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Abstract. This contribution gives a numerical investigation of buoyancy-driven flow of natural
convection heat transfer and entropy generation of non-Newtonian hybrid nanofluid (Al2O3-Cu)
within an enclosure square porous cavity. Hybrid nanofluids represent a novel type of enhanced
active fluids. During the current theoretical investigation, an actual available empirical data for both
thermal conductivity and dynamic viscosity of hybrid nanofluids are applied directly. Numerical
simulation have been implemented for solid nanoparticles, the volumetric concentration of which
varies from 0.0% (i.e., pure fluid) to 0.1% of hybrid nanofluids. Heat and sink sources are situated
on a part of the left and right sides of the cavity with length B, while the upper and bottom
horizontal sides are kept adiabatic. The stated partial differential equations describing the flow
are mutated to a dimensionless formulas, then solved numerically via the help of an implicit
finite difference approach. The acquired computations are given in terms of streamlines, isotherms,
isomicrorotations, isoconcentraions, local Began number, total entropy, local and mean Nusselt
numbers. The data illustrates that variations of ratio of the average Nusselt number to the average
Nusselt of pure fluid Nu+

m is a decreasing function of Ha and ϕ, while e+ is an increasing function
of Ha and ϕ parameters of hybrid nanofluid.
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1 Introduction

Hybrid nanofluids represent another class of nanofluids [17, 27], which can be formed
from diverse nanoparticles either in a mixture or in a composite structure distributed in
a regular fluid. Hybrid nanofluids can give us working fluids with enhanced chemical
and thermophysical features according to a trade-off between the advantages and disad-
vantages of separated nanoparticles. In particular cases, the nanoparticles can synthesize
a nano-composite form in regular fluid, which lead to best thermophysical properties than
those predicted from every kind of nanoparticle or its mixture. Nowadays, a number of
empirical or numerical investigations have been concerned with hybrid nanofluid as a new
technology concept.

Suresh et al. [30] have been measured both the viscosity and thermal conductivity of
the Al2O3-Cu water hybrid nanofluid with volume fractions from 0.1% to 2%. The data
elucidated that both parameters of the hybrid nanofluid enhance with the solid volume
nanoparticles concentrations. A numerical investigation has been examined heat transfer
in an annulus between two confocal elliptic cylinders filled with Cu-Al2O3 water hybrid
nanofluid by Tayebi and Chamkha [32]. Takabi and Salehi [31] numerically addressed
natural convection within the laminar regime in a corrugated enclosure in the presence
of a discrete heat source on the bottom side wall filled by Al2O3-Cu water combined
nanofluid. The authors noticed an improvement of the heat transfer rate of Al2O3-Cu
water hybrid nanofluid compared to those of Al2O3 water nanofluid when they used the
same volume concentration. Devi and Devi [5] exhibited 3-dimensional hybrid nanofluid
flow due to a stretching sheet with the impacts of Lorentz force and Newtonian heating
within the boundary layer. Sundar et al. [29] formed a MWCNT-Fe3O4 water hybrid
nanofluid, whereas a Cu-TiO2 water hybrid nanofluid has been synthesized by Madhesh
et al. [15]. A superb review of hybrid or not nanofluids can be obtained from the paper of
Sarkar et al. [28].

In another situation, due to the advancement of engineering expertise and industry,
entropy generation represents an appropriate solution to boost efficiency in industrial
operations. Bejan presented this concept by means of entropy generation minimization
(EGM) [3], which is known as the 2nd law analysis and thermodynamic optimization.
Mahdy [18] scrutinized the entropy generation for MHD non-Newtonian tangent hy-
perbolic nanofluid area adjacent to an accelerating stretched cylinder with variable wall
temperature. Entropy analysis of free convection in a split cavity with adiabatic vertical
isothermally cooled and horizontal side walls was explored numerically by Famouri and
Hooman [6]. They delineated that, as entropy production caused by fluid friction has
little effect to total entropy generation, the heat transfer irreversibility boosts with both
the Nusselt number and the nondimensional temperature difference. Rashidi et al. [26]
considered entropy generation in magneto-hydrodynamic with slip flow due to a rotating
porous disk. Entropy generation has been focused by many authors as Ilis et al. [8], Mahdy
et al. [19], Ahmed et al. [2], Marzougui et al. [21].

