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Rationale: In the lubrication industry, commercial base oils are commonly made up of

blends of base oil stocks from different sources in different ratios to reduce

production costs and modulate rheological properties. This practice introduces

complexity in lubricant design because as the chemistry of the base oil becomes

more complicated, it can become harder to formulate the base oil – particularly when

the ratio of the original base oil stocks is unknown.

Methods: In this study, field ionisation mass spectrometry is used to collect chemical

information on a range of base oil mixtures. The resultant data are processed within

the Python workspace where molecular formulae are assigned to the components

and statistical analyses are performed. A variety of regression techniques including

regularised linear models and automated machine learning are evaluated on the data.

Results: The use of an automated machine learning pipeline yields insight into

effective modelling strategies that could be applied to the data obtained. The best

results were obtained using polynomial feature generation combined with ridge

cross-validation regression. Overall, with this methodology it is possible to resolve

the ratio of group 2 and group 3 base oil within a blended mixture to an accuracy of

±5%.

Conclusions: The strategies outlined in this study show how modern data science

and chemometrics can be applied successfully to resolve the ratio of a complex

mixture.

1 | INTRODUCTION

Motor lubricants are used to improve the tribology of moving

surfaces by reducing friction, suspending particles and moving heat

away.1 Due to the varied operating conditions that machines work

under, the specific physicochemical properties of a lubricant will

ideally be tailored to meet the demands of its intended use; expert

design and formulation is therefore an essential step towards creating

effective fully formulated lubricants. A fully formulated lubricant

consists of the base oil and an additive package,1,2 and the

composition of both can be altered to modulate the properties of the

final product. The base oil sets the baseline for the physiochemical

properties of the lubricant, whereas the additive package further

modulates the tribological and rheological properties.2

The base oil market is split into two major categories: mineral and

synthetic. Mineral oils are a hydrocarbon fluid derived from the

refinement of crude petroleum. The specific refinement procedure

and the quality of the crude oil determine the hydrocarbon

composition of the mineral oil, specifically the level of paraffins, iso-

paraffins, aromatics, naphthenes and olefins (PIANO) and

heteroatomic-containing components, typically sulphur for base oils.

Synthetic oils, on the contrary, are man-made, typically via

polymerisation reactions and benefit from enhanced viscometric and

rheological properties that can be fine-tuned to the desired
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application.3 Synthetics are, however, normally more expensive to

produce.

The blending of base stocks from different sources is a rational

step in lubricant formulation and enables the physicochemical

properties to be tuned while avoiding using expensive additives.4 It

has been shown that the blends of binary and tertiary mixtures of

base stocks from different production methods have physical

properties that are linked to the parent base oil; furthermore,

important properties such as kinematic viscosity can be predicted

depending on the ratio of the blend.5 The blending of base stocks is

not exclusive to mineral oils; semi-synthetic base oils that blend both

mineral and synthetic base stocks are available in the marketplace. By

supplementing a mineral base stock with synthetic hydrocarbons, it is

possible to modulate key physicochemical properties of the resulting

base oil, such as its viscosity index (VI) and pour point.4

The tribological properties of a base oil are linked to its chemical

composition.4–6 To group base oils with similar physiochemical

properties, the American Petroleum Institute (API) categorises bases

oils into five groups based on the production procedure.7 Mineral

base oils are categorised as groups 1 to 3, whereas groups 4 and

5 refer to polyalphaolefin (PAO) and miscellaneous base oils,

respectively (see Table 1 for further details). Table 1 shows that the

classification of a group 1 to 3 base oil depends on the percentage

weight of sulphur and saturates as well as its VI, all of which are

linked to its hydrocarbon composition.

