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1 Introduction

Variational and hemivariational inequalities serve as theoretical models for various prob-
lems arising in mechanics, physics, and engineering sciences. The representative litera-
tures in the field include [1,4,10,11,13–15,17–19,21,23,24]. On the one hand, the theory
of variational inequalities uses monotonicity and convexity as its main tools, including the
properties of the subdifferential of a convex function and maximal monotone operators.
On the other hand, the theory of hemivariational inequalities is based on the features of
the subdifferential in the sense of Clarke defined for locally Lipschitz functions, which
may be nonconvex.

Observantly, variational-hemivariational inequalities represent an intermediate class
of inequalities in which both convex and nonconvex features are involved. Interest in their
study is motivated by various problems in mechanics as discussed in [5, 8, 9, 12, 16, 21,
25]. It should be mentioned that the study of evolutionary variational-hemivariational
inequalities has been performed typically through surjectivity results for pseudomono-
tone operators and fixed point theorems for nonlinear operators (see, e.g., [21] and the
references therein). However, this paper aims to propose a new approach to study evolu-
tionary variational-hemivariational inequalities based on the theory of evolution problems
governed by maximal monotone operators. Indeed, the proposed method is quite different
from the previous literature and is not based on surjectivity results for pseudomonotone
operators.

Let (H, 〈·, ·〉) be a separable Hilbert space, Y a Banach space, and I = [0, T ] for
some T > 0 fixed. In this paper, we study and provide new applications to PDEs for the
following class of evolutionary variational-hemivariational inequalities involving history-
dependent operators:

ẋ(t) ∈ f(t)−R(x)(t)− ∂J
(
t, x(t)

)
−A

(
t, x(t)

)
− ∂cϕ

(
t,S(x)(t), x(t)

)
, a.e. t ∈ I,

x(0) = x0,

(1)

where f ∈ L2(I;H), J : I × H → R is a function, A : I × H → H is a nonlinear
operator, ϕ : I × Y × H → R is a given function, and R,S are two history-dependent
operators (see Definition 1 below) in which we refer to Section 4 for the precise hypothe-
sis. Problem (1) was studied in [7] (see also [21, Chap. 7]) in the framework of evolution
triple of spaces by using surjectivity results for pseudomonotone operators and a fixed
point theorem for nonlinear operators. A key assumption to apply the surjectivity result
is the so-called relaxed monotonicity for the subdifferential in the sense of Clarke (see
Definition 2 below), which is a weaker notion than monotonicity, but which still permits
to obtain the existence of solutions. We characterize this notion in terms of the convexity
of an associated function (see Section 3). Then we consider the differential inclusion

ẋ(t) ∈ f(t)− ∂J
(
t, (t)

)
−A

(
t, x(t)

)
− ∂cψ

(
t, x(t)

)
, a.e. t ∈ I,

x(0) = x0,
(2)
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where ψ : I × H → R is a given function. We prove that the latter problem is, in fact,
an evolution equation governed by a set-valued operator, which is a maximal monotone
operator. Whereas the existence can be obtained through a recent result on the subject
[22]. As a by-product, we obtain the existence for the periodic and antiperiodic version
of (2). Moreover, we prove that every trajectory of the Cauchy problem (2) converges
asymptotically to a periodic solution of (2).

The contribution of this paper is threefold. First, we show that some evolutionary
variational-hemivariational inequalities can be handled with the theory of evolution prob-
lems governed by maximal monotone operators. Second, we extend the results of [7] to
the general functional setting. Finally, the applicability of our theoretical results is illus-
trated through applications to the study of a fractional evolution inclusion and a dynamic
semipermeability problem.

The paper is organized as follows. After some preliminaries, in Section 3, we provide
an impressive characterization of the relaxed monotonicity property, and then we prove
the maximal monotonicity of the sum of operators that appear on the right-hand side
of (2). Then, in Section 4, we establish the well-posedness for problems (1) and (2), re-
spectively. Finally, in Section 5, we illustrate the applicability of our theoretical results to
the study of a fractional evolution inclusion and a complicated dynamic semipermeability
problem, respectively.

2 Notation and preliminaries

2.1 Elements of convex and variational analysis

Let (H, 〈·, ·〉) be a separable Hilbert space. We denote by B the unit closed ball with center
at the origin inH. Given a set-valued map A : H⇒ H, we denote by D(A) and Gr(A),
respectively, the domain and the graph of A defined by D(A) := {x ∈ H: A(x) 6= ∅}
and Gr(A) := {(x, y) ∈ D(A)×H: y ∈ A(x)}. We say that an operator A : H⇒ H is
monotone if 〈x∗ − y∗, x− y〉 > 0 for all x∗ ∈ A(x), y∗ ∈ A(y). Moreover, an operator
A : H⇒ H is maximal monotone if it is monotone and its graph is maximal in the sense
of the inclusion, i.e., Gr(A) is not properly contained in the graph of any other monotone
operator. We refer to [2] for more details on maximal monotone operators.

The Clarke subdifferential of a locally Lipschitz function f : H → R at x ∈ H is
defined by ∂f(x) = {x∗ ∈ H: f0(x; v) > 〈x∗, v〉 for all v ∈ H}, where f0(x; v) stands
for the generalized directional derivative of f at x ∈ H in the direction v ∈ H defined
by f0(x; v) = lim supy→x,t↓0(f(y + tv) − f(y))/t. For a convex function f :H →
R ∪ {+∞}, the convex subdifferential of f at x ∈ H is given by ∂cf(x) = {x∗ ∈ H:
f(y) > f(x) + 〈x∗, y−x〉 for all y ∈ H}. It is well known that for a proper, convex, and
lower semicontinuous function, the convex subdifferential defines a maximal monotone
operator. Moreover, for a convex and locally Lipschitz function, the convex subdifferen-
tial coincides to the Clarke subdifferential (see, e.g., [3]).

The following result is an important characterization of convexity. We refer to [3,
Prop. 2.2.9] for its proof.

https://www.journals.vu.lt/nonlinear-analysis
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Proposition 1. Let (H, 〈·, ·〉) be a Hilbert space. Let f : C → R be a locally Lipschitz
function in an open convex set C ⊂ H. Then f is convex on C if and only if the multi-
function ∂f is monotone on C, that is, if and only if for all x, y ∈ C, 〈x∗−y∗, x−y〉 > 0
for all x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y).

Proposition 2. Let Y be a Banach space and consider ϕ : I ×Y ×H → R be a function
such that for a.e. t ∈ I , the map x 7→ ϕ(t, y, x) is convex and lower semicontinuous
onH. Assume that for all y1, y2 ∈ Y and x1, x2 ∈ H, it holds

ϕ(t, y1, x2)− ϕ(t, y1, x1) + ϕ(t, y2, x1)− ϕ(t, y2, x2)

6 βϕ‖y1 − y2‖Y ‖x1 − x2‖H, a.e. t ∈ I.