From the other side, natural convection investigation in an enclosure cavity with
the impact of a magnetic field is of essential significance in engineering applications
according to its ability to govern the fluid flow without physical contact. Of course, for an
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electrically conducting fluid flow, the forces of magnetohydrodynamic (MHD) be effec-
tive with the existence of an external magnetic field and the Lorentz force interacts with
the force of buoyancy in controlling the flow and temperature distributions. Numerical
simulation has been given by Ahmed [1] for the convective transport by triangular fins
inside an inclined trapezoidal non-Darcy porous cavity that is loaded by a nanofluid.
A number of serious contributions [9–12, 24] exhibited natural convection of nanofluids
flow inside porous enclosures saturated with a clean fluid as a medium for the heat transfer
due to variant boundary conditions. Laouira et al. [14] addressed heat transfer within
a horizontal channel with an open trapezoidal cavity associated with a heat source of
variable lengths.

The aspect of entropy generation for natural convection of non-Newtonian hybrid
nanofluid in a porous cavity has not been investigated well. Hence, in the present compre-
hensive numerical investigation, a numerical simulation of entropy generation for MHD
natural convection heat transfer of Al2O3-Cu water non-Newtonian hybrid nanofluid in an
enclosure porous square cavity is discussed. Heat and sink sources are situated partially
left and right sides of porous square cavity with length B, whereas the bottom and top
horizontal sides remain adiabatic. The originality of this study appears in the following
points:

1. Most of the available literature on this topic concerns the heat transfer enhance-
ment using the Newtonian nanofluids and ignores the non-Newtonian nanofluids
case, so this study aims to cover this point.

2. Using the suspensions having one more type of the nanoparticles is a modern
trend in the computational fluid dynamic field.

3. Examining of the irreversibility process within such kind of domains using the
finite differences method is important and interesting for the readers.

2 Mathematical modeling

Considered coordinates x and y are selected such that x gives the distance along the bot-
tom horizontal wall, whereas y gives the distance along the left vertical wall, respectively.
Heat and sink sources are located on a part of the left and right walls with length B. The
upper and bottom walls are adiabatic. The hybrid nanofluid used in the analysis is assumed
to be incompressible and laminar, and the base fluid (water) and the solid spherical
nanoparticles (Cu and Al2O3) are in thermal equilibrium. The thermophysical properties
of the base fluid and the nanoparticles are given in Table 1 [11]. The thermophysical
properties of the nanofluid are assumed constant except for the density variation, which
is determined based on the Boussinesq approximation. Under the above assumptions, the
conservation of mass, linear momentum and also conservation of energy equations are
given as [25]

∂u

∂x
+
∂v

∂y
= 0, (1)
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1

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
= − 1

ρhnf

∂P̃

∂x
+
µhnf + k∗

ρnf

(
1

ε

(
∂2u

∂X2
+
∂2u

∂Y 2

)
− u

K

)
+

k∗

ρhnf

∂Ñ

∂y
+
σhnfB

2
0

ερhnf
(v sinΦ cosΦ− u sin2 Φ), (2)

1

ε2

(
u
∂v

∂x
+ v

∂v

∂y

)
= − 1

ρhnf

∂P̃

∂y
+
µhnf + k∗

ρhnf

(
1

ε

(
∂2v

∂X2
+
∂2v

∂Y 2

)
− v

K

)
+

(ρβ)hnf
ρhnf

g(T − Tc)−
k∗

ρhnf

∂Ñ

∂x
+

(ρβ∗)hnf
ρhnf

g(C − Cc)

+
σhnfB

2
0

ερhnf

(
u sinΦ cosΦ− v cos2 Φ

)
, (3)

1

ε

(
u
∂Ñ

∂x
+ v

∂Ñ

∂y

)
=

γhnf
ρhnf

(
∂2Ñ

∂x2
+
∂2Ñ

∂y2

)
− 2k∗

ρhnf
Ñ +

k∗

ερhnf

(
∂v

∂x
− ∂u

∂y

)
, (4)

u
∂T

∂x
+ v

∂T

∂y
= αhnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Q0

(ρcp)hnf
(T − Tc)

+
ε(ρc)p
(ρc)f

(
D(∇C · ∇T ) + D̃

Tc
(∇T · ∇T )

)
, (5)

1

ε

(
u
∂C

∂x
+ v

∂C

∂y

)
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
+
D̃

Tc

(
∂2T

∂x2
+
∂2T

∂y2

)
− kc(C − Cc). (6)

Through Eqs. (1)–(6), x and y are Cartesian coordinates measured along the horizontal
and vertical walls of the cavity, respectively. u and v are the velocity components along
the x- and y-axes, respectively. T is the fluid temperature, C stands for the concentration,
Ñ is the micro-rotation velocity, P is the fluid pressure, g is the gravity acceleration, K is
the permeability, and Q0 is the volumetric heat generation/absorption rate. Additionally,
γhnf = (µhnf + k∗/2) illustrates the spin gradient viscosity,  and k∗ indicate the micro-
inertia density and vortex viscosity, respectively.

