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Abstract. In this paper, we study the multi-point boundary value problems for a new kind of
piecewise differential equations with left and right fractional derivatives and delay. In this system,
the state variables satisfy the different equations in different time intervals, and they interact with
each other through positive and negative delay. Some new results on the existence, no-existence
and multiplicity for the positive solutions of the boundary value problems are obtained by using
Guo–Krasnoselskii’s fixed point theorem and Leggett–Williams fixed point theorem. The results
for existence highlight the influence of perturbation parameters. Finally, an example is given out to
illustrate our main results.
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1 Introduction

In recent decades, fractional calculus has been widely used in various fields of science
and technology, and the theoretical research of fractional differential equations has also
received extensive attention, see [5–8, 10, 12–15, 17, 18, 22, 23, 25, 27, 30–34, 36] and the
references therein. And the differential equation with left and right fractional derivatives
have been studied extensively due to the wide application [2–4, 16, 24, 29]. In [2], the
following nonlocal boundary value problems of integro-differential equations involving
mixed left and right fractional derivatives and left and right fractional integrals are studied

cDα
1−
RLDβ

0+y(t) + λIp1−I
q
0+h

(
t, y(t)

)
= f

(
t, y(t)

)
, t ∈ J := [0, 1],

y(0) = y(ξ) = 0, y(1) = δy(µ), 0 < ξ < µ < 1,

where 1 < α 6 2, 0 < β 6 1 and p, q > 0, f, h : [0, 1] × R → R are given continuous
functions, and δ, λ, µ ∈ R are constants. At the same time, the differential equations
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with delay have many successful applications in the fields of communication engineering,
population control and so on; see [1, 9, 20, 21, 26, 28, 35].

Motivated by above works, we discuss the multi-point boundary value problems for
piecewise differential equations with left and right fractional derivatives and delay

c
tD

α
ξ−u(t) + f

(
t, u(t), u(t+ τ1)

)
= 0, t ∈ [0, ξ],

c
ξ+D

β
t u(t) + g

(
t, u(t), u(t− τ2)

)
= 0, t ∈ (ξ, 1],

u′(ξ−) = ρ2u
′(0) + a = −

(
ρ1u
′(ξ+) + b

)
,

u(0) = γ1u(ξ−), u(1) = γ2u(ξ+),

(1)

where c
tD

α
ξ− is the right Caputo fractional derivative, c

ξ+D
β
t is the left Caputo fractional

derivative, 1<α, β62. ξ∈(0, 1), u(ξ−)=limε→0− u(ξ+ε), u(ξ+)=limε→0+ u(ξ+ε).
γi, ρi, τi ∈ R and 0 < γi < 1, ρ1 > 0, 0 6 ρ2 < 1, a, b > 0, 0 6 τ1 6 1−ξ, 0 6 τ2 6 ξ.
f ∈ C([0, ξ]× R+ × R+,R+), g ∈ C([ξ, 1]× R+ × R+,R+).

In boundary value problem (1), the state variable u = u(t) satisfies the different equa-
tions in different time intervals, and they interact with each other through positive delay
τ1 and negative delay −τ2. The parameters a and b in the boundary conditions represent
the error in certain measurement. Some new results on the existence, no-existence and
multiplicity for the positive solutions of the boundary value problems are obtained by us-
ing Guo–Krasnoselskii’s fixed point theorem and Leggett–Williams fixed point theorem.
The results for existence highlight the influence of perturbation parameters. Finally, an
example is given out to illustrate our main results.

2 Preliminaries

For convenience of reading, in this section, we give out some definitions about the frac-
tional calculus and some lemmas.

Definition 1. (See [17].) Let α > 0, a < b ∈ R, and the left and right Riemann–Liouville
fractional integral of u : [a, b]→ R are defined as

a+I
α
t u(t) =

1

Γ(α)

t∫
a

(t− s)α−1
u(s) ds,

tI
α
b−u(t) =

1

Γ(α)

b∫
t

(s− t)α−1
u(s) ds,

respectively, for t ∈ [a, b].

Definition 2. (See [17]). Let α > 0, a < b ∈ R, and the left Caputo fractional derivative
and right Caputo fractional derivative of function u : [a, b]→ R are defined as

c
a+Dα

t u(t) =
1

Γ(n− α)

t∫
a

u(n)(s)

(t− s)α−n+1 ds,
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c
tD

α
b−u(t) =

(−1)
n

Γ(n− α)

b∫
t

u(n)(s)

(s− t)α−n+1 ds,

respectively, provided the right-sided integral converges, where t ∈ [a, b], n−1 < α < n,
n ∈ N.

Lemma 1. (See [17]). If α > 0, then

a+I
α
t

(
c
a+Dα

t u(t)
)

= u(t) + c0 + c1(t− a) + c2(t− a)
2

+ · · ·+ cn−1(t− a)
n−1

,

tI
α
b−

(
c
tD

α
b−u(t)

)
= u(t) + d0 + d1(b− t) + d2(b− t)2

+ · · ·+ dn−1(b− t)n−1
,

where ci, di ∈ R, i = 0, 1, . . . , n− 1, n ∈ N.

