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Abstract — The role of n-3 PUFAs has gained more importance these last decades, especially in inflammatory processes
because they can display anti-inflammatory properties. Inflammation is a protective response of the body in controlling
infection and promoting tissue repair. However, excessive inflammation can cause local tissue damage. This is especially
the case for the brain for which the functional consequences of neuroinflammation include alterations in cognition,
affect and behavior leading to a negative impact on the quality of life and well-being of patients (Dantzer, 2001, 2008).
Hence, limiting the inflammation in the brain is a real strategy for neuroinflammatory disease therapy and treatment.
Recent data show that n-3 PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-
resolving mediators such as resolvins that actively turned off the inflammatory response. This review first outlines
basic concepts of neuroinflammation and the role of n-3 PUFASs in this process and then summarizes the biosynthesis,
signaling pathways and role of resolvins.
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Résumé — Role des AGPI n-3 dans les processes inflammatoires via la synthese des résolvines. Le role des AGPI
n-3 a considérablement augmenté ces dernieres années, en particulier dans les processus inflammatoires en raison
de leurs propriétés anti-inflammatoires. L’ inflammation est une réponse protectrice de 1’organisme visant a contrdler
I’infection et a favoriser la réparation des tissus. Cependant, une inflammation excessive peut avoir de graves consé-
quences au niveau des tissus. C’est notamment le cas pour le cerveau pour lequel les conséquences fonctionnelles de
la neuro-inflammation comprennent des altérations de la cognition, de I’affect et du comportement, conduisant a un
impact négatif sur la qualité de vie et le bien-étre des patients (Dantzer, 2001, 2008). Par conséquent, limiter 1’inflam-
mation dans le cerveau représente une véritable stratégie dans le cadre de la prévention et du traitement des maladies
neuro-inflammatoires. Des données récentes montrent que les AGPI n-3 exercent leurs propriétés anti-inflammatoires
en partie via la synthese de médiateurs lipidiques spécialisés tels que les résolvines, qui participent activement a réduire
la réponse inflammatoire. Cette revue rappelle d’abord les concepts de base de la réponse inflammatoire et le role des
AGPI n-3 dans ce processus et présente ensuite la biosynthese, les voies de signalisation et le role des résolvines.

Mots clés : AGPI n-3 / neuro-inflammation / résolvines / cellules microgliales

1 Introduction for membrane protein function, maintain the fluidity and influ-

ence lipid raft formation (Calder, 2010). They also act as sig-

The role of essential nutrients in the brain development
and neuronal functioning has increased in the last decades. In
this regard, polyunsaturated fatty acids (PUFAs), especially n-
3 PUFAs have gained importance. They are significant struc-
tural components of the phospholipid membranes of brain in
which docosahexaenoic acid (DHA; 22:6 n-3) constitutes up
to 30% of total fatty acids. They assure the correct environment
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naling molecules or ligands for transcription factors (Norheim
et al., 2012). Moreover, they are involved in the cerebral de-
velopment and in the neuronal structure (Madore et al., 2014).
They have the ability to modulate the neurotransmission and
the synaptic plasticity (Lafourcade et al., 2011). Of impor-
tance in many neurodegenerative diseases, they have immune-
regulatory properties (Bazinet and Laye, 2014). One of the
possible mechanisms to explain the n-3 PUFAs benefits has re-
cently emerged as their conversion in bioactive lipid mediators
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such as resolvins. In this review we present an overview of the
formation and action of n-3 PUFAs derived anti-inflammatory
lipid mediator resolvins.

2 Neuroinflammation

Neuroinflammation is a common early feature of most
peripheral and central diseases. It is characterized by the
brain synthesis and release of pro-inflammatory mediators
known to control neuronal function (Cunningham and Sander-
son, 2008; Delpech et al., 2015b; Hanisch and Kettenmann,
2007; Pascual et al., 2012; Yirmiya and Goshen, 2011).
Pro-inflammatory factors including interleukin-1 beta (IL-15),
interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-a)
have been directly linked to impaired neuronal plasticity in
various animal models (Delpech et al., 2015b; Yirmiya and
Goshen, 2011).

Microglia are the resident macrophages of the brain, and
constitute the first line of immune defense (Ransohoff and
Cardona, 2010). They derive from myeloid cells in the pe-
riphery and comprise approximately 15% of the cells in the
brain (Carson et al., 2006). They are involved in tissue home-
ostasis control, response to injury and remodeling/repair. Un-
der normal conditions, they are in a surveillance phenotype
and constantly monitor the environment (Davalos et al., 2005;
Nimmerjahn et al., 2005). Once stimulated by an immune
challenge, microglia are capable of acquiring diverse and com-
plex phenotypes as well as performing several macrophage-
like functions including inflammatory and anti-inflammatory
cytokine production (Biber er al., 2007; Garden and Moller,
2006; Madore et al., 2013). If sustained, microglia activation
can aggravate the related injury, leading to neuronal damage
that is the basis of a large variety of pathologies (Blais and
Rivest, 2003; Laye, 2010; Solito and Sastre, 2012; Woodroofe,
1995; Woodroofe and Cuzner, 1993).