The boundary conditions imposed on the flow field are taken as

u = v = Ñ = 0, 0 6 x, y 6 H,

∂T

∂x
=
∂C

∂x
= 0, (D − 0.5B)H 6 y 6 (D + 0.5B )H, and

T = Th, D
∂C

∂x
+

(
D̃

Tc

)
∂T

∂x
= 0, otherwise at walls, x = 0, H,

T = Tc, (D − 0.5B)H 6 x 6 (D + 0.5B)H, and

T = Th, D
∂C

∂y
+

(
D̃

Tc

)
∂T

∂y
= 0, otherwise at walls, y = 0, H.

(7)

As previously mentioned, although some literatures studied the determination of ther-
mophysical properties, the classical models are not certain for nanofluids. Of course,
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Figure 1. Sketch of the geometry and coordinate system of the cavity.

Table 1. Thermophysical properties of H2O, Cu and Al2O3 [18, 24].

Property H2O Cu Al2O3

ρ (Kg m−3) 997.1 8933 3970
Cp (J Kg−1 K−1) 4179 385 765
k (W m−1K−1) 0.613 401 40
β · 105 (K−1) 21 1.67 0.85
σ (S m−1) 0.05 5.96 · 107 10−10

experimental results allow us to select an appropriate model for a specified property. The
effective properties of the Al2O3-water and Cu-water nanofluid are defined as follows [9]:

ρnf = (1− ϕ)ρbf + ϕρp, (8)

Equation (8) was originally introduced for determining density of nanofluid and then
widely employed in [9]. So, the density of hybrid nanofluid is specified by

ρhnf = ϕAl2O3ρAl2O3 + ϕCuρCu + (1− ϕ)ρbf ,

where ϕ is the overall volume concentration of two different types of nanoparticles dis-
persed in hybrid nanofluid and is calculated as ϕ = ϕAl2O3

+ϕCu, and the heat capacitance
of the nanofluid given is by Khanafer et al. [12] as

(ρCp)nf = ϕ(ρCp)p + (1− ϕ)(ρCp)bf ,

According to Eq. (8), heat capacity of hybrid nanofluid can be determined by follows:

(ρCp)hnf = ϕAl2O3(ρCp)Al2O3 + ϕCu(ρCp)Cu + (1− ϕ)(ρCp)bf .

The thermal expansion factor of the nanofluid can be determined by

(ρβ)nf = ϕ(ρβ)p + (1− ϕ)(ρβ)bf , (9)

Nonlinear Anal. Model. Control, 26(6):1123–1143, 2021
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where βbf and βp are the coefficients of thermal expansion of the fluid and of the solid
fractions, respectively. Hence, for hybrid nanofluid, thermal expansion can be defined as
follows:

(ρβ)hnf = ϕAl2O3
(ρβ)Al2O3

+ ϕCu(ρβ)Cu + (1− ϕ)(ρβ)bf .

Thermal diffusivity of the nanofluid, αnf , is given by Oztop and Abu-Nada [24] as

αnf =
knf

(ρcp)nf
,

In Eq. (9), knf is the thermal conductivity of the nanofluid, which for spherical nanopar-
ticles referring to the Maxwell–Garnetts model [22], is

knf
kbf

=
(kp + 2kbf)− 2ϕ(kbf − kp)
(kp + 2kbf) + ϕ(kbf − kp)

. (10)

Thus, thermal diffusivity of the hybrid nanofluid, αhnf , can be defined as

αhnf =
khnf

(ρCp)hnf
.

If the thermal conductivity of hybrid nanofluid is defined according to Maxwell model,
Eq. (10) must be employed for this objective:

khnf
kbf

=
( (ϕ1k1+ϕ2k2)

ϕ + 2kbf + 2(ϕ1k1 + ϕ2k2)− 2ϕkbf)

( (ϕ1k1+ϕ2k2)
ϕ + 2kbf − (ϕ1k1 + ϕ2k2) + ϕkbf)

.