To answer the industrial practice of mixing base stocks, the API

released guidelines for interchanging base oil stocks, describing the

minimum amount of testing to be done when selling blended base

oils.8 Despite the existence of such guidelines, analytical studies

towards determining the ratios of blended base oils are lacking in the

literature. Even the identification of blended base oil and single base

stock may be challenging from an analytical perspective, particularly if

the blended base oil uses stocks with similar chemical profiles. From

the API guidelines (Table 1), groups 2 and 3 have the same restrictions

for sulphur and saturate levels only differing in their VI, suggesting

that samples from these groups could be chemically similar. The

difference in VI between these groups is therefore mostly attributed

to the relative ratios of paraffinic, isoparaffinic and naphthenic species

within these samples and less attributed to the presence of unique

aromatic and/or sulphur-containing components.

From a commercial perspective, the blending of base stocks

offers significant advantages: A supplier could blend a low- and a

high-performing base stock together producing a larger quantity of

base oil with nominal performance. When done correctly, the supplier

can meet their clients’ specifications regarding base oil performance,

while minimising costs by utilising lower-performing (cheaper) base

stocks.

Although the blending of base stocks offers advantages to both

the supplier and the consumer by adding competitiveness to the

marketplace, there are some disadvantages. The additives used to

create a formulated lubricant can have a synergistic or antagonistic

effect with the chemistries within the base oil.2 This can make

formulation problematic for blends where the additives used may not

be suited for all components of the base oil. In this instance, being

able to determine the API group of the base stocks within the mixture

and their ratios, even by approximation, would be of significant use

and aid in lubricant design.

The chemometric analysis of base oils has been addressed in the

literature; however, it focuses on classification and prediction of

physical properties.9–11 One unanswered problem is the estimation of

the ratio of base stocks within formulated base oils using modern

regression techniques. The aim of this study is to create a sample set

of base oil mixtures using typical open market samples and analyse

this using mass spectrometry. The resultant data can then be

modelled using approaches from the data science field to predict the

ratios of base oils within a mixture.

2 | MATERIALS AND METHODS

2.1 | Samples

Six group 2 and six group 3 base stocks were selected from BP’s base
oil library (BP, Pangbourne, UK). These particular samples were

selected from a larger selection of group 2 and 3 base oils, as they

captured variation within their respective API group. Stock solutions

were made by dissolving a known weight of base stock in

cyclohexane (high-performance liquid chromatography grade)

purchased from Fisher Scientific (Loughborough, UK) at a ratio of 1:7

(v:v, base oil:solvent). These stock solutions were used to generate

mixtures of group 2 and 3 base oils volumetrically at 10% incremental

ratios.

2.2 | Instrumentation

The data were collected using an Agilent GC 7890B (Agilent, Santa

Clara, CA, USA) combined with a Jeol AccuTOF 4G GCv (Jeol,

Akishima, Tokyo, Japan) with a field ionisation (FI) emitter. About

0.5 μL of the sample was injected onto a 1 m � 0.1 mm column with

no stationary phase. The column was held at 320�C with a flow rate

TABLE 1 Definition of the various American Petroleum Institute
(API) groups with respect to sulphur content, % saturates content and
viscosity index (VI)

API group Sulphur (w%) Saturates (w%) VI

1 >0.03 And/or <90 80-120

2 ≤0.03 And ≥90 80-120

3 ≤0.03 And ≥90 ≥ 120

4 Synthetic polyalphaolefins (PAOs)

5 Miscellaneous (all oils not included in groups 1 to 4)

Note: Groups 1 to 3 are mineral oils, (group 1 is solvent refined, group 2 is

hydrotreated and group 3 is hydrocracked), whereas groups 4 and 5

consist of synthetic oils.
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of 0.3 mL/min for 1 min, after which the flow rate was increased to

15 mL/min for 30 s to purge the column; the carrier gas was helium.

The FI emitter was tuned with acetone before data collection, and the

time-of-flight mass analyser was set to the highest possible

resolution. Runs were repeated in triplicate using the same prepared

sample vial.