Hence, the identification of mediators limiting the inflam-
mation and/or involved in the resolution of inflammation is of
growing interest as it may provide novel targets in brain dam-
age prevention and treatment.

3 Role of n-3 PUFAs in inflammation

n-3 PUFAs have been shown to have powerful im-
munomodulatory effects (Calder, 2001; Labrousse et al., 2012;
Laye, 2010; Orr et al., 2013). They are highly concentrated in
the central nervous system (CNS) and are necessary for nor-
mal brain development and function (Labrousse et al., 2012;
Larrieu et al., 2012; Luchtman and Song, 2013; Moranis et al.,
2012; Xiao et al., 2005). The dramatic reduction in the di-
etary supply of n-3 PUFAs in Western societies and the corre-
sponding increase in n-6 PUFAs lead to an imbalanced n-6/n-3
ratio currently estimated at 12-20 in developed countries in-
stead of the recommended ratio of 5 (Simopoulos, 2001).
These changes in n-3 PUFAs in the diet lead to modifica-
tions in the n-3 PUFA content in the brain. As a result, we
have previously demonstrated that low dietary intake of n-3
PUFAs promotes neuroinflammatory responses through the

regulation of microglial cell activity and polarization toward
a pro-inflammatory phenotype, whereas n-3 PUFA dietary
supplementation is rather anti- inflammatory (Delpech et al.,
2015c; De Smedt-Peyrusse et al., 2008; Labrousse et al., 2012;
Madore et al., 2014; Mingam et al., 2008). Moreover, the cen-
tral n-3 PUFA increase observed in transgenic Fat-1 mice mod-
ulates the brain innate immune system activity, leading to the
protection of animals against LPS-induced pro-inflammatory
cytokine production and subsequent spatial memory alteration
(Delpech et al., 2015a). Hence, a dramatic reduction in the di-
etary supply of n-3 PUFAs could thus contribute to the sensi-
tization of the brain immune response to further inflammation,
and thus to the development of spatial memory disorders.

The mechanisms by which n-3 PUFAs exert their effect are
not clearly established. Interestingly, their effect can be medi-
ated via lipid mediators because n-3 PUFAs can act as precur-
sors of specialized pro-resolving mediators (SPM) involved in
the anti-inflammation and pro-resolution. The resolution of in-
flammation is an actively regulated part of the inflammatory re-
sponse involving the activation of specific molecules and cells
that signal the end of inflammation and turn it off.

4 Role of resolvins in inflammation

Recent data emphasize the importance of SPM gener-
ated from PUFAs. These compounds are key regulators and
mediators of inflammation. They were identified using a
lipidometabolomic system approach to analyze the cellular
and molecular components of exudates during inflammation.
They are active at nanomolar range unlike their precursors that
act at micromolar concentrations (Claria et al., 2011). They act
locally and may be rapidly inactivated by further metabolism
via enzymatic pathways (Arita et al., 2005; Seki et al., 2009).
They have the ability to regulate the progress of inflammatory
response and activate the resolution of inflammation in a num-
ber of cell types and models of inflammation. To date, only
a few DHA-derived mediators, including 17S-hydroxy-DHA
(17-HDHA), neuroprotectin D1 (NPD1), resolvin D5 (RvDS),
14-HDHA and maresin 1 (MaR1), have been identified within
brain tissue (Orr et al., 2013; Serhan, 2014). In patients, RvD1
was measured in plasma and macrophages (Fiala et al., 2015;
Wang et al., 2015a). As resolvins have been mostly studied on
peripheral cells, we focused on these compounds.