Note (Al2O3 ≡ ϕ1,Cu ≡ ϕ2), the effective dynamic viscosity of the nanofluid based on
the Brinkman model [4] is expressed as

µnf =
µbf

(1− ϕ)2.5
,

where µbf is the viscosity of the fluid fraction, then the effective dynamic viscosity of the
hybrid nanofluid is

µhnf =
µbf

(1− ϕ1)5/2(1− ϕ2)5/2
,

and the effective electrical conductivity of nanofluid was employed by Maxwell [22] as

σnf
σbf

= 1 +
3(

σp

σbf
− 1)ϕ

(
σp

σbf
+ 2)− (

σp

σbf
− 1)ϕ

,

and the effective electrical conductivity of hybrid nanofluid is

σhnf
σbf

= 1 +
3(ϕ1σ1+ϕ2σ2

σbf
− (ϕ1 + ϕ2))

(ϕ1σ1+ϕ2σ2

ϕσbf
+ 2)− (ϕ1σ1+ϕ2σ2

σbf
− (ϕ1 + ϕ2))

.
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Introducing the following dimensionless set

X =
x

H
, Y =

y

H
, U =

uH

αf
, V =

vH

αf
, P =

P̃H2

ρfα2
f

,

θ =
T − Tc
∆T

, φ =
C − Cc
∆C

, N =
H2

αf
Ñ , ∆T = Th − Tc,

∆C = Ch − Cc, Q =
Q0H

2

(ρCp)fαf
, T0 =

Th + Tc
2

, χ =
H2


,

D =
d

H
, B =

b

H
, Nt =

δ∆TD̃

Tcαf
, Nb =

δD∆C

αf

(11)

into Eqs. (1)–(7) yields the following dimensionless equations:

∂U

∂X
+
∂V

∂Y
= 0,

1

ε2
ρhnf
ρf

(
U
∂U

∂X
+ V

∂U

∂Y

)
= −ρhnf

ρh

∂P

∂X
− Pr

Da

(
µhnf

µf
+ k

)
U

+
σhnf
εσf

Ha2Pr
(
V sinΦ cosΦ− U sin2 Φ

)
+

Pr

ε

(
µhnf

µf
+ k

)(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ kPr

∂N

∂Y
,

1

ε2

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+

Pr

ε

ρf
ρnf

(
µhnf

µf
+ k

)(
∂2V

∂X2
+
∂2V

∂Y 2

)
− kPr ρf

ρhnf

∂N

∂X
− Pr

Da

ρf
ρhnf

(
µhnf

µf
+ k

)
V

+ PrRa
(ρβ)hnf
ρhnfβf

θ + Racφ

+
ρf
ρhnf

σhnf
εσf

Ha2Pr
(
U sinΦ cosΦ− V cos2 Φ

)
,

ρhnf
ερf

(
U
∂N

∂X
+ V

∂N

∂Y

)
= Pr

(
µhnf

µf
+
k

2

)(
∂2N

∂X2
+
∂2N

∂Y 2

)
− kPrχ

(
2N − 1

ε

(
∂V

∂X
− ∂U

∂Y

))
,

U
∂θ

∂X
+ V

∂θ

∂Y
=
αhnf

αf

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+∇θ(Nb∇φ+Nt∇θ)

+
(ρcp)f

(ρ cp)hnf
Qθ,

1

ε

(
U
∂φ

∂X
+ V

∂φ

∂Y

)
=

Pr

Sc

(
∂2g(φ+NCθ)

∂X2
+
∂2(φ+NCθ)

∂Y 2

)
−KrPrφ,
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wherein

Pr =
νf
αf
, Ra =

gβfH
3∆T

νfαf
, Rac =

(ρβ∗)f
ρf

gH3∆C

α2
f

, Ha = B0H

√
σf
µf
,

Sc =
νf
D
, NC =

D̃

D

∆T

∆C
, k =

k∗

µf
, Da =

K

H2
, Kr =

kcH
2

νf
.

The boundary conditions now take the following formula:

U = V = N = 0 0 6 X, y 6 1,

∂θ

∂X
=

∂φ

∂X
= 0, D − 0.5B 6 Y 6 D + 0.5B, and

θ = 1.0,
∂φ

∂X
+

(
Nt

Nb

)
∂θ

∂X
= 0, otherwise at walls, X = 0, 1,

θ = 0, D − 0.5B 6 X 6 D + 0.5B, and

θ = 1.0,
∂φ

∂Y
+

(
Nt

Nb

)
∂θ

∂Y
= 0, otherwise at walls, Y = 0, 1.

The local Nusselt numbers are given by

NuX = −khnf
kf

(
∂θ

∂X

)
X=0,1

and NuY = −khnf
kf

(
∂θ

∂Y

)
Y=0,1

,

and the average Nusselt numbers are given by

(Num)X=0,1 =
2

1−B

0.5−0.5B∫
0

NuX=0,1 dX,
2

1−B

1∫
0.5+0.5B

NuX=0,1 dX,

(Num)Y=0,1 =
2

1−B

0.5−0.5B∫
0

NuY=0,1 dY ,
2

1−B

1∫
0.5+0.5B

NuY=0,1 dY ,

Num =
(Num)Y=0,1 + (Num)X=0,1

8
.