Then, for all ξ1 ∈ ∂cϕ(t, y1, x1) and ξ2 ∈ ∂cϕ(t, y2, x2), the following inequality holds:

−〈ξ1 − ξ2, x1 − x2〉 6 βϕ‖y1 − y2‖Y ‖x1 − x2‖H, a.e. t ∈ I.

Proof. Let ξ1 ∈ ∂cϕ(t, y1, x1) and ξ2 ∈ ∂cϕ(t, y2, x2). Then, according to the definition
of the convex subdifferential, for all x ∈ H, we have

〈ξ1, x− x1〉+ ϕ(t, y1, x1) 6 ϕ(t, y1, x),

〈ξ2, x− x2〉+ ϕ(t, y2, x2) 6 ϕ(t, y2, x).

Hence, taking x = x2 and x = x1 in the inequalities above, respectively, and summing
the resulting inequalities, we get

−〈ξ1 − ξ2, x1 − x2〉
6 ϕ(t, y1, x2)− ϕ(t, y1, x1) + ϕ(t, y2, x1)− ϕ(t, y2, x2).

Hence, we get the desired inequality.

Definition 1. Let X , Y be normed spaces. An operator F : L2(I;X) → L2(I;Y )
is called a history-dependent operator if there exists L > 0 such that for all v1, v2 ∈
L2(I;X),

∥∥F(v1)(t)−F(v2)(t)
∥∥
Y
6 L

t∫
0

∥∥v1(s)− v2(s)
∥∥
X

ds, a.e. t ∈ I.

The following result is an essential fixed point property for history-dependent opera-
tors (see, e.g., [21, p. 118]).

Theorem 1. Let X be a Banach space and F : L2(I;X) → L2(I;X) be a history-
dependent operator. Then F has a unique fixed point.

We end this subsection with a technical lemma related to differential inequalities.

Lemma 1. Let x1, x2 : I → H be two absolutely continuous functions such that

1

2

d

dt

∥∥x1(t)− x2(t)
∥∥2 6 α(t)

∥∥x1(t)− x2(t)
∥∥, a.e. t ∈ I,
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where α : I → R is a nonnegative function. Then it holds

d

dt

∥∥x1(t)− x2(t)
∥∥ 6 α(t), a.e. t ∈ I.

Proof. Let us consider the sets Ω1 := {t ∈ I: x1(t) 6= x2(t)} and Ω2 := {t ∈ I:
x1(t) = x2(t)}. On the one hand, for a.e. t ∈ Ω1, we have

1

2

d

dt

∥∥x1(t)− x2(t)
∥∥2 =

∥∥x1(t)− x2(t)
∥∥ d

dt

∥∥x1(t)− x2(t)
∥∥,

which implies the desired inequality. On the other hand, for any t ∈ Ω2, we can see
that the map t 7→ ‖x1(t) − x2(t)‖ attains a minimum. Thus, for a.e. t ∈ Ω2, we have
(d/dt)‖x1(t) − x2(t)‖ = 0, which implies the desired inequality. The proof is then
complete.

2.2 Elements of PDEs

Let Ω be a bounded domain in RN with Lipschitz boundary, and let s ∈ (0, 1) be such
that N > 2s. We adopt the symbols S := (RN \ Ω) × (RN \ Ω), P := R2N \ S,
and 2∗s := 2N/(N − 2s) to denote the fractional critical exponent. Also, we denote by
u|Ω the function u restricted to the domain Ω. In what follows, we assume that function
K : RN \ {0} → (0,+∞) satisfies the conditions:

(HK) K : RN \ {0} → (0,+∞) is such that

(i) the function x 7→ min{|x|2, 1}K(x) belongs to L1(RN );
(ii) there exists a constant mK > 0 such that K(x) > mK |x|−(N+2s) for all

x ∈ RN \ {0};
(iii) for each x ∈ RN \ {0}, we have K(x) = K(−x).

Consider the function spaceX := {u: RN → R: u|Ω ∈ L2(Ω) and (u(x)−u(y))2×
K(x − y) ∈ L2(P)}. It is clear (see, e.g., [20]) that X is a Banach space endowed with
the norm ‖u‖X := ‖u‖L2(Ω) + (

∫
P |u(x)− u(y)|2K(x− y) dy dx)1/2, u ∈ X . We also

introduce a subspace of X given by X0 := {u ∈ X: u = 0, a.e. x ∈ RN \Ω}.
Also, we recall the following lemma (see [20]), which will be used in Section 5.

Lemma 2. Let s ∈ (0, 1) and Ω be a bounded, open subset of RN with Lipschitz
boundary and N > 2s. Then we have

(i) X0 is a Hilbert space with the inner product

〈u, v〉X0
:=

∫
RN

∫
RN

[
u(x)− u(y)

][
v(x)− v(y)

]
K(x− y) dxdy, u, v ∈ X0.

(ii) If p ∈ [1, 2∗s], then there exists a positive constant c(p) such that for all u ∈ X0,
‖u‖Lp(RN ) 6 c(p)‖u‖X0

.
(iii) The embedding from X0 to Lp(RN ) is compact if p ∈ [1, 2∗s).

https://www.journals.vu.lt/nonlinear-analysis
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3 Technical assumptions and hidden maximal monotonicity

For the sake of readability, furthermore, we collect the hypotheses used along with the
paper.

Hypotheses on the operatorA : I ×H→H

(HA) A : I ×H → H is a nonlinear operator satisfying:

(i) the operator t 7→ A(t, x) is measurable on I for all x ∈ H;
(ii) for a.e. t ∈ I , the map x 7→ A(t, x) is hemicontinuous, that is, for all

x, y, w ∈ H, limη↓0〈w,A(t, x+ ηy)〉 = 〈w,A(t, x)〉;
(iii) there exist α, β ∈ L2

+(I) such that ‖A(t, x)‖ 6 α(t) + β(t)‖x‖H for all
x ∈ H and a.e. t ∈ I;

(iv) there exists mA > 0 such that 〈A(t, x) − A(t, y), x − y〉 > mA‖x − y‖2H
for all x, y ∈ H and a.e. t ∈ I .

Hypotheses on the function J : I ×H→ RRR

(HJ ) The function J : I ×H → R satisfies:

(i) for all x ∈ H, t 7→ J(t, x) is measurable on I;
(ii) for a.e. t ∈ I , x 7→ J(t, x) is locally Lipschitz continuous;

(iii) there exist γ, δ ∈ L2
+(I) such that for a.e. t ∈ I and all x ∈ H, |∂J(t, x)| :=

inf{‖x∗‖H: x∗ ∈ ∂J(t, x)} 6 γ(t) + δ(t)‖x‖H;
(iv) there exists mJ > 0 such that 〈x∗ − y∗, x − y〉 > −mJ‖x − y‖2H for all

x∗ ∈ ∂J(t, x) and y∗ ∈ ∂J(t, y) and a.e. t ∈ I .

