk ± b†kbl

)
|Ψε,σ〉 with

k �= 1 come from situations when either k = i + 1 or l = i + 1 in the equation (A.1). Thus,(
b†l bk ± b†kbl

)
|Ψε,σ〉 = Nεσε

(
αk−1b†l bk |(N − 2)1, 2(k)〉 ± αl−1b†kbl |(N − 2)1, 2(l)〉

)
= Nεσε

√
2 (αk−1 ± αl−1) |(N − 2)(1), 1(k), 1(l)〉 if k > 1. (A.4)

For k = 1 and 2 � l � d, we have(
b†l b1 ± b†1bl

)
|N(1)〉 =

√
N |(N − 1)(1), 1(l)〉 ,(

b†l b1 ± b†1bl

)
|(N − 2)1, 2(i+1)〉 =

√
N − 2 |(N − 3)1, 2(i+1), 1(l)〉 if l �= i + 1,(

b†l b1 ± b†1bl

)
|(N − 2)1, 2(l)〉 =

√
3(N − 2) |(N − 3)1, 3(l)〉 ±

√
2(N − 1) |(N − 1)1, 1(l)〉 .

Putting the above results together, we obtain

(
b†l b1 ± b†1bl

)
|Ψε,σ〉 = Nε

⎛
⎝(√N ± σεαl−1

√
2(N − 1)

)
|(N − 1)1, 1(l)〉

+ σεαl−1

√
3(N − 2) |(N − 3)1, 3(l)〉

+ σε
√

N − 2
d−1∑

i=1,i�=l−1

αi |(N − 3)1, 2(i+1), 1(l)〉

⎞
⎠ (A.5)

For completeness, let us write down the action of Ẑk,l

(n̂1 − n̂l) |Ψε,σ〉 = Nε

⎛
⎝N |N(1)〉+ σεαl−1(N − 4) |(N − 2)(1), 2(l)〉

+ σε(N − 2)
d−1∑

i=1,i�=l−1

αi |(N − 2)(1), 2(i+1)〉

⎞
⎠ ,

(n̂k − n̂l) |Ψε,σ〉 = 2σε (αk−1 − αl−1) if k > 1. (A.6)

By a visual inspection of equations (A.4), (A.5), and (A.6) one can see that

(a) 〈Ψε,σ| Ẑk,lX̂m,n |Ψε,σ〉 = 〈Ψε,σ| Ẑk,lŶm,n |Ψε,σ〉 = 0 for any k, l, m, n and the same holds for Ŷm,n.

(b) Terms 〈Ψε,σ| Ẑk,lẐm,n |Ψε,σ〉 do not produce any contribution proportional to εN 2
ε for all k, l, m, n.

(c) Terms 〈Ψε,σ| X̂k,lŶm,n |Ψε,σ〉 could potentially yield some contribution proportional to εN 2
ε if

k = m = 1 and n = l. However, the relevant term is i
(√

N + σεαl−1

√
2(N − 1)

)(√
N − σεαl−1

√
2(N − 1)

)
where the interesting terms cancel out in the end.

(d) The only terms that yield expressions proportional to εN 2
ε are 〈Ψε,σ| X̂2

1,l |Ψε,σ〉 and 〈Ψε,σ| Ŷ2
1,l |Ψε,σ〉 for

1 < l � d. The relevant expressions read ±N 2
ε

(√
N ± σεαl−1

√
2(N − 1)

)2
which contribute via

±σεN 2
ε αl−12

√
2N(N − 1). This leads directly to equation (34).

A.2. The fermionic density functional
Recall the ansatz singlet state

∣∣Ψf
ε,σ

〉
:=Nε

⎛
⎝1 + σε

M∑
i=1

d∑
j=M+1

αi,ja
†
j↓a†j↑ai↑ai↓

⎞
⎠ |1↓, 1↑, . . . , M↓, M↑〉 , (A.7)
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where Nε := 1√
1+ε2

, ε � 0, σ ∈ {−1,+1} and
∑M

i=1

∑d
j=M+1α

2
i,j = 1. We have also defined the

single-particle operators of the SU(d)-algebra as

X̂f
i,j := fi,j + f †i,j, Ŷ f

i,j := i
(

fi,j − f †i,j

)
, Ẑf

i,j :=
[

f †i,j, fi,j

]
=
∑
σ

(
n̂iσ − n̂jσ

)
(A.8)

via the auxiliary ‘ladder’ operators (in fact, these are the root operators of the SU(d)-algebra)

fi,j :=
∑

σ∈{↑,↓}
a†jσaiσ , 1 � i � j � d.