3 Entropy generation analysis

Due to Mahmud and Fraser [20], Magherbi et al. [16] and local thermodynamic equilib-
rium of linear transport theory, the nondimensional total local entropy generation can be
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expressed by implementing the dimensionless variables appeared in Eq. (11) as

S = S̃
H2T 2

0

kf∆T 2

=
knf
kf

{(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2}
+ ϕ̃1

(
µnf

µf
+K

){
1

Da

(
U2+V 2

)
+ 2

{(
∂U

∂X

)2
+

(
∂V

∂Y

)2}
+

(
∂V

∂X
+
∂U

∂Y

)2}
+ ϕ̃2

{(
∂φ

∂X

)2
+

(
∂φ

∂Y

)2}
+ ϕ̃3

{
∂φ

∂X

∂θ

∂X
+
∂φ

∂Y

∂θ

∂Y

}
+ ϕ̃1

σnf
σf

Ha2Re2Pr2(U sinΦ− V cosΦ)2

= Sh + Sv + Sφ + Sφ,θ + Sj .

Here the irreversibility rations ϕ̃1, ϕ̃2 and ϕ̃3 can be expressed by

ϕ1 =
µfT0
kf

(
αf

∆T H

)2
, ϕ2 =

RD

C0kf

(
T0∆C

∆T

)2
, ϕ3 = RD

T0∆C

kf∆T
.

Here the local Bejan number is defined as in Oueslati et al. [23]:

Be =
Sh + Sφ + Sφ,θ

S
.

For obtaining the impact of nanoparticles, magnetic field and difference of temperature
on the average Nusselt number, total entropy generation and Began number, the following
ratio of the average Nusselt number to the average Nusselt to the pure fluid Nu+

m, ratio of
the average Nusselt number to the average Nusselt number to a horizontal magnetic field
Nu++

m , ratio of the entropy generation to the entropy generation to the pure fluid S+, ratio
of the entropy generation to the entropy generation to a horizontal magnetic field S++,
ratio of the average Began number to the average Began number to the pure fluid Be+,
ratio of the average Began number to the average Began number to a horizontal magnetic
field Be++, ratio of the entropy generation ratio to the average Nusselt ratio to the pure
fluid e+, ratio of the entropy generation ratio to the average Nusselt ratio to a horizontal
magnetic field e++ are stated as

Nu+
m =

Num
(Num)ϕ=0

and Nu++
m =

Num
(Num)Φ=00

,

S+ =
S

(S)ϕ=0
and S++ =

S

(S)Φ=00
,

Be+ =
Be

(Be)ϕ=0
and Be++ =

Be

(Be)Φ=00
,

e+ =
S+

Nu+
m

and e++ =
S++

Nu++
m

.
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4 Numerical technique and validation

The governing equations are solved numerically using FDM (finite difference method).
The first point in the solution methodology is writing the previous system in the following
general form:

U
∂Ω

∂X
+ V

∂Ω

∂Y
= ΓΩ

[
∂2Ω

∂X2
+
∂2Ω

∂Y 2

]
+ SΩ .

Here it should be mentioned that SΩ refers to the source terms (including the pressure gra-
dients and buoyancy terms in the momentum equations). The central differences scheme
is used to estimate the first and second derivatives as

∂Ω

∂X
=
Ωi+1, j −Ωi−1, j

Xi+1 −Xi−1
,

∂Ω

∂Y
=
Ωi, j+1 −Ωi, j−1

Yj+1 − Yj−1
, (12)

∂2Ω

∂X2
+
∂2Ω

∂Y 2
=
Ωi+1, j − 2Ωi,j +Ωi−1, j

(∆X)2
+
Ωi, j−1 − 2Ωi,j +Ωi, j+1

(∆Y )2
. (13)

In Eqs. (12)–(13), Ω refers to the dependent variables U , V , N and θ and ∆X =
Xi+1 −Xi, ∆Y = Yj+1 − Yj . Using the previous forms, the following algebraic system
is obtained:

ApΩi,j = AEΩi+1, j +AWΩi−1, j +ANΩi, j+1 +ASΩi, j−1 + Sp. (14)

The algebraic system (14) is solved using SUR (successive under relaxation method) with
the relaxation parameter α∗ = 0.8. The suitable grid size for all computations is found to
be 81 × 81. This section is due to the grid independency study, which is performed and
presented in Table 2. Additionally, a validation test is performed and presented in Table 3.
This test includes comparisons of the average Nusselt number with the results earned
by Kim et al. [13] for variations of the Rayleigh number Ra . The table disclosed that
the relative error in the results is ranging between 2.26% and −3.86%, which confirm
the accuracy of the present results. Other comparisons are performed and presented in
Table 4. In this table, maximum values of the stream functionψmax and temperature θmax

for various values of the Hartmann number Ha and magnetic field inclination angle Φ are
compared with those of Grosan et al. [7]. The results indicate to a very good agreement
between the results is found.