Here ∂J denotes the Clarke subdifferential of the map x 7→ J(t, x) for a fixed
t ∈ I .

Hypotheses on the function ψ : I ×H→ RRR

(Hψ) The function ψ : I ×H → R satisfies:

(i) for all x ∈ H, the map t 7→ ψ(t, x) is measurable on I;
(ii) for a.e. t ∈ I , the map x 7→ ψ(t, x) is convex and l.s.c. onH;

(iii) there exist c0ψ ∈ L2
+(I) and c1ψ > 0 such that for x ∈ H and a.e. t ∈ I ,

supx∗∈∂cψ(t,x) ‖x
∗‖H 6 c0ψ(t) + c1ψ‖x‖H. Here ∂cψ(t, x) denotes the

convex subdifferential of the map x 7→ ψ(t, x).

Hypotheses on the function ϕ : I ×H× Y → RRR

(Hϕ) The function ϕ : I × Y ×H → R satisfies:

(i) for all x ∈ H, y ∈ Y , the map t 7→ ϕ(t, y, x) is measurable on I;
(ii) for a.e. t ∈ I , for x ∈ X , the map y 7→ ϕ(t, y, x) is continuous;

(iii) for a.e. t ∈ I , for y ∈ Y , the map x 7→ ϕ(t, y, x) is convex and l.s.c. onH.

Nonlinear Anal. Model. Control, 26(6):1144–1165, 2021
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(iv) there exist c0ϕ ∈ L2
+(I) and c1ϕ, c2ϕ > 0 such that for all y ∈ Y , x ∈ H

and a.e. t ∈ I , supx∗∈∂cϕ(t,y,x) ‖x
∗‖H 6 c0ϕ(t) + c1ϕ‖y‖Y + c2ϕ‖x‖H.

Here ∂cϕ(t, y, x) is the convex subdifferential of the map x 7→ ϕ(t, y, x).
(v) There exists βϕ>0 such that for all y1, y2∈Y and x1, x2∈H and a.e. t∈I ,

ϕ(t, y1, x2)−ϕ(t, y1, x1)+ϕ(t, y2, x1)−ϕ(t, y2, x2)6βϕ‖y1−y2‖Y ‖x1−x2‖H.

Hypotheses on the operatorsR and S

(HRS) The operatorsR : L2(I;H)→ L2(I;H) and S : L2(I;H)→ L2(I;Y ) satisfy:

(i) The operator R is a history-dependent, i.e., there exists cR > 0 such that
‖Rv1(t)−Rv2(t)‖H 6 cR

∫ t
0
‖v1(s)−v2(s)‖H ds for all v1, v2 ∈ L2(I;H)

and a.e. t ∈ I .
(ii) The operator S is a history-dependent, i.e., there exists cS > 0 such that
‖Sv1(t)−Sv2(t)‖Y 6 cS

∫ t
0
‖v1(s)−v2(s)‖H ds for all v1, v2 ∈ L2(I;H)

and a.e. t ∈ I .

Next, we characterize the so-called relaxed monotonicity condition for a locally Lip-
schitz function f : H → R sum of a quadratic term. With this result in hand, we
prove the maximal monotonicity of the sum of the Clarke subdifferential of f plus an
appropriate strongly monotone operatorA, which can be understood as a hidden maximal
monotonicity property.

Definition 2. We say that a locally Lipschitz function f : H → R satisfies the m-relaxed
monotonicity condition if there exists m > 0 such that

〈x∗1 − x∗2, x1 − x2〉 > −m‖x1 − x2‖2H, x∗1 ∈ ∂f(x1), x∗2 ∈ ∂f(x2). (3)

Condition (3) has been used extensively in the literature, we refer to [6, 13] for more
details. The following result gives a characterization of m-relaxed monotonicity in terms
of an associated convex function.

Proposition 3. Let f : H → R be a locally Lipschitz function andm > 0. Then f satisfies
the m-relaxed monotonicity condition if and only if the map x 7→ f(x) + (m/2)‖x‖2H is
convex onH.

Proof. Assume that f satisfies them-relaxed monotonicity condition. Then, due to calcu-
lus rules for the Clarke subdifferential, ∂(f+m‖·‖2H/2)(x) = ∂f(x)+mx for all x ∈ H.
Thus, by the m-relaxed monotonicity condition, the map x ⇒ ∂(f + m‖·‖2/2)(x) is,
clearly, monotone. Therefore, by Proposition 1, the function x 7→ f(x) + m‖x‖2H/2 is
convex onH. Reciprocally, assume that the map x 7→ f(x) +m‖x‖2/2 is convex.

On the other side, suppose that the set-valued map x 7→ ∂(f+m‖·‖2H/2)(x) is mono-
tone. Hence, f satisfies the m-relaxed monotonicity condition, which ends the proof.

The following result shows that the relaxed monotonicity added with an appropriate
strongly monotone operator generates a maximal monotone operator.

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 3. Let J : H → R be a locally Lipschitz function andA : H → H be a nonlinear
operator such that:

(i) The map x 7→ A(x) is hemicontinuous, that is, limη↓0〈w, A(x+ηy)〉 = 〈w,A(x)〉
for all x, y, w ∈ H.

(ii) There exists mA > 0 such that 〈A(x) − A(y), x − y〉 > mA‖x − y‖2H for all
x, y ∈ H.

(iii) There exists mJ > 0 such that 〈x∗ − y∗, x − y〉 > −mJ‖x − y‖2H for all
x∗ ∈ ∂J(x) and y∗ ∈ ∂J(y).

Then, if mA > mJ , the operator x 7→ ∂J(x) +A(x) is maximal monotone.

Proof. Let us consider J̃(x) := J(x)+mJ‖x‖2H/2 and Ã(x) := A(x)−mJx.According
to [3, Prop. 2.3.3], ∂J̃(x) = ∂J(x) + mJx for all x ∈ H. Hence, by virtue of (iii),
the operator x 7→ ∂J̃(x) is monotone. Therefore, due to Proposition 1, the function
x 7→ J̃(x) is convex, which implies that x 7→ ∂J̃(x) is maximal monotone. On the
other hand, due to (i) and (ii), the operator x 7→ Ã(x) is monotone and hemicontinuous.
Therefore, as a result of [2, Prop. 20.27], the map x 7→ Ã(x) is maximal monotone.
Finally, the maximal monotonicity of x 7→ ∂J(x) + A(x) = ∂J̃(x) + Ã(x) follows
from [2, Cor. 25.4].

4 Well-posedness results

In this section, we explore several well-posedness results for evolutionary variational-
hemivariational inequalities.

4.1 Cauchy problems

In this subsection, we prove the existence of solutions for the following Cauchy problem:

ẋ(t) ∈ f(t)− ∂J
(
t, x(t)

)
−A

(
t, x(t)

)
− ∂cψ

(
t, x(t)

)
, a.e. t ∈ I,

x(0) = x0.
(4)

The following result provides the well-posedness for (4).