We aim to evaluate the expression
〈
Ψ

f
ε,δ

∣∣∣ Û†ŴÛ
∣∣∣Ψf

ε,δ

〉
using the expansion (27). In particular, we want to

find the constant cf
1 in the rhs of equation (33).

One can verify in a straightforward way that the expressions of the form
〈
Ψf

ε,σ

∣∣ Ẑf
k,lX̂

f
m,n

∣∣Ψf
ε,σ

〉
and〈

Ψf
ε,σ

∣∣ Ẑf
k,lŶ

f
m,n

∣∣Ψf
ε,σ

〉
in equation (27) vanish thanks to the special form of the ansatz state. Moreover, the

expressions 〈Ψε,σ| Ẑf
k,lẐ

f
m,n |Ψε,σ〉 give only terms proportional to N 2

ε or to ε2N 2
ε , thus they do not

contribute to the cf
1.

Thus, the only expressions which may give terms proportional to εN 2
ε in the equation (27) are of the

forms
〈
Ψf

ε,σ

∣∣ X̂f
k,lX̂

f
m,n

∣∣Ψf
ε,σ

〉
,
〈
Ψf

ε,σ

∣∣ X̂f
k,lŶ

f
m,n

∣∣Ψf
ε,σ

〉
,
〈
Ψf

ε,σ

∣∣ Ŷ f
k,lŶ

f
m,n

∣∣Ψf
ε,σ

〉
. In order to evaluate these

expressions, it is enough to find the vectors
(

fk,l ± f †k,l

) ∣∣Ψf
ε,σ

〉
for k < l.

• Assume that k > M. Then, fk,l |1↓, 1↑, . . . , M↓, M↑〉 = 0 and f †k,l |1↓, 1↑, . . . , M↓, M↑〉 = 0. We also
have (

fk,l ± f †k,l

)
a†j↓a†j↑ai↑ai↓ |1↓, 1↑, . . . , M↓, M↑〉

= δk,j

(
|1↓, 1↑, . . . , M↓, M↑, j↓, l↑〉 − |1↓, 1↑, . . . , M↓, M↑, j↑, l↓〉

)
± δl,j

(
|1↓, 1↑, . . . , M↓, M↑, k↓, j↑〉 − |1↓, 1↑, . . . , M↓, M↑, k↑, j↓〉

)
.

• Assume that l � M. Then, fk,l |1↓, 1↑, . . . , M↓, M↑〉 = 0 and f †k,l |1↓, 1↑, . . . , M↓, M↑〉 = 0. We also
have (

fk,l ± f †k,l

)
a†j↓a†j↑ai↑ai↓ |1↓, 1↑, . . . , M↓, M↑〉

= δl,i

(
|1↓, 1↑, . . . , k↓, . . . , i↑ . . . , M↓, M↑〉 − |1↓, 1↑, . . . , k↑, . . . , i↓, . . . , M↓, M↑〉

)
± δk,i

(
|1↓, 1↑, . . . , i↓, . . . , l↑ . . . , M↓, M↑〉 − |1↓, 1↑, . . . , i↑, . . . , l↓, . . . , M↓, M↑〉

)
.

• Assume that k � M and l > M. Then, f †k,l |1↓, 1↑, . . . , M↓, M↑〉 = 0 and

fk,l |1↓, 1↑, . . . , M↓, M↑〉 = |1↓, 1↑, . . . , k↓, . . . , M↓, M↑, l↑〉 − |1↓, 1↑, . . . , k↑, . . . , M↓, M↑, l↓〉 .

We also have

f †k,la
†
j↓a†j↑ai↑ai↓ |1↓, 1↑, . . . , M↓, M↑〉 = δi,kδj,l

(
|1↓, 1↑, . . . , i↓, . . . , M↓, M↑, j↑〉

− |1↓, 1↑, . . . , i↑, . . . , M↓, M↑, j↓〉
)

,

fk,la
†
j↓a†j↑ai↑ai↓ |1↓, 1↑, . . . , M↓, M↑〉 = (1 − δi,k)(1 − δj,l)a†j↓a†j↑ai↑ai↓

(
|1↓, 1↑, . . . , k↓, . . . , M↓, M↑, l↑〉

− |1↓, 1↑, . . . , k↑, . . . , M↓, M↑, l↓〉
)
.

Thus, by the same reasoning as the one presented in appendix A.1 the only contributions to εN 2
ε in the

equation (27) come from the expectation values
〈
Ψf

ε,σ

∣∣ (X̂k,l

)2 ∣∣Ψf
ε,σ

〉
and
〈
Ψf

ε,σ

∣∣ (Ŷ k,l

)2 ∣∣Ψf
ε,σ

〉
when k � M

and l > M. Each of such contributions comes from the expressions 2N 2
ε

(
1 ± αk,lεσ

)2
.
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