Table 2. Grid independency study at Ra = 105,
Da = 10−3, Nb = 0.4, Nt = 0.3, ϕ = 5%,
B = D = 0.5, Φ = 45◦, Ha = 10.

Grid size Num

31× 31 1.53745
41× 41 1.63117
61× 61 1.67995

Grid size Num

81× 81 1.67429
101× 101 1.71653
121× 121 1.71687
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Table 3. Comparison of the surface-averaged Nusselt number
at the side wall when Pr = 0.71.

Ra Present results Kim et al. [13] Difference (%)
103 1.6847 1.6220 −3.86
104 1.6966 1.6905 −0.36
105 2.0212 2.0679 2.26

Table 4. Comparisons of the maximum values of the stream
function and temperature for various values of Ha and Φ at
Ra = 103.

Ha Φ Grosan et al. [7] Present results
ψmax θmax ψmax θmax

0 0 3.3560 0.0985 3.5338 0.09735
1 0 2.3451 0.1131 2.4677 0.11189
1 π/6 2.4665 0.1114 2.5867 0.11026
1 π/4 2.6236 0.1095 2.7473 0.10832
1 π/2 3.1418 0.1048 3.2759 0.10343

5 Results and discussion

At this point of the analysis, a comprehensive set of graphical simulation computations
through Figs. 2–10 are delineated to clarify the impacts of different controlling phys-
ical parameters on the hydrodynamic and thermal behavior of non-Newtonain hybrid
nanofluid (Al2O3-Cu) in an enclosure porous square cavity with impact of Lorentz force.
Streamlines, isomicrorotations, isotherms, isoconcentraions, local Began number, local
and average Nusselt numbers represent the visualization instruments utilized for the nu-
merical computations. Given results are calculated for wide ranges of the controlling
parameters, that is, 0.2 6 B 6 0.8, 0.1 6 k 6 0.4, −8 6 Q 6 8, 0.2 6 ε 6 0.8,
0.1 6 Nt 6 5.0, 0.005 6 Nb 6 0.6, 10−7 6 Da 6 10−2 and 0 6 Ha 6 200, where we
chose that D = 0.5, Kr = 0.05, k = 1.0, Sc = 1.0, NC = 1.0, Da = 10−3 Ra = 103,
Rac = 10, Nb = 0.4, Nt = 0.3, ε = 0.5, Φ = π/4, B = 0.5, ϕAl2O3

= ϕCu = 0.025 and
Q = 1 to be fixed parameters when we search the effect of any of governing parameters.

Figure 2 shows contours of the streamlines, isotherms, angular velocity, isoconcentra-
tion and local Began number for variations of the vortex viscosity parameter (0.1 6 k 6
0.4). The figure discloses that two symmetrical eddies are formulated within the enclosure
for all values of k. In addition, the increase in k results in a weakness in the nanofluid
flows. The isotherms show thermal zones near the heated parts, and the temperatures
distribute in the entire domain indicating a decrease in the thermal boundary layer as k is
increased. Further, because of the source terms in the angular velocity equation, contours
of the angular velocity follow the behavior of the streamlines. The angular velocity dis-
plays symmetrical features within the domain accompanied by an enhancement in the
angular velocity as the vortex parameter is increased. The isoconcentrations show that the
negative values of the nanoparticles are occurred near the heated parts, while the positive
values near the cold parts. In all cases, variations of k have no a significant effects on
distributions or values of the concentration. Contours of the local Began number indicate
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to the local irreversibilities due to the thermal gradients are smalls near the adiabatic parts
and at the center of the flow domain, while the local irreversibilities due to the thermal
gradients are dominance in the remaining area. All these mentioned behaviors are due to
the dynamic viscosity of the mixture, which increases as k is increased.