Theorem 2. Assume that (HA), (HJ ), and (Hψ) hold. If mA > mJ , then for each
f ∈ L2(I;H) and x0 ∈ H, problem (4) has a unique solution x(·, f, x0) ∈ W 1,2(I;H).
Moreover, the solution operator (f, x0) 7→ x(·, f, x0) is Lipschitz continuous from
L2(I;H)×H into C(I;H).

Proof. We will employ [22, Thm. 1] to obtain the desired conclusion. So, the proof is
divided into three steps.

Step 1. For a.e. t ∈ I , the operator x 7→ ∂J(t, x) + A(t, x) + ∂cψ(t, x) is maximal
monotone.

Proof of Step 1. It follows directly from Lemma 3.

Nonlinear Anal. Model. Control, 26(6):1144–1165, 2021
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Step 2. For all x ∈ H, the operator t 7→ ∂J(t, x) +A(t, x) + ∂ψ(t, x) is measurable.
Proof of Step 2. The measurability can be obtained directly from the separability of

H and hypotheses (HA)(i), (HJ )(i), and (Hψ)(i).

Step 3. There exist α̃, β̃ ∈ L2
+(I) such that for all x ∈ H,∣∣∂J(t, x) +A(t, x) + ∂cψ(t, x)

∣∣
:= inf

ξ∈∂J(t,x)+A(t,x)+∂cψ(t,x)
‖ξ‖H 6 α̃(t) + β̃(t)‖x‖H, a.e. t ∈ I.

Proof of Step 3. Indeed, conditions (HJ )(iii), (HA)(iii), and (Hψ)(iii) indicate that∣∣∂J(t, x) +A(t, x) + ∂ψ(t, x)
∣∣ 6 α̃(t) + β̃(t)‖x‖H,

where α̃ := α+ γ + c0ψ and β̃ := β + δ + c1ψ , which proves Step 3.
Therefore, by virtue of Steps 1–3 and [22, Thm. 1], the Cauchy problem (4) has

a unique solution x(·, f, x0) ∈W 1,2(I;H).
Furthermore, let x10, x

2
0 ∈ H and f1, f2 ∈ L2(I;H) and set x1 := x(·, f1, x10) and

x2 := x(·, f2, x20). Then, due to the monotonicity of the set-valued map x 7→ ∂J(t, x) +
A(t, x) + ∂cψ(t, x), for a.e. t ∈ I , it follows that

1

2

d

dt

∥∥x1(t)− x2(t)
∥∥2
H =

〈
x1(t)− x2(t), ẋ1(t)− ẋ2(t)

〉
6
〈
x1(t)− x2(t), f1(t)− f2(t)

〉
, a.e. t ∈ I.

Therefore, by virtue of Lemma 1, for a.e. t ∈ I , it holds (d/dt)‖x1(t) − x2(t)‖H 6
‖f1(t)− f2(t)‖H, which implies that

∥∥x1(t)− x2(t)
∥∥
H 6

∥∥x10 − x20∥∥H +

t∫
0

∥∥f1(s)− f2(s)
∥∥
H ds, t ∈ I.

We conclude that the solution operator (f, x0) 7→ x(·, f, x0) is Lipschitz from
L2(I;H)×H into C(I;H) by using Hölder inequality.

Remark 1. From the proof of Theorem 2 we can see that hypotheses (HJ )(iii), (HA)(iii),
and (Hψ)(iii) are only used to ensure that∣∣∂J(t, x) +A(t, x) + ∂cψ(t, x)

∣∣ := inf
ξ∈∂J(t,x)+A(t,x)+∂cψ(t,x)

‖ξ‖H

6 α̃(t) + β̃(t)‖x‖H

for some functions α̃, β̃ in L2
+(I). So, Theorem 2 holds too if we interchange the infimum

by a supremum in (HJ )(iv) and the supremum by a infimum in (Hψ)(iii).

Remark 2. According to [22, Thm. 1] and Lemma 3, Theorem 2 still holds if we consider
a set-valued operator A : I × H ⇒ H such that the map x 7→ A(t, x) is maximal
monotone with a full domain.
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4.2 Cauchy problems with history-dependent operators

In this subsection, we focus our attention on the study of the existence of solutions for the
following Cauchy problem involving history-dependent operators:

ẋ(t) ∈ f(t)−R(x)(t)− ∂J
(
t, x(t)

)
−A

(
t, x(t)

)
− ∂cϕ

(
t,S(x)(t), x(t)

)
, a.e. t ∈ I,

x(0) = x0,

(5)

whereR and S are two history-dependent operators, i.e., (HRS) is satisfied.

Theorem 3. Assume that (HA), (HJ ), (Hϕ), and (HRS) hold. If mA > mJ , then
for each f ∈ L2(I;H) and x0 ∈ H, problem (5) has a unique solution x(·, f, x0) ∈
W 1,2(I;H). Moreover, the solution operator (f, x0) 7→ x(·, f, x0) is Lipschitz continu-
ous from L2(I;H)×H into C(I;H).

Proof. Fix v ∈ L2(I;H) and let us consider the intermediate problem:

ẋ(t) ∈ f(t)−R(v)(t)− ∂J
(
t, x(t)

)
−A

(
t, x(t)

)
− ∂cϕ

(
t,S(v)(t), x(t)

)
, a.e. t ∈ I,

x(0) = x0.

(6)

Our aim is to prove that (6) has a unique fixed point in W 1,2(I;H), which is clearly
a solution of (5). The proof is divided into several steps.

Step 1. For v ∈ L2(I;H), problem (6) has a unique solution x(v) ∈W 1,2(I;H).
Proof of Step 1. It follows directly from Theorem 2.
We now denote by F : L2(I;H)→W 1,2(I;H) the operator, which associates to any

v ∈ L2(I;H) for the unique solution x(v) ∈W 1,2(I;H) of (6).
Step 2. The operatorF is history-dependent. More precisely, for all v1, v2 ∈ L2(I;H),

we have

∥∥F(v1)(t)−F(v2)(t)
∥∥
H 6 (cR + βϕcS)T

t∫
0

∥∥v1(s)− v2(s)
∥∥
H ds, a.e. t ∈ I.