Lemma 2. (See [11].) Let E be a Banach space and P ⊂ E is a cone. Assume that Ω1,
Ω2 are bounded open subsets ofE with θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : P ∩(Ω2\Ω1)→
P be a completely continuous operator such that either

(i) ‖Tx‖ 6 ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ > ‖x‖, x ∈ P ∩ ∂Ω2, or
(ii) ‖Tx‖ > ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ 6 ‖x‖, x ∈ P ∩ ∂Ω2.

Then the operator T has at least one fixed point on P ∩ (Ω2 \Ω1).

Lemma 3. (See [19].) Assume P is a cone in Banach space, ω is a nonnegative continu-
ous concave functional on P , the constants 0 < d < q < c 6 r. Denote P r = {u ∈ P :
‖u‖ 6 r} and P (ω, q, c) = {u ∈ P : q 6 ω(u) and ‖u‖ 6 c}. Let T : P r → P r be
a completely continuous operator such that ω(u) 6 ‖u‖ for x ∈ P r such that

(i) {u ∈ P (ω, q, c)P : ω(u) > q} 6= ∅ and ω(Tu) > q for u ∈ P (ω, q, c);
(ii) ‖Tu‖ < d for u ∈ P d;

(iii) ω(Tu) > q for any u ∈ P (ω, q, r) and ‖Tu‖ > c.

Then T has at least three fixed points u1, u2, u3 ∈ P r such that ‖u1‖ < d, ω(u2) > q
and ‖u3‖ > d with ω(u3) < q.

Lemma 4. Let h ∈ C([0, ξ], R+), y ∈ C([ξ, 1],R+), then the boundary value problem
c
tD

α
ξ−u(t) + h(t) = 0, t ∈ [0, ξ],

c
ξ+D

β
t u(t) + y(t) = 0, t ∈ (ξ, 1],

u′(ξ−) = ρ2u
′(0) + a = −

(
ρ1u
′(ξ+) + b

)
,

u(0) = γ1u(ξ−), u(1) = γ2u(ξ+)

(2)

has a unique solution given by

u(t) =



∫ ξ
0
G1(t, s)h(s) ds+ 1

1−ρ2 ( ξγ1
1−γ1 + t)( ρ2

Γ(α−1)

∫ ξ
0
sα−2h(s) ds+ a),

t ∈ [0, ξ],∫ 1

ξ
G2(t, s)y(s) ds− 1

ρ1(1−ρ2) (γ2ξ−1
1−γ2 + t)( ρ2

Γ(α−1)

∫ ξ
0
sα−2h(s) ds+ a

+(1− ρ2)b
)
, t ∈ (ξ, 1],

(3)
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where

G1(t, s) =
1

Γ(α)

{
1

1−γ1 s
α−1, 0 6 s < t 6 ξ,

−(s− t)α−1
+ 1

1−γ1 s
α−1, 0 6 t 6 s 6 ξ;

(4)

G2(t, s) =
1

Γ(β)

{
1

1−γ2 (1− s)β−1 − (t− s)β−1
, ξ 6 s < t 6 1,

1
1−γ2 (1− s)β−1

, ξ 6 t 6 s 6 1.
(5)

Proof. From Lemma 1 the general solution of the linear differential equation ctD
α
ξ−u(t)+

h(t) = 0 is given by

u(t) = −tIαξ−h(t)− c0 − c1(ξ − t)

= − 1

Γ(α)

ξ∫
t

(s− t)α−1
h(s)ds− c0 − c1(ξ − t), t ∈ [0, ξ], (6)

and u′(t) = (1/Γ(α− 1))
∫ ξ
t

(s− t)α−2
h(s) ds+ c1.

The general solution of the linear differential equation c
ξ+D

β
t u(t) + y(t) = 0 is given

by

u(t) = −ξ+Iβt y(t)− c2 − c3t

= − 1

Γ(β)

t∫
ξ

(t− s)β−1
y(s) ds− c2 − c3t, t ∈ (ξ, 1], (7)

and u′(t) = −(1/Γ(β − 1))
∫ t
ξ

(t− s)β−2
y(s) ds− c3.

By the boundary value conditions u′(ξ−) = ρ2u
′(0) + a = −(ρ1u

′(ξ+) + b) we can
easily get that

c1 =
1

1− ρ2

(
ρ2

Γ(α− 1)

ξ∫
0

sα−2h(s) ds+ a

)
,

c3 =
1

ρ1(1− ρ2)

(
ρ2

Γ(α− 1)

ξ∫
0

sα−2h(s) ds+ a+ (1− ρ2)b

)
.

(8)

By (6)–(8) and the boundary conditions u(0) = γ1u(ξ−), u(1) = γ2u(ξ+) we can
also get that

c0 =
1

γ1 − 1

( ξ∫
0

1

Γ(α)
sα−1h(s) ds +

ξ

1− ρ2

( ξ∫
0

ρ2

Γ(α− 1)
sα−2h(s) ds + a

))
,
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c2 =
1

γ2 − 1

(
1

Γ(β)

1∫
ξ

(1− s)β−1y(s) ds

+
1− γ2ξ

ρ1(1− ρ2)

(
ρ2

Γ(α− 1)

ξ∫
0

sα−2h(s) ds + a + (1− ρ2)b

))
.