Figure 3 depicts features of the streamlines, isotherms, isomicrorotation, isoconcen-
tration and local Began number for variations of the Darcy number at ϕ = 0.05, k =
0.5, B = 0.5, Φ = 45◦, Q = 1, ε = 0.5, Nb = 0.4, Nt = 0.3. It is noted that
symmetrical features are earned for both the streamlines and the angular velocity. Ad-
ditionally, deactivation in the nanofluid motion, as well as suppression in the angular
velocity, are obtained as Da is decreased. This behavior is explained with the permeability
of the porous medium that decreases as Da is decreased, which slowdown the flows.
The isotherms and the isoconcentration show a decrease in the thermal and concentration
boundary layers as Da decreases indicating a low heat transfer in these cases. Contours of
the local Began number demonstrate that the local irreversibilities due to gradients of the
temperature are increased as Da decreases. Constantly decreasing the number of Darcy
produces that the temperature gradients irreversibilities dominate on the entire area.

Figure 4 exhibits contours of the streamlines, isotherms, isomicrorotation, isocon-
centration and local Began number for variations of lengths of the heated parts B at
ϕ = 0.05, k = 0.5, Φ = 45◦, Q = 1, Da = 10−3, ε = 0.5, Nb = 0.4, Nt = 0.3.
Here it should be mentioned that the increase in B leads to the increase in the cold
and adiabatic parts. Features of the streamlines and the angular velocity show that the
increase in B to 0.6 enhances the flow of the mixture, while more increase in B causes
a weakness in the nanofluid flow. In addition, large thermal zones are obtained near
the domain boundaries at small values of B. However, the increase in B causes that
a large cold zone is formulated nears the horizontal walls. The isoconcentrations exhibit
that there are no any negative values of the concentration at small values of B. On the
contrary, the negative values of the concentration are increased as B is increased. Finally,
the increase in B causes that the local irreversibilities due to the temperature gradients
increase, particularly, near the boundaries, while the local irreversibilities due to the fluid
friction are limited near the adiabatic parts and at the center of the enclosure.

Figures 5(a) and 5(b) illustrate impacts of lengths of the active parts B on the local
Nusselt number Nus along the horizontal walls and the ratio of the entropy generation
ratio to the average Nusselt ratio at a horizontal magnetic field e++ at k = 0.5, Φ = 45◦,
Q = 1, Da = 10−3, ε = 0.5, Nb = 0.4, Nt = 0.3. It is remarkable that the increase
in B enhances gradients of the temperature, and hence, the rate of the heat transfer is
enhanced. In addition, the increase inB enhances the ratio of the entropy generation ratio
to the average Nusselt ratio at a horizontal magnetic field e++ due to the increase in the
thermal boundary layers.

Figures 6(a) and 6(b) display profiles ratio of the average Nusselt number to the
average Nusselt number at a horizontal magnetic field Nu++

m and ratio of the entropy
generation ratio to the average Nusselt ratio at a horizontal magnetic field e++ under
effects of the vortex viscosity k. A clear reduction in values of Nu++

m is obtained as
k is increased due to the increase in the overall dynamic viscosity of the mixture. On the
contrary, value of e++ is supported as k is grown due to the inverse relation between e++

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Entropy generation for MHD natural convection in enclosure 1135

Figure 2: Contours of streamlines, isotherms, isomicrorotation, isoconcentration
and local Began number (from top to bottom) for variations of the vortex-viscosity
parameter k=0.1, 0.2, 0.3 and 0.4 (from left to right)

19

Figure 2. Contours of streamlines, isotherms, isomicrorotation, isoconcentration and local Began number (from
top to bottom) for variations of the vortex-viscosity parameter k = 0.1, 0.2, 0.3 and 0.4 (from left to right).
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Figure 3: Contours of streamlines, isotherms, isomicrorotation, isoconcentration
and local Began number (from top to bottom) for variations of the Darcy number
Da=10−4, 10−5, 10−6 and 10−7 (from left to right)

20

Figure 3. Contours of streamlines, isotherms, isomicrorotation, isoconcentration and local Began number (from
top to bottom) for variations of the Darcy number Da = 10−4, 10−5, 10−6 and 10−7 (from left to right).
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Figure 4: Contours of streamlines, isotherms, isomicrorotation, isoconcentration
and local Began number (from top to bottom) for variations of lengths of the
active parts B = 0.2, 0.4, 0.6 and 0.8 (from left to right)

21

Figure 4. Contours of streamlines, isotherms, isomicrorotation, isoconcentration and local Began number (from
top to bottom) for variations of lengths of the active parts B = 0.2, 0.4, 0.6 and 0.8 (from left to right).
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and Nu++
m . The results also indicated that value of Nu++

m takes its minimum in case of
a horizontal magnetic field (Φ = 0, 180◦, 360◦), while e++ takes the opposite features.