Proof of Step 2. Denote x1 := F(v1) and x2 := F(v2). Let us consider ξ1 and ξ2
such that ξi(t) ∈ ∂cϕ(t,S(vi)(t), xi(t)) for all t ∈ I and i = 1, 2, and ẋi(t) + ξi(t) ∈
f(t) − R(vi)(t) − ∂J(t, xi(t)) − A(t, xi(t)) for all t ∈ I and i = 1, 2. Define h(t) :=
‖x1(t)− x2(t)‖2H/2. Then h is absolutely continuous, and it holds

ḣ(t) =
〈
ẋ1(t)− ẋ2(t), x1(t)− x2(t)

〉
6 cR

t∫
0

∥∥v1(s)− v2(s)
∥∥
H ds

∥∥x1(t)− x2(t)
∥∥
H

+ βϕcS

t∫
0

∥∥v1(s)− v2(s)
∥∥
H ds

∥∥x1(t)− x2(t)
∥∥
H, a.e. t ∈ I,
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where m := mA −mJ > 0, and we have used the monotonicity of the set-valued map
x 7→ ∂J(t, x) + A(t, x), Proposition 2, and hypotheses (HRS). Therefore, by virtue
of Lemma 1, for a.e. t ∈ I , we conclude (d/dt)‖x1(t) − x2(t)‖H 6 (cR + βϕcS) ×∫ t
0
‖v1(s)− v2(s)‖H ds, which implies that

∥∥x1(t)− x2(t)
∥∥
H 6 (cR + βϕcS)T

t∫
0

∥∥v1(s)− v2(s)
∥∥
H ds, a.e. t ∈ I,

which proves Step 2.
Step 3. Problem (5) has a unique solution x∗ ∈W 1,2(I;H).
Proof of Step 3. Since F is a history-dependent operator, employing Theorem 1

implies that the operator F : L2(I;H)→W 1,2(I;H) has a unique fixed point x∗, which
clearly solves (5).

To end the proof, let x10, x
2
0 ∈ H and f1, f2 ∈ L2(I;H) and consider x1 := x(·, f1, x10)

and x2 := x(·, f2, x20). Then, by virtue of the monotonicity of the operator x 7→ ∂J(t, x)+
A(t, x) for a.e. t ∈ I , it follows that

1

2

d

dt

∥∥x1(t)− x2(t)
∥∥2
H

=
〈
x1(t)− x2(t), ẋ1(t)− ẋ2(t)

〉
6
∥∥x1(t)− x2(t)

∥∥
H

∥∥f1(t)− f2(t)
∥∥
H

+ (cR + βϕcS)

t∫
0

∥∥x1(s)− x2(s)
∥∥
H ds

∥∥x1(t)− x2(t)
∥∥
H, a.e. t ∈ I,

hence,
1

2

∥∥x1(t)− x2(t)
∥∥2
H −

1

2

∥∥x10 − x20∥∥2H
6

t∫
0

∥∥x1(s)− x2(s)
∥∥
H

∥∥f1(s)− f2(s)
∥∥
H ds

+ (cR + βϕcS)

( t∫
0

∥∥x1(s)− x2(s)
∥∥
H ds

)2

, t ∈ I.

So, we have
1

2

∥∥x1(t)− x2(t)
∥∥2
H

6
1

2

∥∥x10 − x20∥∥2H +
1

2

t∫
0

∥∥x1(s)− x2(s)
∥∥2
H ds

+
1

2

t∫
0

∥∥f1(s)− f2(s)
∥∥2
H ds+ (cR + βϕcS)T

t∫
0

∥∥x1(s)− x2(s)
∥∥2
H ds, t ∈ I.
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Applying Grönwall’s inequality, it finds therefore

∥∥x1(t)− x2(t)
∥∥2
H 6M

(∥∥x10 − x20∥∥2H+

t∫
0

∥∥f1(s)− f2(s)
∥∥2
H ds

)
, t ∈ I,

where the constant M > 0 only depends on cR, cS , βϕ, and T . Consequently, we have

∥∥x1(t)− x2(t)
∥∥
H 6 LM

(∥∥x10 − x20∥∥H+

( t∫
0

∥∥f1(s)− f2(s)
∥∥2
H ds

)1/2)
, t ∈ I,

which proves the Lipschitzianity of the solution operator.

4.3 Noninitial boundary value problems

In this subsection, we consider the existence of periodic solutions for the following dif-
ferential inclusion problem:

ẋ(t) ∈ f(t)− ∂J
(
t, x(t)

)
−A

(
t, x(t)

)
− ∂cψ

(
t, x(t)

)
, a.e. t ∈ I,

x(0) = x(T ).
(7)

Theorem 4. Assume that (HA), (HJ ), and (Hψ) hold. If mA > mJ , then problem (7)
has a unique solution xπ ∈W 1,2(I;H).

Proof. Let us consider the operator F : H → H defined by F(x0) = x(T ;x0), where
x(·, x0) is the unique solution of (4) with the initial condition x(0) = x0. Our goal is
to prove that F has a unique fixed point in H. Let x1 := x(·, x10) and x2 = x(·, x20).
Keeping in mind that mA > mJ and the operator x 7→ ∂f(t, x) +A(t, x) + ∂cψ(t, x) is
m strongly monotone with m := mA −mJ , it gives

1

2

d

dt

∥∥x1(t)− x2(t)
∥∥2
H =

〈
x1(t)− x2(t), ẋ1(t)− ẋ2(t)

〉
6 −m

∥∥x1(t)− x2(t)
∥∥2
H, a.e. t ∈ I.

Employing Grönwall’s inequality yields ‖x1(t) − x2(t)‖H 6 e−mt‖x10 − x20‖H for all
t ∈ I . Then we have ‖F(x10) − F(x20)‖H 6 κ‖x10 − x20‖H, where κ := e−mT < 1.
Therefore, the operator F has a unique fixed point x0,T ∈ H by the contractive fixed
point theory. It is clear that xπ := x(·, x0,T ) is the unique solution of (7).

Likewise, we can consider the existence of antiperiodic solutions to the following
differential inclusion problem:

ẋ(t) ∈ f(t)− ∂J
(
t, x(t)

)
−A

(
t, x(t)

)
− ∂cψ

(
t, x(t)

)
, a.e. t ∈ I,

x(0) = −x(T ).
(8)

Using the same argument given in the proof of Theorem 4, it is easy to conclude the
following result.
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Theorem 5. Assume that (HA), (HJ ), and (Hψ) hold. If mA > mJ , then problem (8)
has a unique solution x−π ∈W 1,2(I;H).

We end this section by showing that the unique solution to (7) can be obtained asymp-
totically from any solution of (4).

Theorem 6. Assume, in addition to (HA), (HJ ), (Hψ), that mA > mJ and for all
(t, x) ∈ R+ ×H, J(t+ T, x) = J(t, x), A(t+ T, x) = A(t, x), ψ(t+ T, x) = ψ(t, x),
and f(t+ T ) = f(t). Let x(·, x0) be the unique solution of (4) with the initial condition
x(0) = x0 and define xn(t) := x(t + nT ;x0) for all t ∈ I and n ∈ N. Then, for any
x0 ∈ H, xn → xπ in C(I;H), where xπ is the unique periodic solution of (7).