Thus, by substituting c0 and c1 into (6) we can get that for t ∈ [0, ξ],

u(t) =

ξ∫
0

G1(t, s)h(s) ds+
1

1− ρ2

(
ξγ1

1− γ1
+ t

)(
ρ2

Γ(α− 1)

ξ∫
0

sα−2h(s) ds+ a

)
,

and by substituting c2 and c3 into (7) we can get that for t ∈ (ξ, 1],

u(t) =

1∫
ξ

G2(t, s)y(s) ds

− 1

ρ1(1− ρ2)

(
γ2ξ − 1

1− γ2
+ t

)(
ρ2

Γ(α− 1)

ξ∫
0

sα−2h(s) ds+ a+ (1− ρ2)b

)
.

Hence, u(t) satisfies equation (3) if it is the solution of the boundary value problem (2)
and vice versa.

Lemma 5. Suppose Gi(t, s) (i = 1, 2) are defined by (4), (5), then Gi(t, s) has the
following properties, respectively:

(i) G1(t, s) is continuous and 06γ1G1(ξ, s)6G1(t, s)6G1(ξ, s), ∂G1(t, s)/∂t>0
on (t, s) ∈ [0, ξ]× [0, ξ];

(ii) G2(t, s) is continuous and 06γ2G2(ξ, s)6G2(t, s)6G2(ξ, s), ∂G2(t, s)/∂t60
on (t, s) ∈ [ξ, 1]× [ξ, 1].

Proof. (i) Obviously, G1(t, s) is continuous on (t, s) ∈ [0, ξ]× [0, ξ].
For 0 6 s < t 6 ξ,

G1(t, s) =
1

Γ(α)(1− γ1)
sα−1 > 0,

∂G1(t, s)

∂t
= 0,

and for 0 6 t 6 s 6 ξ,

G1(t, s) =
1

Γ(α)

(
1

1− γ1
sα−1 − (s− t)α−1

)
,

∂G1(t, s)

∂t
=

1

Γ(α− 1)
(s− t)α−2 > 0.

Hence, G1(t, s) is monotone increasing for any t ∈ [0, ξ], and

0 6 G1(0, s) 6 G1(t, s) 6 G1(s, s) = G1(ξ, s).
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Because G1(0, s) = (γ1/((1− γ1)Γ(α)))sα−1 = γ1G1(ξ, s), then

0 6 γ1G1(ξ, s) 6 G1(t, s) 6 G1(ξ, s),
∂G1(t, s)

∂t
> 0, (t, s) ∈ [0, ξ]× [0, ξ].

(ii) Similar to the proof of (i), we can prove that (ii) holds.

Let J = [0, 1], J0 = J \ {ξ}, E = PC(J,R) = {u : J → R : u is continuous in
J0. u(ξ+) and u(ξ−) exist, and u(ξ−) = u(ξ)}. Obviously, E is a Banach space with the
norm ‖u‖ = supt∈[0,1] |u(t)|.

Denote ‖u‖[0,ξ] = supt∈[0,ξ] |u(t)|, ‖u‖(ξ,1] = sup t ∈ (ξ, 1]|u(t)|, then ‖u‖ =
max{‖u‖[0,ξ], ‖u‖(ξ,1]}. Set

P =
{
u ∈ E: u(t) > 0, t ∈ [0, 1], inf

t∈[0,ξ]
u(t) > γ1‖u‖[0,ξ], inf

t∈(ξ,1]
u(t) > γ2‖u‖(ξ,1]

}
,

then P ⊂ E is a cone. Define a operator T : P → E by

Tu(t) =



∫ ξ
0
G1(t, s)f(s, u(s), u(s+ τ1)) ds+ 1

1−ρ2 ( ξγ1
1−γ1 + t)

×( ρ2
Γ(α−1)

∫ ξ
0
sα−2f(s, u(s), u(s+ τ1)) ds+ a), t ∈ [0, ξ],∫ 1

ξ
G2(t, s)g(s, u(s), u(s− τ2)) ds− 1

ρ1(1−ρ2) (γ2ξ−1
1−γ2 + t)

×( ρ2
Γ(α−1)

∫ ξ
0
sα−2f(s, u(s), u(s+ τ1))ds+ a+ (1− ρ2)b),

t ∈ (ξ, 1].

(9)

Obviously, u = u(t) is a positive solution of (1) if and only if u is a fixed point of the
operator T in P .

Lemma 6. The operator T : P → P is completely continuous.

Proof. By Lemma 5 we can easily obtain that T : P → P .
Let {un} ⊂ P , u ∈ P , and ‖un−u‖ → 0 as n→∞. There exists a constantM0 > 0

such that ‖un‖ 6M0 and ‖u‖ 6M0.
By the continuity of f(t, u, v), g(t, u, v) we have

lim
n→∞

(
f
(
t, un(t), un(t+ τ1)

)
− f

(
t, u(t), u(t+ τ1)

))
= 0,

lim
n→∞

(
g
(
t, un(t), un(t− τ2)

)
− g
(
t, u(t), u(t− τ2)

))
= 0,

and there is a constant M1 > 0, which makes sup(t,u,v)∈A |f(t, u, v)| 6 M1 and
sup(t,u,v)∈B

∣∣g(t, u, v)
∣∣ 6 M1, where A = [0, ξ] × [−M

0
,M

0
] × [−M

0
,M

0
], B =

[ξ, 1]× [−M
0
,M

0
]× [−M

0
,M

0
].