2.3 | Pre-processing

For the raw data, the drift in m/z was corrected along with the

duration of the analyte peak. The cyclohexane solvent peak was used

as it produced the most consistent results when batch processing

files. The raw data were then centroided and saved as an open-source

file type (jsp) to be analysed within the Python workspace using in-

house scripts.

A data clean-up procedure was applied to each spectrum, which

retained relevant information and improved the robustness of further

processing. Initially the spectrum was truncated so that components

with a m/z ratio between 200 and 800 were included; after this,

components with an intensity less than 0.1% of the maximum

observed signal were removed. A re-calibration was then applied

using peaks with intensities greater than 10% of the base peak.

Hydrocarbon components that were saturated (0 double bond

equivalents [DBE]) or had 4 DBE were assigned to a 60 ppm limit.

Linear regression was performed on the mass error of assignment as a

function of m/z ratio; the parameters of this equation were used to

re-calibrate the entire spectrum. 0 and 4 DBE components were

chosen to give flexibility to the re-calibration algorithm, enabling it to

re-calibrate samples which predominantly contain saturated,

naphthenic or aromatic components. After re-calibration, it was

possible to assign the formula for a significant amount of the

spectrum, typically >90% abundance of the TIC. Any unassigned

components could then be filtered from the spectrum, as these could

be assumed to be contaminants, or additives if the sample was a

formulated lubricant.

3 | RESULTS AND DISCUSSION

3.1 | Exploratory data analysis

FIMS was selected as it has been successfully used for previous

analyses of hydrocarbon samples.12–15 Field ionisation mass

spectrometry (FIMS) is a low energy ionisation technique that

generates intact molecular ions; furthermore, it is capable of ionising

apolar hydrocarbon components such as paraffins, naphthenes and

aromatics. These conditions make FIMS suitable for the analysis of

base oils because of the analyte’s complexity and composition of

apolar hydrocarbons. Example spectra of three whole base stocks

(A, B, X) and their 1:1 mixtures (A-X, B-X) are shown in Figure 1. The

Gaussian-like distribution present in all spectra is a synonymous

feature of the MS analysis of petroleum samples and confirms that

there was minimal fragmentation of the analytes present in these

samples.

For each plot, the x-axis represents the m/z ratio and the y-axis

the intensity; the intensity signal values have been omitted for clarity.

Samples A and B are both group 3 base stocks, and sample X is a

group 2 base stock. From Figure 1, the MS of the A-X shows a bi-

modal distribution of components, suggesting that this sample is a

mixture. The lower distribution (mode = 400 m/z) arises due to

components from the parent base stock A, whereas the higher

distribution (mode = 600 m/z) is from the parent stock X. Unlike the

A-X mixture, the B-X mixture has a unimodal distribution of

components. A closer inspection of base stocks B and X revealed that

they both have a similar mode around 500 m/z. In this case, a cursory

F IGURE 1 FIMS spectra of three parent base
stocks and their mixtures. A and B are group
3 base stocks, and X is a group 2 base stock
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analysis of the spectra alone is insufficient to confirm whether a

sample is a single base stock or a base oil mixture. Assignment of the

components is thus necessary to provide more information on the

hydrocarbon profile of the sample in the hope of differentiating these

base stocks and their mixtures. The raw data were assigned using the

procedure discussed in Section 2.3.

After molecular formula was assigned to the components, the

processed data set was then grouped by common chemical

characteristics such as the DBE. Carbon number vs response plots for

the same samples as Figure 1 are shown in Figure 2. These plots show

the carbon number distribution for each DBE group as a coloured line,

yielding the samples’ estimated hydrocarbon profile.

Similar correlations can be drawn from both the raw and

processed data; the mixture A-X is easily identifiable as a mixture

because of the bi-modal distribution of components. The left mode

has a high response of 0 and 1 DBE components, whereas the right

mode has a higher response in 1, 2 and 3 DBE components indicating

differences in the hydrocarbon profile between the two base oil

components. The B-X mixture does not show a bi-modal distribution

as both of the parent base stocks have wide distributions with respect

to carbon numbers, with modes around 35 to 40. The relative

distribution of components by DBE for mixture B-X takes

characteristics from both parent stocks B and X. When the B-X

mixture are compared to the parent base stock X, 0 DBE components

show a higher response, whereas 5 DBE components are lower.