Proof. Set m := mA −mJ > 0, and let us consider h(t) := ‖xn(t) − xπ(t)‖2H/2 for
t ∈ I and n ∈ N. Then, for a.e. t ∈ I , it gives ḣ(t) = 〈xn(t)− xπ(t), ẋn(t)− ẋπ(t)〉 6
−mh(t), where we used the monotonicity of the map x 7→ ∂J(t, x)+A(t, x)+∂cψ(t, x).
Therefore, for all t ∈ I , it is true ‖xn(t) − xπ(t)‖H 6 ‖xn(0) − xπ(0)‖He−mT for all
t ∈ I , where we have used the Grönwall inequality. Thus, by using the same inequalities,
for all t ∈ I , we have∥∥xn(t)− xπ(t)

∥∥
H

6
∥∥xn(0)− xπ(0)

∥∥
He−mt =

∥∥xn−1(T )− xπ(T )
∥∥
He−mt

6
∥∥xn−1(0)− xπ(0)

∥∥
He−m(t+T ) 6 · · · 6

∥∥x0 − xπ(0)
∥∥
He−m(t+nT ),

which shows that xn → x in C(I;H).

Remark 3. As showed in the previous proof, xn converges to xπ exponentially.

5 Applications

To illustrate the applicability of the theoretical results established in Section 4, we will
present two comprehensive applications. The first one is a fractional evolution inclusion
problem involving a multivalued term, which is formulated by the Clarke generalized
gradient. The second application is a dynamic semipermeability problem, which is, more
precisely, a complicated mixed boundary value problem of parabolic type with history-
dependent operators and nonsmooth potential functionals.

5.1 Application to a fractional evolution inclusion problem

In the subsection, we are interested in the study of an evolutionary inclusion problem with
a generalized nonlocal space-fractional Laplace operator and a Clarke generalized subgra-
dient operator. Let Ω be a bounded domain in RN with Lipschitz boundary, s ∈ (0, 1)
be such that N > 2s, ΩC := RN \Ω, 0 < T <∞, and I := [0, T ]. More precisely, the
classical form of the evolutionary inclusion problem under consideration is formulated as
follows.
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Problem 1. Find function u : RN × [0, T ]→ R such that

∂u

∂t
(x, t) + LKu(x, t) + ∂j(x, t, u) 3 f(x, t) in Ω × (0, T ),

u(x, t) = 0 in ΩC × (0, T ),

u(x, 0) = u0(x) in Ω,

where the operator LK stands for the generalized nonlocal space-fractional Laplace op-
erator defined as follows: LKu(x) := −

∫
RN (u(x+ y) + u(x− y)− 2u(x))K(y) dy for

a.e. x ∈ RN , for all u ∈ X0.

We first impose the following assumptions for the data of Problem 1.

(Hj) j : Ω × I × R→ R is such that j(·, ·, 0) ∈ L1(Ω × I) and

(i) for each r ∈ R, the function (x, t) 7→ j(x, t, r) is measurable on Ω × I;
(ii) for a.e. (x, t) ∈ Ω × I , the functional r 7→ j(x, t, r) is locally Lipschitz

continuous;
(iii) there exist αj , βj ∈ L2

+(I) satisfying |ξ| 6 αj(t) + βj(t)|r| for all ξ ∈
∂j(x, t, r) and all (x, t, r) ∈ Ω × I × R;

(iv) there exists mj > 0 such that (ξ − η)(r1 − r2) > −mj |r1 − r2|2 for all
ξ ∈ ∂j(x, t, r1), η ∈ ∂j(x, t, r2), (x, t) ∈ Ω × I , and r1, r2 ∈ R.

(H0) f ∈ L2(I;X0) and u0 ∈ X0.

The weak solutions to Problem 1 are understood as follows.

Definition 3. We say that u : I → X0 is a weak solution to Problem 1 if u(x, 0) = u0(x)
in Ω and the following inequality holds for all v ∈ X0:∫

RN

∂u(x, t)

∂t
v(x) dx+

∫
Ω

j0
(
x, t, u(x, t); v(x)

)
dx+

∫
RN

v(x)LKu(x, t) dx

>
∫
RN

f(x, t)v(x) dx, a.e. t ∈ I.

Let us define function J : I × X0 → R by J(t, u) :=
∫
Ω
j(x, t, u(x)) dx for all

(t, u) ∈ I ×X0. For function J , we have the following lemma.

Lemma 4. Assume that (Hj) is fulfilled. Then the following statements hold:

(i) t 7→ J(t, u) is measurable on I for all u ∈ X0.
(ii) For a.e. t ∈ I , X0 3 u 7→ J(t, u) ∈ R is locally Lipschitz.

(iii) For all (t, u) ∈ I×X0, we have J0(t, u) 6
∫
Ω
j0(x, t, u(x)) dx and ∂J(t, u) ⊂∫

Ω
∂j(x, t, u(x)) dx.

(iv) There exists a constant cj > 0 such that ‖∂J(t, u)‖X0 6 cj(αj(t)+βj(t)‖u‖X0)
for all (t, u) ∈ I ×X0.
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(v) For any u, v ∈ X0, t ∈ I , ξ ∈ ∂J(t, u) and η ∈ ∂J(t, v), the inequality is
satisfied 〈ξ − η, u− v〉 > −mjc(2)2‖u− v‖2X0

.

Proof. Statements (i)–(iv) are the direct consequences of [13, Thm. 3.47]. It remains us to
prove conclusion (v). Let u, v ∈ X0, t ∈ I , ξ ∈ ∂J(t, u), and η ∈ ∂J(t, v) be arbitrary.
Statement (iii) indicates

〈ξ − η, v − u〉 = 〈ξ, v − u〉+ 〈η, u− v〉

6 J0(t, u; v − u) + J0(t, v;u− v)

6
∫
Ω

mj

∣∣u(x)− v(x)
∣∣2 dx = mj‖u− v‖2L2(Ω)

6 mjc(2)2‖u− v‖2X0
,

where the last inequality is obtained by using Lemma 2. Therefore, the desired inequality
is valid.

The existence and uniqueness of weak solutions to Problem 1 is provided by the
following result.

Theorem 7. Assume that H(K), H(j), H(0), and 1 > mjc(2)2 hold, then Problem 1
has a unique weak solution u(·, f, x0) ∈ W 1,2(I;X0), and the solution operator T :
(f, x0) 7→ u(·, f, x0) is Lipschitz continuous from L2(I;X0)×X0 into C(I;X0).

Proof. Let H := X0. Consider the operator A : H → H defined for all u, v ∈ H by
〈Au, v〉 :=

∫
RN v(x)LK(u(x)) dx. We now claim that A is a continuous linear operator.

For any u, v ∈ H, it has

〈Au, v〉 =

∫
RN

v(x)LK
(
u(x)

)
dx =

∫
R2N

[
v(x)− v(y)

][
u(x)− u(y)

]
K(x− y) dy dx

= 〈u, v〉X0 .