It follows from Lemma 5 and the Lebesgue dominated convergence theorem that
limn→∞ ‖Tun − Tu‖[0,ξ] = 0 and limn→∞ ‖Tun − Tu‖(ξ,1] = 0.

Thus, limn→∞ ‖Tun − Tu‖ = 0, which implies that the operator T is a continuous
operator.
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Let Ω ⊂ P be bounded. By the continuity of f , g, we can get that there is a constant
M2 > 0 such that |f(t, u, v)| 6 M2 for any t ∈ [0, ξ], u, v ∈ Ω, and |g(t, u, v)| 6 M2

for all t ∈ (ξ, 1], u, v ∈ Ω.
By Lemma 5 we can show that (Tu)′(t) > 0 for t ∈ [0, ξ] and (Tu)′(t) 6 0 for

t ∈ (ξ, 1]. Hence,

‖Tu‖[0,ξ] = Tu(ξ)

6
1

1− γ1

(
M2ξ

α

Γ(α+ 1)
+

ξ

1− ρ2

(
ρ2ξ

α−1M2

Γ(α)
+ a

))
,

‖Tu‖(ξ,1] = Tu(ξ+)

6
1

1− γ2

(
M2(1− ξ)β

Γ(β + 1)
+

1− ξ
ρ1(1− ρ2)

(
M2ρ2ξ

α−1

Γ(α)
+ a+ (1− ρ2)b

))
.

Consequently, T (Ω) is uniformly bounded.
Since G1(t, s) is continuous, it is uniformly continuous on (t, s) ∈ [0, ξ] × [0, ξ].

Hence, for any ε > 0, there exists a constant

0 < δ1 <
ε(1− ρ2)Γ(α)

2(M2ρ2ξα−1 + aΓ(α) + 1)

such that |G1(t1, s)−G1(t2, s)| < ε/(2M2) for all t1, t2, s ∈ [0, ξ] and |t1 − t2| < δ1.
Thus, for u ∈ Ω, t1, t2 ∈ [0, ξ], |t1 − t2| < δ1, we have

∣∣Tu(t2)− Tu(t1)
∣∣ 6M2

ξ∫
0

∣∣G1(t1, s)−G1(t2, s)
∣∣ds

+
1

1− ρ2

(
M2ρ2ξ

α−1

Γ(α)
+ a

)
|t1 − t2| < ε.

Similarly, due to that G2(t, s) is continuous on [ξ, 1] × [ξ, 1], for above mentioned
ε > 0, there exists a constant δ2 > 0 such that for t3, t4, s ∈ (ξ, 1], |t3 − t4| < δ2, we
have |Tu(t3)− Tu(t4)| < ε.

Hence, T (Ω) is equicontinuous on [0, ξ], (ξ, 1], respectively.
By Arzela–Ascoli theorem we know that operator T is a relative compactness op-

erator, and because operator T is a continuous operator, it is a completely continuous
operator.

3 Existence of the positive solutions

Denote

fϕ = lim inf
u+v→ϕ

inf
t∈[ξ−τ0,ξ]

f(t, u, v)

u+ v
, gϕ = lim inf

u+v→ϕ
inf

t∈(ξ,ξ+τ0]

g(t, u, v)

u+ v
,

fϕ = lim sup
u+v→ϕ

sup
t∈[0,ξ]

f(t, u, v)

u+ v
, gϕ = lim sup

u+v→ϕ
sup
t∈(ξ,1]

g(t, u, v)

u+ v
,

Nonlinear Anal. Model. Control, 26(6):1087–1105, 2021

https://doi.org/10.15388/namc.2021.26.24622


1094 Y. Zhang et al.

M1 =
(1− γ1)(1− ρ2)Γ(α+ 1)

ξα(2 + 2(α− 1)ρ2 + Γ(α+ 1))
,

M2 =
Γ(β + 1)(1− γ2)

2(1− ξ)β

(
1− (1− ξ)(1− γ1)

ρ1ξ(1− γ2)

)
,

M3 = min

{
M1

2
,
M1ρ1ξ(1− γ2)

2(1− ξ)(1− γ1)

}
, M4 =

Γ(β + 1)(1− γ2)

6(1− ξ)β
,

N1 =
(1− γ1)Γ(α+ 1)

γ1γ(ξα − (ξ − τ0)
α

)
, N2 =

(1− γ2)Γ(β + 1)

γ2γ((1− ξ)β − (1− ξ − τ0)
β
)
,

N = max{γN1, γN2},

where ϕ = 0+ or +∞ and γ = min{γ1, γ2}, 0 < τ0 6 min{τ1, τ2}.

Theorem 1. Assume that M2 > 0 and the following conditions hold:

(H1) f0 < M1 and g0 < M2;
(H2) f∞ > N1 or g∞ > N2.

Then there exist constants a0, b0 > 0 such that boundary value problem (1) has at least
one positive solution for the parameters a and b with 0 6 a 6 a0, 0 6 b 6 b0.

Proof. Because f0 < M1, there exists a constant r1 > 0 such that f(t, u, v) < M1(u+v)
for any t ∈ [0, ξ], u+ v ∈ (0, r1). Similarly, by g0 < M2 there is a constant r2 > 0 such
that g(t, u, v) < M2(u+ v) for any t ∈ (ξ, 1], u+ v ∈ (0, r2).