Conversely, when comparing the mixture B-X to the parent stock B,

the mixture shows a higher 2 and 3 DBE response and a lower 0 DBE

response. Although it was not possible to resolve the B-X mixture

from the raw data using these plots alone, differences in DBE

distribution were observed. Further statistical analysis of the

hydrocarbon profile within the sample set may yield a method to

estimate the ratio of base stocks within the mixture.

An examination of the carbon vs response profiles (Figure 2)

revealed that the DBE profile might be correlated with the base oil

mixture ratio. The assigned data set was grouped by component DBE

and the response summed up to interrogate the data further.

The DBE distribution of each mixture had its ratio calculated,

these mixtures were then grouped by the ratio of group 2 (%) and

then averaged, and these data were captured in a stacked bar chart

(Figure 3A). This plot shows the DBE profiles for the range of

mixtures, going from a pure group 3 (i.e. 0% group 2) towards a pure

group 2 base oil. A continual change in DBE profile as the ratio of

group 2 base stock increases was observed, in particular, a decrease

of 0 and 1 DBE and an increase of 3, 4, 5 and 6 DBE components.

To further probe these correlations, the Pearson correlation

coefficient of the DBE distribution with the ratio of base group 2 base

stock in that mixture was calculated. This information is plotted in a

bar chart (Figure 3B). The lower DBE components (0 and 1) show a

negative correlation to the ratio of group 2, indicating that these

components are at a lower relative abundance in mixtures high in

group 2 base stock. The higher DBE components (2+) show a positive

correlation, therefore indicating that these more unsaturated

components are at a higher abundance in mixtures high in group

2 base stock. The correlation coefficients supported observations

from the DBE response bar chart that the DBE profile of a base oil

was correlated with its ratio of base stocks, and that base oils with

more group 2 base stock have more unsaturated components.

Correlations between the distribution of components summed by

carbon number and the ratio of base stock mixtures were then

explored. To reduce the number of features in the data set, some

carbon distribution information was dropped. Statistical analysis

indicated that 98% of the TIC for the entire data set could be retained

by keeping carbon numbers between 20 and 50; therefore, the

carbon distribution information outside of this range was ignored.

The Pearson correlation coefficient for these selected features

against the percentage ratio of group 2 base stock was calculated and

plotted in a bar chart (Figure 4). Positive and negative correlations

with the ratio of group 2 base stock were observed, forming a wave

F IGURE 2 Carbon number vs intensity plots
of parent base stocks and their mixtures, with
components grouped and coloured by double
bond equivalents (DBE). A and B are group 3 base
stocks, and X is a group 2 base stock
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pattern as carbon number increased. Although the carbon distribution

information does appear to have some correlation with the ratio of

group 2 base stocks, the absolute values of the carbon number

coefficients were lower, suggesting that DBE was a more reliable

predictor of the ratio of base oil mixtures (Figure 3). The alternating

sign of the correlation coefficients along with the carbon number

distribution also suggests more sample variation may be needed to

consolidate the identification of systemic carbon distribution trends.