4.1 Biosynthesis of resolvins and receptors

Resolvins are endogenous lipid mediators derived from
DHA and EPA with both anti- inflammatory and pro-resolutive
activities without immune suppression (Serhan, 2008, 2014;
Serhan er al, 2002). Among the resolvins, resolvin
D1 (RvDl1, 7S,8R,17S-trihydroxy- 4Z,9E,11E,13Z,15E,19Z-
docosahexaenoic acid) and resolvin E1 (RvE1, 5S,12R,18R-
trihydroxy-6Z,8E,10E, 14Z,16E-eicosapentaenoic acid) are of
particular interest in the resolution of inflammation as they ac-
tively turn off the inflammatory response (Bazinet and Laye,
2014; Calder, 2013; Fredman and Serhan, 2011; Headland
and Norling, 2015; Serhan and Chiang, 2013). Resolvins
are biosynthesized through a lipoxygenase (LOX) mechanism
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or by aspirin-triggered cyclo-oxygenase-2 (COX-2) pathway.
RvD1 is synthesized by 15- and 5-LOX from DHA. DHA
is initially converted by 15-LOX to 17S-hydroxy-DHA (17S-
HDHA). Then, 5-LOX catalyzes oxygenation at carbon C7 and
subsequent formation and hydrolysis of an intermediate epox-
ide gives rise to RvD1. This molecule acts through the binding
to its receptors orphan receptor G protein coupling receptor 32
(GPR32) and lipoxin A4 receptor/formyl peptide receptor 2
(ALX/fpr2) (Krishnamoorthy et al., 2010). Unlike ALX/fpr2
expressed on mouse neurons (Pei et al., 2011), GPR32 has
not been identified in mice. RvEl is derived from EPA by
oxygenation by aspirin-triggered acetylated COX-2 (COX-2)
or cytochrome P450 enzymes and 5-LOX (Arita et al., 2005;
Serhan et al., 2000). COX-2 or cytochrome P450 catalyzes
the biosynthesis of 18R-hydroxyeicosapentaenoic acid (18R-
HEPE). Then, by interaction with the 5-LOX, this intermediate
is converted to RvEl. RVEI1 binds two G protein-coupled re-
ceptors, chemokine-like receptor 1 (ChemR23 or CMKLRI1)
(Samson et al., 1998) or leukotriene B4 receptor (BLT1)
(Arita et al., 2007). ChemR23 is expressed on monocytes,
macrophages and microglia (Arita et al., 2005; Ji et al., 2011).
BLT1 is expressed on monocytes and neutrophils but there is
no study about the expression of BLTI in microglia (Arita
etal.,2007).

4.2 Actions of RvD1 and RvE1 at the periphery

The anti-inflammatory activities of RvD1 and E1 have
been reported both in vitro and in vivo mostly on periph-
eral cells. Their pro-resolving effects are widely described in
macrophages in rodent models of inflammation (for reviews:
Claria et al., 2011; Fredman and Serhan, 2011; Lee and Surh,
2012; Recchiuti, 2013; Seki et al., 2009; Serhan, 2014).

In vitro studies report that RvD1 and RvEI inhibit neu-
trophil transmigration and infiltration to the inflamed site
(Arita et al., 2005; Wang et al., 2011). They also limit mono-
cyte chemotaxis and adhesion (Dona et al., 2008; Claria et al.,
2012). They potently decrease pro-inflammatory cytokine ex-
pression (Recchiuti et al., 2011; Schwab et al., 2007; Tian
et al., 2009; Titos et al., 2011) and enhance macrophage
phagocytic activity (Ohira et al., 2010; Krishnamoorthy et al.,
2010). RvE1 and RvD1 also induce a functional switch in
macrophage polarization from M1 to M2 (Navarro-Xavier
et al., 2010; Titos et al., 2011) and can switch macrophages
from CDI11b"¢" to CD11b"% phenotype (Schif-Zuck et al.,
2011). In a model of BV-2 microglia cells, Li et al. demon-
strate that RvD1 promotes IL-4-induced microglia alternative
activation involved in tissue remodeling and healing (Li et al.,
2014). RvD1 and RvEl1 can also inhibit the expression and the
release of pro-inflammatory cytokines in microglia (Xu MX
etal.,2013; XuZZ et al., 2013).

In vivo, RvDI significantly reduces polymorphonuclear
neutrophils (PMN) infiltration in murine air-pouch inflamma-
tion (Serhan et al., 2002). RvD1 administration decreases pro-
inflammatory cytokine production in acute models of injury
in lung (Wang et al., 2011, 2014; Yaxin et al., 2014; Zhou
et al., 2013), kidney (Chen et al., 2014) and in a model of al-
lergic airways (Rogerio et al., 2012). RvD1 enhances phagocy-

tosis of apoptotic leukocytes and bacteria (Chiang et al., 2012;
Krishnamoorthy ef al., 2010).

RVE] also exerts potent anti-inflammatory actions via the
regulation of cytokine production in experimental models of
colitis (Arita et al., 2005) and peritonitis (Schwab et al., 2007).
RVELI increases neutrophil apoptosis, enhances phagocytosis
by macrophages (enhanced bacterial clearance) and decreases
levels of pro-inflammatory cytokines (El Kebir et al., 2012;
Seki et al., 2010).