Let

r = min

{
r1

2
,
r2

2

}
, Ω1 =

{
u ∈ P : ‖u‖ 6 r

}
,

and a0 = ξα−1M1r, b0 = 2ξα−1M1r/Γ(α+ 1). For any u ∈ P∩∂Ω1, we have ‖u‖ = r.
When 0 6 a 6 a0, 0 6 b 6 b0, for any u ∈ P ∩∂Ω1, we have 0 6 u(s)+u(s+τ1) 6

2r 6 r1 for s ∈ [0, ξ], and

‖Tu‖[0,ξ] = Tu(ξ)

< M1

ξ∫
0

G1(ξ, s)
(
u(s) + u(s+ τ1)

)
ds

+
ξ

(1− ρ2)(1− γ1)

(
M1ρ2

Γ(α− 1)

ξ∫
0

sα−2
(
u(s) + u(s+ τ1)

)
ds+ a0

)

<
ξα(2 + 2(α− 1)ρ2) + Γ(α+ 1)

(1− γ1)(1− ρ2)Γ(α+ 1)
M1r = r = ‖u‖.

Similarly,

‖Tu‖(ξ,1] = Tu(ξ+) <

(
2(1− ξ)βM2

Γ(β + 1)(1− γ2)
+

(1− ξ)(1− γ1)

ρ1ξ(1− γ2)

)
r.
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In view of
2(1− ξ)βM2

Γ(β + 1)(1− γ2)
+

(1− ξ)(1− γ1)

ρ1ξ(1− γ2)
= 1,

we have ‖Tu‖(ξ,1] < r = ‖u‖.
Then for any u ∈ P ∩ ∂Ω1, we get ‖Tu‖ 6 ‖u‖.
If f∞ > N1, there exists a constant R1 > 0 such that f(t, u, v) > N1(u+ v) for any

t ∈ [ξ − τ0, ξ], u+ v ∈ [R1,+∞).
Let

R =
R1

γ
, Ω2 = {u ∈ P : ‖u‖ 6 R}.

For u ∈ P ∩ ∂Ω2, we have ‖u‖ = R, and

inf
t∈[ξ−τ0,ξ]

u(t) > inf
t∈[0,ξ]

u(t) > γ1‖u‖[0,ξ], inf
t∈(ξ, ξ+τ0]

u(t) > inf
t∈(ξ,1]

u(t) > γ2‖u‖(ξ,1].

Because ‖u‖ = max{‖u‖[0,ξ], ‖u‖(ξ,1]} for t ∈ (ξ − τ0, ξ] ⊂ [0, ξ], then t + τ1 ∈
(ξ + τ1 − τ0, ξ + τ1] ⊂ (ξ, 1], and

u(t) + u(t+ τ1) > inf
t∈(ξ−τ0,ξ]

u(t) + inf
t∈(ξ+τ1−τ0, ξ+τ1]

u(t)

> inf
t∈[0,ξ]

u(t) + inf
t∈(ξ,1]

u(t) > γ1‖u‖[0,ξ] + γ2‖u‖(ξ,1]

> γ
(
‖u‖[0,ξ] + ‖u‖(ξ,1]

)
> γ‖u‖.

So that
u(t) + u(t+ τ1) > γ‖u‖ = γR = R1, t ∈ (ξ − τ0, ξ]. (10)

By Lemma 5 and (9) we can easily get that

Tu(0) = γ1Tu(ξ) > γ1

ξ∫
0

G1(ξ, s)f
(
s, u(s), u(s+ τ1)

)
ds

> N1γ1

ξ∫
ξ−τ0

G1(ξ, s)
(
u(s) + u(s+ τ1)

)
ds > N1γ1γR

ξ∫
ξ−τ0

G1(ξ, s) ds

=
γ1γ(ξα − (ξ − τ0)

α
)

(1− γ1)Γ(α+ 1)
N1R = R = ‖u‖.

Then for u ∈ P ∩ ∂Ω2, we have ‖Tu‖ > ‖u‖.
According to Lemma 2, T has at least one fixed point in P ∩ (Ω2 \Ω1).
Similarly, if g∞>N2, there is a constant R2>0, which makes g(t, u, v)>N2(u+ v)

for any t ∈ (ξ, ξ + τ0], u+ v ∈ [R2,+∞).
Let

R0 =
R2

γ
, Ω3 =

{
u ∈ P : ‖u‖ 6 R0

}
.
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We have ‖u‖ = R0 for any u ∈ P ∩ ∂Ω3 and for t ∈ (ξ, ξ + τ0] ⊂ (ξ, 1], then
t− τ2 ∈ (ξ − τ2, ξ − (τ2 − τ0)] ⊂ [0, ξ]

u(t) + u(t− τ2) > inf
t∈(ξ,1]

u(t) + inf
t∈[0,ξ]

u(t) > γ1‖u‖[0,ξ] + γ2‖u‖(ξ,1]

> γ(‖u‖[0,ξ] + ‖u‖(ξ,1]) > γ‖u‖.
Thus

u(t) + u(t− τ2) > γ‖u‖ = γR0 = R2, t ∈ (ξ, ξ + τ0], (11)

and because

Tu(1) = γ2Tu(ξ+)

> γ2

1∫
ξ

G2(ξ, s)g
(
s, u(s), u(s− τ2)

)
ds > N2γ2γR0

ξ+τ0∫
ξ

G2(ξ, s) ds

=
γ2γ((1− ξ)β − (1− ξ − τ0)

β
)

(1− γ2)Γ(β + 1)
N2R0 = R0 = ‖u‖,

then for any u ∈ P ∩ ∂Ω3, we have ‖Tu‖ > ‖u‖.
According to Lemma 2, T has at least one fixed point in P ∩(Ω3 \Ω1), which implies

that boundary value problem (1) has at least one positive solution.