The previous analyses suggested that chemical information could

be used to rationalise the trend between the ratio of group 2 and

3 base oil mixtures through the Pearson correlation coefficient. This

work was taken further by applying principal component analysis

(PCA) to the data set to obtain a stand back view of variation within

the data set. The most successful strategy was observed by omitting

the higher explained variance dimensions and focusing instead on the

third and fourth dimensions. The first and second dimensions are

suspected of capturing sample-to-sample variation between base oil

groups, whereas the third and fourth dimensions appeared to be

better at capturing trends between group 2 and 3 base oils. The third

and fourth principal components of linear PCA (Figure 5A) and

kernelised PCA (kernel = cosine) (Figure 5B) show relatively good

separation of samples by the percentage of group 2 base stock. The

cosine kernelised PCA appears to perform better, showing less

overlap of high group 2 ratio (red) and low group 2 ratio (blue)

F IGURE 3 Statistical plots of double
bond equivalents (DBE) and the ratio of
group 2 in the group 2 to 3 base oil
mixture. (A), Bar-chart showing the
relative ratio of components by DBE vs
group 2 (%). (B), The Pearson correlation
coefficient of each DBE with the ratio of
group 2 (%)

F IGURE 4 Bar-chart showing the Pearson
correlation coefficient of each carbon number
response with the ratio of group 2 (%) in a base oil
mixture

F IGURE 5 Principal component
analysis (PCA) of the base oil data set,
showing the third and fourth principal

components. (A), Linear PCA and (B),
cosine kernalised PCA

ELLICK ET AL. 5 of 8



samples. For comparison, the first and second principal components

and loading plots are shown in Figure S1 (supporting information).

3.2 | Modelling

Both carbon number and DBE information had some correlations with

the ratio of base stocks within base oil mixtures and were included in

the final data set. Components with DBE between 0 and 9 and carbon

numbers between 20 and 50 were taken forward for downstream

modelling as these features captured most of the variance and total

response from the data set. Dimensionality reduction techniques

showed some effectiveness at generalising base oil ratios, and the use

of such techniques in machine learning pipelines will also be explored.

The final data set, consisting of 436 samples and 18 unique base

oil combinations, was used to create training and test sets. For a

single iteration, 16 of these mixtures were used to calibrate any given

model, and two mixture combinations were used for validation; the

process was repeated eight more times so that every mixture was

evaluated as a test set once. This validation method was preferred

over a more common shuffled folded cross-validation method to

reduce memory leakage, where the same mixture would be

represented in both the training and test sets. The metric chosen to

evaluate model performance was the root mean squared error (RMSE)

between the predicted and true values of the test data set. The mean

RMSE indicates the model’s overall performance, whereas the

standard deviation indicates the stability between the different folds.

To thoroughly evaluate the modelling capability of this data set, a

variety of regression strategies were evaluated, including those based

on linear regression, nearest neighbours and automated machine

learning. The results are presented in Table 2; a breakdown on the

performance of each of these models is also presented.

Ordinary least-squares linear regression along with two

regularised variants, lasso regression and ridge regression, were

initially evaluated. For the Lasso and ridge regression the

regularisation parameter, α was optimised on the training data before

evaluating the test data for each fold. Fifty random values over a

logarithmic distribution between 0.00001 and 10 were evaluated on

each fold. The strength of this regularisation parameter vs model

performance is exemplified in Figure S2 (supporting information).

The prediction error is comparable for the three algorithms:

around 8% mean RMSE. Overall, ridge regression was the most

suitable of the three methods for modelling base oil ratios, obtaining

the lowest mean and standard deviation RMSE. The coefficients of

the lasso and ridge model were explored further, discussion given in

the supporting information. The residual errors for linear regression

and ridge regression are shown in Figures 6A and 6B, respectively.

PCA combined with K-nearest neighbours’ regression (KNR)

(k = 5) was also evaluated on this data set. Two pipelines, one using

linear PCA and the other using cosine kernelised PCA, were created,

and both included a provision to drop the first two principal

components of the analysis to help the model to generalise. Previous

PCA exploratory analysis suggested that these higher variance

dimensions are not succinct at capturing global group 2 to 3 base oil

variation and may, therefore, hinder model optimisation.

Overall, these dimensionality reduction techniques achieved

higher mean RMSE when compared to their linear counterparts.

Although this mean score suggests a lower model accuracy, the linear

PCA model had the lowest standard deviation of all the models

investigated in this study, suggesting it was the most reproducible.