It obvious to see that A is a linear continuous operator and ‖Au‖H = ‖u‖H. In addition,
the fact 〈Au − Av, u − v〉 = ‖u − v‖2H for all u, v ∈ H implies that A is strongly
monotone with constant mA = 1.

Let us consider the following intermediate problem: find u : I → H such that for all
v ∈ H, 〈

u′(t) +Au(t), v
〉

+ J0
(
t, u(t); v

)
>
〈
f(t), v

〉
, a.e. t ∈ I,

u(0) = u0.
(9)

Employing Lemma 4(iii), we can see that a solution to problem (9) is also a weak solution
to Problem 1. On the other hand, it is not difficult to verify that problem (9) is equivalent
to the following evolutionary inclusion problem:

u′(t) +Au(t) + ∂J
(
t, u(t)

)
3 f(t), a.e. t ∈ I,

u(0) = u0.
(10)
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Observe that A : H → H reads hypothesis (HA), hence, we are now in a position
to invoke Lemma 4 and Theorem 2 that problem (10) has a unique solution u(·, f, u0) ∈
W 1,2(I;H). So, u is also a weak solution to Problem 1. For the uniqueness part of Prob-
lem 1, it can be obtained directly by using the standard procedure (see the proof of Theo-
rem 2). Finally, the Lipschitz continuity of the solution operator T : (f, x0) 7→ u(·, f, x0)
could be verified by employing the same argument with the proof of Theorem 2.

Furthermore, we are going to apply the results established in Section 4.3 to investigate
the fractional evolution inclusion problem, Problem 1, with periodic and antiperiodic
boundary value conditions, respectively.

Problem 2. Find function u : RN × I → R such that

∂u

∂t
(x, t) + LKu(x, t) + ∂j(x, t, u) 3 f(x, t) in Ω × (0, T ),

u(x, t) = 0 in ΩC × (0, T ),

u(x, 0) = u(x, T ) in Ω.

Likewise, the weak solutions to Problem 2 are given as follows.

Definition 4. We say that u : I → X0 is a weak solution to Problem 2 if u(x, 0) =
u(x, T ) in Ω and the following inequality holds for all v ∈ X0:∫

RN

∂u(x, t)

∂t
v(x) dx+

∫
Ω

j0
(
x, t, u(x, t); v(x)

)
dx+

∫
RN

v(x)LKu(x, t) dx

>
∫
RN

f(x, t)v(x) dx, a.e. t ∈ I.

Invoking Theorem 4 and the proof of Theorem 7, we have the following existence and
uniqueness result for Problem 2.

Theorem 8. Assume that (HK), (Hj), (H0), and 1 > mjc(2)2 are satisfied, then Prob-
lem 2 has a unique solution u(·, f, x0) ∈W 1,2(I;X0).

We end the subsection by considering the antiperiodic boundary value problem.

Problem 3. Find function u : RN × I → R such that

∂u

∂t
(x, t) + LKu(x, t) + ∂j(x, t, u) 3 f(x, t) in Ω × (0, T ),

u(x, t) = 0 in ΩC × (0, T ),

u(x, 0) = −u(x, T ) in Ω.
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Definition 5. We say that u : I → X0 is a weak solution to Problem 3 if u(x, 0) =
−u(x, T ) in Ω and the following inequality holds for all v ∈ X0:∫

RN

∂u(x, t)

∂t
v(x) dx+

∫
Ω

j0(x, t, u(x, t); v(x)) dx+

∫
RN

v(x)LKu(x, t) dx

>
∫
RN

f(x, t)v(x) dx a.e. t ∈ I.

Analogously, from Theorem 5 and the proof of Theorem 7, we have the following
theorem.

Theorem 9. Assume that (HK), (Hj), (H0), and 1 > mjc(2)2, then Problem 3 has
a unique solution u(·, f, x0) ∈W 1,2(I;X0).

5.2 Application to a dynamic semipermeability problem

The semipermeability boundary conditions can describe exactly behavior of various types
of membranes, natural and artificial ones, and arise in models of heat conduction, elec-
trostatics, hydraulics and in the description of the flow of a Bingham fluid in which the
solution represents temperature, electric potential, pressure, and so forth. The current sub-
section is devoted to exploring a comprehensive semipermeability problem of parabolic
type involving Volterra-type integral terms and nonsmooth potential functions.

Let 0 < T < +∞ and Ω be a bounded domain in Rd with Lipschitz continuous
boundary Γ := ∂Ω. Denote by ν the unit outward normal on the boundary Γ . The
boundary Γ is decomposed into three mutually disjoint and relatively open subsets Γ1,
Γ2 and Γ3 such that Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 and meas(Γ1) > 0. In the sequel, we denote by
Q = Ω × (0, T ), Σ1 = Γ1 × (0, T ), Σ2 = Γ2 × (0, T ), and Σ3 = Γ3 × (0, T ). The
classical formulation of semipermeability problem is described as follows.

Problem 4. Find u : Q → R such that

∂u(x, t)

∂t
+ Lu(x, t) + ∂j

(
x, t, u(x, t)

)
+

t∫
0

E(t− s)u(x, s) ds 3 f0(x, t) in Q,

u(x, t) = 0 on Σ1,

−∂u(x, t)

∂νa
= f2(x, t) on Σ2, − ∂u

∂νa
= F

( t∫
0

∣∣u(x, s)
∣∣ds) sgn(u(x, t)) on Σ3,

u(x, 0) = u0(x) in Ω,

where ∂u/∂νa denotes the conormal derivative with respect to the second-order dif-
ferential operator L := −

∑d
i,j=1(∂/∂xi)(aij(x)∂/∂xj)), and sgn stands for the sign

function.
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In order to deliver the weak formulation of Problem 4, we are now in a position to
introduce the following function spaces H = {v ∈ H1(Ω): v = 0 on Γ1} and V =
L2(Ω). However, from Korn’s inequality and the condition meas(Γ1) > 0, it finds that
H is a Hilbert space endowed with the inner product 〈u, v〉 =

∫
Ω

(∇u(x),∇v(x))Rd dx
for all u, v ∈ H.

Also, we impose the following assumptions.

(Ha) a : Ω → R is such that aij ∈ L∞(Ω) for i, j = 1, . . . , d, and there exists a cons-
tantma > 0 such that

∑d
i,j=1 aij(x)ξiξj > ma‖ξ‖2 for all ξ ∈ Rd and a.e. x ∈ Ω.

(Hj) j : Q× R→ R is such that:

(i) j(·, ·, r) is measurable on Q for all r ∈ R and there exists e ∈ L2(Ω) such
that j(·, ·, e(·)) ∈ L1(Q);

(ii) j(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ Q;
(iii) |∂j(x, t, r)| 6 c0j(t)+ c1j |r| for all r ∈ R, a.e. (x, t) ∈ Q with c0j ∈ L2

+(I)
and c1j > 0;

(iv) there exists mj > 0 satisfying (ξ1 − ξ2)(r1 − r2) > −mj |r1 − r2|2 for all
ξ1 ∈ ∂j(x, t, r1), ξ2 ∈ ∂j(x, t, r2), r1, r2 ∈ R and for a.e. (x, t) ∈ Q.