In particular, the following result holds by Theorem 1.

Corollary 1. Assume that the following conditions hold:

(H1′) f0 = g0 = 0;
(H2′) f∞ = +∞ or g∞ = +∞.

Then there exist constants a0, b0 > 0 such that boundary value problem (1) has at least
one positive solution for 0 6 a 6 a0, 0 6 b 6 b0.

Theorem 2. Assume that the following conditions (H3) and (H4) hold:

(H3) f∞ < M3 and g∞ < M4;
(H4) f0 > N1 or g0 > N2.

Then there exist constants a0, b0 > 0 such that boundary value problem (1) has at least
one positive solution for 0 6 a 6 a0, 0 6 b 6 b0.

Proof. Due to f∞ < M3, then there exists a constant λ1 > 0 such that f(t, u, v) <
M3(u+ v) for any t ∈ [0, ξ], u+ v ∈ [λ1,+∞).

Let
D =

{
(t, u, v): t ∈ [0, ξ], u > 0, v > 0

}
:= D1 ∪D2,

where D1 = {(t, u, v) ∈ D: u+ v 6 λ1}, D2 = {(t, u, v) ∈ D: u+ v > λ1}.
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Since f is bounded on D1, then there is L1 > 0, which makes |f(t, u, v)| 6 L1 for
any (t, u, v) ∈ D1. Hence, for all (t, u, v) ∈ D, we have∣∣f(t, u, v)

∣∣ < L1 +M3(u+ v).

Similarly, because g∞ < M4, then there is a constant λ2 > 0 such that g(t, u, v) <
M4(u+ v) for any t ∈ (ξ, 1], u+ v ∈ [λ2,+∞).

Let D̃ = {(t, u, v): u+ v 6 λ2, t ∈ [ξ, 1], u > 0, v > 0}, then there is L2 > 0 such
tat |g(t, u, v)| 6 L2 for any (t, u, v) ∈ D̃. Then for any t ∈ [ξ, 1] and u, v ∈ [0,+∞], we
have |g(t, u, v)| < L2 +M4(u+ v). Denote

λ = max

{
λ1, λ2,

2ξα(1 + (α− 1)ρ2)L1

Γ(α+ 1)(1− γ1)(1− ρ2)
,

6

(
(1− ξ)ρ2ξ

α−1

ρ1(1− ρ2)(1− γ2)Γ(α)
L1 +

(1− ξ)β

Γ(β + 1)(1− γ2)
L2

)}
,

Ω4 =
{
u ∈ P : ‖u‖ 6 λ

}
, a0 =

ξα−1M3λ

2
, b0 =

ξα−1M3λ

Γ(α+ 1)
.

For any u ∈ P ∩ ∂Ω4, which implies ‖u‖ = λ. Since

M3 = min

{
M1

2
,
M1ρ1ξ(1− γ2)

2(1− ξ)(1− γ1)

}
.

Then for 0 6 a 6 a0 and 0 6 b 6 b0, we have

‖Tu‖[0,ξ] = Tu(ξ)

6

(
ξα(2 + 2(α− 1)ρ2 + Γ(α+ 1))

(1− γ1)(1− ρ2)Γ(α+ 1)

)
M3λ+

ξα
(
1 + (α− 1)ρ2

)
L1

Γ(α+ 1)(1− γ1)(1− ρ2)

6

(
ξα(2 + 2(α− 1)ρ2 + Γ(α+ 1))

(1− γ1)(1− ρ2)Γ(α+ 1)

)
M1

2
λ+

ξα(1 + (α− 1)ρ2)L1

Γ(α+ 1)(1− γ1)(1− ρ2)

6
λ

2
+
λ

2
= λ = ‖u‖

and

‖Tu‖(ξ,1] = Tu(ξ+)

<
2(1− ξ)β

Γ(β + 1)(1− γ2)
M4λ+

(1− ξ)ξα−1(2 + 2(α− 1)ρ2 + Γ(α+ 1))

ρ1(1− γ2)(1− ρ2)Γ(α+ 1)
M3λ

+
(1− ξ)ρ2ξ

α−1

ρ1(1− ρ2)(1− γ2)Γ(α)
L1 +

(1− ξ)β

Γ(β + 1)(1− γ2)
L2

6
λ

3
+

(1− ξ)(1− γ1)

ρ1ξ(1− γ2)M1
· M1ρ1ξ(1− γ2)

2(1− ξ)(1− γ1)
λ+

λ

6

6
λ

3
+
λ

2
+
λ

6
= λ = ‖u‖.