Given the multicollinearity present in the data set, it may be rational

to suggest that the linear PCA provides a more indicative metric of

what can be modelled with this data set using the current pre-

processing strategies while avoiding over-fitting. The residual errors

for the linear PCA-KNR pipeline are shown in Figure 6C.

The automated machine learning implementation used for this

study is a Python library called TPOT,16 which uses an iterative

generation-type model to determine an optimal final pipeline. Initially,

TPOT creates a first-generation pipeline and evaluates it on the data

set. Consecutive generational pipelines will include various operators

that will have different purposes such as feature generation,

dimensionality reduction and supervised models. The overall goal of

the algorithm is to include operators that exclusively improve

predictive power. If given enough time, optimal operators will be

selected and tuned to provide the best predictive results.

A TPOT pipeline was evaluated using the same validation

strategies as the algorithms discussed previously. Each training and

test iteration was independently optimised using a limit of

100 generational improvements or 180 min whichever was achieved

first. Although TPOT was able to obtain a low RMSE of 8.5%, the

standard deviation was markedly high; this was suspected to be due

to inconsistent modelling strategies between the training and test

data sets. The variation in the final optimised model was confirmed by

examining the final optimised pipeline of each iteration, given in the

supporting information. The operators used on each iteration of

TPOT were explored further. One such operator was a pre-processing

second-order polynomial feature generation, which was constantly

implemented by TPOT on all pipelines.

From the results of the automated machine learning pipeline, a

new optimised pipeline was evaluated which contained three

operators: Firstly, the second-order polynomial features were

TABLE 2 Modelling strategies and results

Model RMSE (mean) (%) RMSE (std) (%)

Linear regression 8 1.7

Lasso regression 8.6 2

Ridge regression 7.6 1.6

Linear PCA KNR 10.8 0.8

Cosine PCA KNR 12.8 1.7

TPOT pipeline 8.5 3.2

Optimised pipeline 7 1.5

Note: The table shows mean and std RMSE over nine-folds.

Abbreviations: KNR, K-nearest neighbours’ regression; PCA, principal
component analysis; RMSE, root mean squared error.
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generated, and these were then z-score standardised, after which

ridge regression was applied. Then the alpha coefficient for the ridge

regression algorithm was optimised in the same manner as the

previous iteration; 50 alphas in a logarithmic space were selected in a

separate five-fold cross-validation experiment using only the training

data. This approach obtained the lowest mean RMSE of 7% and the

second-lowest standard deviation between folds of 1.5%. The residual

error for this optimised pipeline is shown in Figure 6D. The most

important feature for this model was the response of DBE4 with

other important features generated from DBE 0, DBE 2, DBE 3 and

C-21.

4 | CONCLUSIONS

In summary, the ratio of stocks within group 2 and 3 base oil mixtures

can be resolved by FIMS with an accuracy of 7%. This feature-rich MS

data were processed using in-house tools written in Python to

determine the carbon number and DBE distributions within the data.

The correlations of DBE and carbon response with the ratio of the

mixture were explored, suggesting that although both are important,

the DBE response profile would be a better predictor of the base

stock ratio.

The continuous change in chemistry from a pure group 2 base oil

to a pure group 3 base oil was exploited using various machine

learning algorithms. The use of an automated machine learning

pipeline, TPOT, yielded insight into effective modelling strategies that

could be applied to the data set. The best results were obtained using

polynomial feature generation combined with ridge cross-validation

regression, with a mean RMSE of 7%.

Overall, the strategies highlighted in this work show how

modern data science techniques can be successfully applied to

resolve the ratio of complex mixtures. This study exemplifies this

using group 2 and group 3 base oils; however, it has been applied

to other types of base oils, including synthetic base oils such as

those derived from the Fischer-Tropsch method. In future work, we

plan to address these other base oil mixture combinations and

develop methods that enable the complete characterisation of all

logical base oil mixtures.
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