4.3 Actions of resolvins in the central nervous system

Very few studies described the role of resolvins in the cen-
tral nervous system, in particular in microglia cells. RvD1 and
its receptor were detected in the cerebrospinal fluid of control
and Alzheimer patients (Wang et al., 2015b). The importance
of the resolution pathway in maintaining normal cognition
is suggested by the highlighted positive correlation between
Mini-Mental State of Examination (MMSE) and the levels
of RvD1 in the cerebrospinal fluid, suggesting that resolu-
tion can inhibit Alzheimer disease-related cognitive decline.
Other studies published data reporting that a supplementation
in n-3 PUFAs in patients with minor cognitive impairment in-
creases RvD1 in macrophages (Fiala et al., 2015) and in vitro
RvD1 with vitamin D promotes AB-phagocytosis in isolated
Alzheimer’s patient macrophages (Mizwicki ef al., 2013). A
study of Harrison et al. (2015) demonstrates that RvE1, admin-
istered intraperitoneally for consecutive days, decreases the
traumatic brain injury-induced activation of microglia. RvE1
increases the proportion of ramified microglia and decreases
the proportion of rod microglia in the sensory cortex. More-
over, RvE1 significantly alters the inflammatory profile of mi-
croglia (Harrison et al., 2015).

4.4 Mechanisms of actions of RvD1 and RvE1

The mechanisms by which RvD1 acts are not yet clearly
established. It was shown that RvD1 acts via its receptor
ALX/fpr2 to regulate specific miRNAs that are key regulators
for resolution of inflammation (Bartel, 2009; Recchiuti, 2013).
miRNA are small ~23 nt endogenous RNA that can play im-
portant gene regulatory roles by pairing to the mRNA of pro-
tein coding genes to direct their posttranscriptional repression.
miRNAs has recently emerged as a major class of gene expres-
sion regulators linked to most biological functions including
immune regulation (Ceppi et al., 2009; O’Neill et al., 2011;
Recchiuti et al., 2011; Recchiuti and Serhan, 2012). miRNAs
in macrophages downregulate the mRNA translation of key in-
flammatory cytokines (Fredman and Serhan, 2011).

miR-155, miR-21 and miR-146 have been central in much
miRNA research due to their expression levels following
LPS-induced inflammation (Quinn and O’Neill, 2011). Ceppi
et al. (2009) reported that both miR-155 and miR-146 are
up-regulated upon LPS stimulation in human primary den-
dritic cells (Ceppi et al., 2009). miR-155 targets the pro-
teins involved in the activation of NF«B, thus controlling tis-
sue damage due to inflammation (Faraoni et al., 2009). It is
characterized as a common target of a broad range of in-
flammatory mediators (O’Connell et al., 2007). miR-146 is
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involved as a negative regulator fine tuning the immune re-
sponse (Quinn and O’Neill, 2011). These miRNAs play a key
role in modulating the IL-1 and IL-6 pathways. miR-21 is
also involved as a central player in the inflammatory response
(Quinn and O’Neill, 2011). miR-21 plays a key role in the res-
olution of inflammation and in negatively regulating the pro-
inflammatory response in particular in macrophages (Sheedy
and O’Neill, 2008). Resolvins have been shown to regulate
specific miR-target genes involved in inflammation and res-
olution (Recchiuti et al., 2011). These include miR-21, miR-
146, miR-208 and miR-219, which represent a new class of
pro-resolving miRNAs.

Results from Serhan and coworkers help to identify the
possible pathways and lead to a hypothetical scheme for
RvE1/ChemR23 dependent signaling in human macrophages
(Fredman and Serhan, 2011; Oh et al., 2011; Ohira et al.,
2010). RvE1 regulates phosphorylation of Akt and riboso-
mal protein rS6 via RvEl-specific interaction with ChemR23
on both human ChemR23-transfected CHO cells and human
macrophages enhancing phagocytosis (Ohira et al., 2010). A
decrease in p42 and p44 MAP kinase phosphorylation, induced
by a bacteria, is also observed when neutrophils in culture are
pretreated 15 min before challenge bacteria with 100 ng/ml
RvEI1 (Herrera et al., 2015).

5 Conclusion

More studies are needed to understand the actions of re-
solvins in the central nervous system. Indeed, resolvins are
promising therapeutic compounds: these mediators are of nat-
ural origin and are active at very low concentrations (nM) as
compared to their precursors (WM) (Ariel and Serhan, 2007;
Bannenberg and Serhan, 2010). Resolvins administered orally
to mice reduce acute inflammation and accelerate or initiate
resolution (Recchiuti ef al., 2014). These results highlight the
possibility to exploit the beneficial effect of RvD1 in Human.
Resolvins open novel strategies for the treatment of inflamma-
tory diseases.
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