Then for any u ∈ P ∩ ∂Ω4, we have ‖Tu‖ 6 ‖u‖.
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If f0 > N1, then there exists a constant λ1 > µ1 > 0 such that f(t, u, v) > N1(u+v)
for any t ∈ [ξ − τ0, ξ], u+ v ∈ (0, µ1].

Let
Ω5 =

{
u ∈ P : ‖u‖ 6 µ}, 0 < µ 6

µ1

2
.

Hence, for any u ∈ ∂Ω5, we have ‖u‖ = µ. It is similar to (10), for t ∈ (ξ − τ0, ξ],

γµ = γ‖u‖ 6 u(t) + u(t+ τ1) 6 2‖u‖ 6 µ1.

Then for any u ∈ P ∩ ∂Ω5,

Tu(0) = γ1Tu(ξ) > N1γ1γµ

ξ∫
ξ−τ0

G1(ξ, s) ds

=
γ1γ(ξα − (ξ − τ0)

α
)

(1− γ1)Γ(α+ 1)
N1µ = µ = ‖u‖.

Thus, for any u ∈ P ∩ ∂Ω5, there is ‖Tu‖ > ‖u‖. According to Lemma 2, T has at least
one fixed point in P ∩ (Ω4 \Ω5).

Similarly, if g0 > N2, there is a constant λ2 > µ2 > 0 that makes g(t, u, v) >
N2(u+ v) for any t ∈ (ξ, ξ + τ0], u+ v ∈ (0, µ2].

Let
Ω6 =

{
u ∈ P : ‖u‖ 6 µ}, 0 < µ 6

µ2

2
.

Then for any u ∈ P ∩ ∂Ω6, we have ‖u‖ = µ. Similar to (11), for t ∈ (ξ, ξ+ τ0], we
have

γµ = γ‖u‖ 6 u(t) + u(t− τ2) 6 2‖u‖ 6 µ2,

and for any u ∈ P ∩ ∂Ω6,

Tu(1) = γ2Tu(ξ+) > γ2N2γµ

ξ+τ0∫
ξ

G2(ξ, s) ds

=
γ2γ((1− ξ)β − (1− ξ − τ0)β)

(1− γ2)Γ(β + 1)
N2µ = µ = ‖u‖.

Thus, for any u ∈ P ∩ ∂Ω6, we have ‖Tu‖ > ‖u‖.
According to Lemma 2, T has at least one fixed point in P ∩(Ω4 \Ω6), which implies

that boundary value problem (1) has at least one positive solution.

In particular, the following result holds by Theorem 2.

Corollary 2. Assume that the following conditions hold:

(H3′) f∞ = g∞ = 0;
(H4′) f0 = +∞ or g0 = +∞.

Then there exist constants a0, b0 > 0 such that boundary value problem (1) has at least
one positive solution for 0 6 a 6 a0, 0 6 b 6 b0.
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Theorem 3. Assume f∞ > N1 holds. Then there exists a large enough positive constant
a1 > 0 such that boundary value problem (1) has no positive solution for a > a1.

Proof. If f∞ > N1, there exists a constant R > 0 such that for any t ∈ [ξ − τ0, ξ],
u + v ∈ [γR,+∞), we have f(t, u, v) > N1(u + v). Assume that for any large enough
a > 0, boundary value problem (1) has a positive solution u = u(t).

Let

a1 >
(1− ρ2)(1− γ1)R

ξγ1
, a > a1.

In fact, since Tu = u, we have

u(0) >
ξγ1a

(1− ρ2)(1− γ1)
> R.

Hence, ‖u‖ > R.
From (10) of Theorem 1 we have for any t ∈ (ξ − τ0, ξ],

u(t) + u(t+ τ1) > γ‖u‖ > γR.
Hence,

u(0) = γ1u(ξ)

> γ1

ξ∫
ξ−τ0

G1(ξ, s)f
(
s, u(s), u(s+ τ1)

)
ds+

ξγ1

(1− ρ2)(1− γ1)
a

>
γ1γ(ξα − (ξ − τ0)α)

(1− γ1)Γ(α+ 1)
N1‖u‖+

ξγ1

(1− ρ2)(1− γ1)
a1 > ‖u‖+R.

So ‖u‖ > ‖u‖ + R, which is a contradiction. Thus, there exists a constant a1 > 0
such that the boundary value problem (1) has no positive solution for a > a1.

Theorem 4. Assume g∞ > N2 holds. Then there exist large enough positive constants
a2, b1 > 0 such that boundary value problem (1) has no positive solution for a > a2,
b > b1.

Proof. Similarly, if g∞ > N2, there exists a constant R0 > 0 such that for any t ∈
(ξ, ξ + τ0], u + v ∈ [γR0,+∞), we have g(t, u, v) > N2(u + v). Assume that for
any large enough a > 0, b > 0, the boundary value problem (1) has a positive solution
u = u(t).

Let

a2 + (1− ρ2)b1 >
(1− ρ2)(1− γ2)ρ1R0

(1− ξ)γ2
, a > a2, b > b1.

Since Tu = u, we have

u(1) >
(1− ξ)γ2((a2 + (1− ρ2)b1)

ρ1(1− ρ2)(1− γ2)
> R0.