(HF ) F : Γ3 × R→ R+ is such that:

(i) F (·, r) is measurable on Γ3 for all r ∈ R.
(ii) there is LF > 0 such that |F (x, r1) − F (x, r2)| 6 LF |r1 − r2| for all r1,

r2 ∈ R, a.e. x ∈ Γ3.
(iii) F (·, 0) ∈ L2(Γ3).

(HE) E ∈ C(I).

(H0) f0 ∈ L2(Q), f2 ∈ L2(Σ2), u0 ∈ H.

It follows from Riesz’s representation theorem that there is a function f : I→H−1(Ω)
such that 〈f(t), v〉 =

∫
Ω
f0(t)v dx+

∫
Γ1
f2(t)v dΓ for all v ∈ H and all t ∈ I .

Using a standard procedure, it is not difficult to get the weak formulation of Problem 4
as follows.

Problem 5. Find a function u : I → H such that u(0) = u0 and for all v ∈ H,〈
u′(t) +Au(t) +

t∫
0

E(t− s)u(s) ds− f(t), v − u(t)

〉
+

∫
Ω

j0
(
t, u(t); v − u(t)

)
dx

+

∫
Γ3

F

( t∫
0

∣∣u(s)
∣∣ds)(|v| − ∣∣u(t)

∣∣) dΓ > 0, a.e. t ∈ I,

where the operator A : H → H is defined by

〈Au, v〉 =

∫
Ω

d∑
i,j=1

aij(x)
∂u(x)

∂xi

∂v(x)

∂xj
dx, u, v ∈ H.

Nonlinear Anal. Model. Control, 26(6):1144–1165, 2021
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We also consider a function J : I×H → R defined by J(t, u) :=
∫
Ω
j(x, t, u(x)) dx

for all (t, u) ∈ I × H. It is obvious that under hypothesis (Hj) the following lemma is
available.

Lemma 5. Assume that (Hj) is fulfilled. Then the following statements hold:

(i) t 7→ J(t, u) is measurable on I for all u ∈ H.
(ii) For a.e. t ∈ I ,H 3 u 7→ J(t, u) ∈ R is locally Lipschitz.

(iii) For all (t, u) ∈ I ×H, we have J0(t, u) 6
∫
Ω
j0(x, t, u(x)) dx and ∂J(t, u) ⊂∫

Ω
∂j(x, t, u(x)) dx.

(iv) There exists a constant cj > 0 such that ‖∂J(t, u)‖H 6 cj(c0j(t) + c1j‖u‖H)
for all (t, u) ∈ I ×H.

(v) We have 〈ξ−η, u−v〉 > −mjc
2
H‖u−v‖2H for any u, v ∈ H, t ∈ I , ξ ∈ ∂J(t, u),

and η ∈ ∂J(t, v). Here cH > 0 is such that ‖u‖L2(Ω) 6 cH‖u‖H for all u ∈ H.

Let us define the operators R : L2(I;H)→ L2(I;H) and S : L2(I;H)→ L2(I;Y )

by Ru(t) :=
∫ t
0
E(t− s)u(s) ds and Su(t) :=

∫ t
0
|u(s)|ds for all u ∈ L2(I;H), where

Y = L2(Γ3).

Remark 4. It follows from [21, Exs. 4 and 6] that R and S are two history-dependent
operators.

Moreover, let us consider the function ϕ : Y × H → R defined by ϕ(y, u) =∫
Γ3
F (y)|v| dΓ for all y ∈ Y and u ∈ H. The following result establishes the well-

posedness for Problem 5.

Theorem 10. Assume that (Ha), (Hj), (HE), (HF ), (H0), and ma > mjc
2
H are fulfilled,

then Problem 5 has a unique solution u(·, f0, f2, u0) ∈ W 1,2(I;H). Moreover, the
solution operator (f0, f2, u0) 7→ u(·, f0, f2, u0) is Lipschitz continuous from L2(I;V )×
L2(I;L2(Γ2))×H into C(I;H).

Proof. We first study the intermediate problem: find u : I → H such that u(0) = u0 and
for all v ∈ H,〈

u′(t) +Au(t) +Ru(t)− f(t), v − u(t)
〉

+ J0
(
t, u(t); v − u(t)

)
> ϕ

(
Su(t), v

)
− ϕ

(
Su(t), u(t)

)
, a.e. t ∈ I.

In fact, the inequality above could be rewritten to the following inclusion problem: find
u : I → H such that u(0) = u0 and

u′(t) +Au(t) +Ru(t) + ∂J
(
t, u(t)

)
+ ∂cϕ

(
Su(t), u(t)

)
3 f(t), a.e. t ∈ I. (11)

However, Lemma 5 reveals the fact that a solution of problem (11) is also a solution
of Problem 5. Based on this fact, we are going to utilize Theorem 3 for concluding the
existence of solutions of Problem 5.

From hypothesis (Ha) it is not difficult to prove that A is a continuous and strongly
monotone operator with constant mA := ma. Notice that aij ∈ L∞(Ω) for i, j =

https://www.journals.vu.lt/nonlinear-analysis
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1, . . . , d, we can obtain the inequality ‖Au‖H 6 cA‖u‖H for all u ∈ H with some
cA > 0. Besides, by virtue of condition (HF ) and the definition of ϕ, it gives that
ϕ satisfies condition (Hϕ) (see [21, p. 251, Thm. 113,]).

Therefore, all conditions in Theorem 3 are verified. This theorem implies that problem
(11) has a unique solution u(·, f0, f2, u0) ∈W 1,2(I;H), which is a solution to Problem 5
as well. On the other hand, from the smallness conditionma > c2Hmj it follows a standard
procedure to obtain that u(·, f0, f2, u0) ∈ W 1,2(I;H) is also the unique solution to
Problem 5. Moreover, the Lipschitz continuity of the solution operator T : (f0, f2, x0) 7→
u(·, f0, f2, x0) could be verified by employing the same argument with the proof of
Theorem 2.

6 Conclusions

In this paper, a class of nonlinear evolutionary variational-hemivariational inequalities in-
volving history-dependent operators is introduced and studied. We propose a new method-
ology, which is based on a hidden maximal monotonicity, to deliver the well-posedness re-
sults of the inequality problems under the periodic and antiperiodic boundary conditions,
respectively. These theoretical results extend the recent one obtained by Han, Migórski,
and Sofonea [7]. Moreover, to illustrate the applicability of the abstract results established
in the paper, a fractional evolution inclusion and a dynamic semipermeability problem are
investigated, respectively.

Acknowledgment. The authors wish to thank the referees for providing several helpful
suggestions which help to improve the paper.
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