Figures 7(a), 7(b) and 8(a) expose profiles of ratio of the average Nusselt number to the
average Nusselt at the pure fluid Nu+

m, ratio of the average Nusselt number to the average
Nusselt number at a horizontal magnetic field Nu++

m and ratio of the entropy generation
ratio to the average Nusselt ratio at a horizontal magnetic field e++ for variations of heat
generation/absorption parameter Q. It is noteworthy that Nu+

m is enhanced as Q is grown
due to the increase in the temperature differences within the geometry. However, Nu++

m

is significantly reduced as Q increases, also, as mentioned previously, because of the
inverse relation between e++ and Nu++

m . Figure 8(a) shows a clear support in values of
e++ as Q is enhanced. The physical interpretation of this behavior is due to the extra
heat generation in the flow domain as Q is increased, and hence, both the temperature
differences and the buoyancy force are augmented resulting in an increase in e++.

Impacts of the nanofluid parameters (Nt and Nb) on ratio of the average Nusselt
number to the average Nusselt at the pure fluid Nu+

m and ratio of the entropy generation
ratio to the average Nusselt ratio at the pure fluid e+ are illustrated in Figs. 8(b), 9(a) and
9(b). The results revealed that Nu+

m is diminished as the thermophores parameter Nt is
increased, while the Brownian motion parameter Nb boosts values of Nu+

m. Like effects
of Nt on Nu+

m, variations of Nt reduce values of e+.
Figures 10(a) and 10(b) present profiles of ratio of the average Nusselt number to the

average Nusselt at the pure fluid Nu+
m under effects of the Hartmann number Ha and ratio

of the entropy generation ratio to the average Nusselt ratio at the pure fluid e+ for different
types of the nanofluids (Cu-water, Al2O3-water and hybrid nanofluid), respectively. It is
found that Nu+

m represents a decreasing function of Ha and ϕ parameters. In last, the
results explored that dispersing Al2O3 solid nanoparticles in the base fluid boosts values
of e+, whilst Al2O3-Cu nanoparticles give high values of e+ compared with classical
nanofluids. Physically, dipping the hybrid nanoparticles within the non-Newtonian base
fluid enhances the overall thermal conductivity of the mixture, and consequently, values
of e+ are enhanced.

(a) (b)

Figure 5. Profiles of (a) Nux and (b) e++ for lengths of the active parts B.
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(a) (b)

Figure 6. Profiles of (a) Nu++
m and (b) e++ for the vortex viscosity k.

(a) (b)

Figure 7. Profiles of (a) Nu+
m and (b) Nu++

m for the heat generation Q.

(a) (b)

Figure 8. Profiles of (a) Nu+
m for thermophoresis parameter Nt ; (b) e++

m for the heat generation parameter Q.
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(a) (b)

Figure 9. Profiles of (a) Nu+
m for the Brownian parameter Nb and (b) e+ for thermophoresis parameter Nt .

(a) (b)

Figure 10. Profiles (a) Nu+
m for the Hartmann number Ha and (b) e+ for the nanoparticles.

6 Conclusion

Numerical survey for the micropolar magnetic hybrid nanofluids flows within activated-
walls enclosures filled by a porous medium was carried out. The entropy of the system
was computed for wide variations of the governing parameter. Effects of an inclined
electromagnetic force, heat generation/absorption and chemical reaction on features of the
flows, angular velocity, heat and mass characteristics are examined. The worked mixture
is consisting of water as a base fluid and copper as well as alumina as nanoparticles. The
following outcomes are pointed out:

(i) An increase in the vortex viscosity enhances the overall dynamic viscosity, and
hence, the flow and ratio of the average Nusselt number to the average Nusselt
number at a horizontal magnetic field are diminished.

(ii) The decrease in the Darcy number decelerates the hybrid nanofluids motion, while
the irreversibilities due to the thermal gradients are supported.
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(iii) The heated zones within the domain are reduced as lengths of the active parts are
grown, while rate of the heat transfer is supported.

(iv) Values of ratio of the average Nusselt number to the average Nusselt at the pure
fluid Nu+

m and ratio of the entropy generation ratio to the average Nusselt ratio
to a horizontal magnetic field e++ are increased as the heat generation/absorption
parameter is increased.

(v) Ratio of the average Nusselt number to the average Nusselt to the pure fluid
Nu+

m is a decreasing function of the Hartmann number and nanoparticles volume
fraction.

(vi) Ratio of the entropy generation ratio to the average Nusselt ratio to the pure
fluid e+ takes its maximum in case of hybrid nanofluids comparing with classical
nanofluids.
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