Hence, ‖u‖ > R0. Since for any t ∈ (ξ, ξ + τ0],

u(t) + u(t− τ2) > γ‖u‖ > γR0.
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Then

u(1) = γ2u(ξ+)

> γ2

ξ+τ0∫
ξ

G2(ξ, s)g
(
s, u(s), u(s− τ1)

)
ds+

(1−ξ)γ2

ρ1(1−ρ2)(1−γ2)

(
a2 + (1−ρ2)b1

)
>
γ2γ((1− ξ)β − (1− ξ − τ0)

β
)

(1− γ2)Γ(β + 1)
N2‖u‖+

(1−ξ)γ2

ρ1(1−ρ2)(1−γ2)

(
a2 + (1−ρ2)b1

)
> ‖u‖+R0.

So ‖u‖ > ‖u‖+ R0, which is a contradiction. Thus, there exist constants a2, b1 > 0
such that the boundary value problem (1) has no positive solution for a > a2, b > b1.

4 Multiplicity of the positive solutions

In this section, we consider the multiplicity of solutions for boundary value problem (1)
by using Lemma 3.

Let P c = {u ∈ P : ‖u‖ 6 c}. Define a nonnegative continuous concave functional
ω : P → [0,+∞) by ω(u) = inft∈[ξ−τ0, ξ+τ0] u(t). Obviously, ω(u) 6 ‖u‖ for any
u ∈ P . Set P (ω, q, c) = {u ∈ P : q 6 ω(u), ‖u‖ 6 c}.

Theorem 5. Suppose there are three constants d, q, c with 0 < d < q < c, where
min{M1c,M2c} > Nq > 0, and the following hypotheses hold:

(H5) f(t, u, v) < M1d for (t, u, v) ∈ [0, ξ] × [0, d] × [0, d]; g(t, u, v) < M2d for
(t, u, v) ∈ [ξ, 1]× [0, d]× [0, d];

(H6) f(t, u, v) > Nq for (t, u, v) ∈ [ξ − τ0, ξ]× [q, c]× [0, c]; g(t, u, v) > Nq for
(t, u, v) ∈ (ξ, ξ + τ0]× [q, c]× [0, c];

(H7) f(t, u, v) 6 M1c, g(t, u, v) 6 M2c for (t, u, v) ∈ [0, ξ] × [0, c] × [0, c];
g(t, u, v) 6M2c for (t, u, v) ∈ [ξ, 1]× [0, c]× [0, c].

Then there exist constants a0, b0 > 0 such that boundary value problem (1) has at least
three positive solutions u1, u2, u3 on P for 0 6 a 6 a0, 0 6 b 6 b0, where ‖u1‖ < d,
ω(u2) > q, ‖u3‖ > d, ω(u3) < q.

Proof. First of all, for any u ∈ P c, we have 0 6 u(t) 6 ‖u‖ 6 c. Let a0 = ξα−1M1c
and b0 = 2ξα−1M1c/Γ(α+ 1).

Define a operator T1 : P c → P by

T1u(t) =



∫ ξ
0
G1(t, s)f(s, u(s), u(s+ τ1)) ds+ 1

1−ρ2 ( ξγ1
1−γ1 + t)

×
(

ρ2
Γ(α−1)

∫ ξ
0
sα−2f(s, u(s), u(s+ τ1)) ds+ a

)
, t ∈ [0, ξ],∫ 1

ξ
G2(t, s)g(s, u(s), u(s− τ2)) ds− 1

ρ1(1−ρ2) (γ2ξ−1
1−γ2 + t)

×
(

ρ2
Γ(α−1)

∫ ξ
0
sα−2f(s, u(s), u(s+ τ1)) ds+ a+ (1− ρ2)b

)
, t ∈ (ξ, 1].
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Then u = u(t) is a solution of (1) if and only if u is a fixed point of the operator T1

on P c. By (H5),

‖T1u‖[0,ξ] = T1u(ξ)

6

ξ∫
0

G1(ξ, s) ds+
ξ

(1− ρ2)(1− γ1)

(
ρ2M1c

Γ(α− 1)

ξ∫
0

sα−2 ds+ a0

)

6M1c

(
ξα
(
2 + 2(α− 1)ρ2 + Γ(α+ 1)

)
(1− γ1)(1− ρ2)Γ(α+ 1)

)
= c.

Since min{M1c,M2c} > Nq > 0, then M2 > 0,

2(1− ξ)βM2

Γ(β + 1)(1− γ2)
+

(1− ξ)(1− γ1)

ρ1ξ(1− γ2)
= 1

and

‖T1u‖(ξ,1] = T1u(ξ+)

< c

(
M2

1∫
ξ

G2(ξ, s) ds+
1− ξ

ρ1(1− ρ2)(1− γ2)

×

(
M1ρ2

Γ(α− 1)

ξ∫
0

sα−2 ds+ a0 + (1− ρ2)b0

))

< c

(
2(1− ξ)βM2

Γ(β + 1)(1− γ2)
+

(1− ξ)(1− γ1)

ρ1ξ(1− γ2)

)
= c.

Hence, we have ‖T1u‖ 6 c, which implies T1 : P c → P c.
Similarly, by (H5), we can get that ‖T1u‖ < d for u ∈ P d. Therefore, the condition

(ii) in Lemma 3 is satisfied.
Select u(t) = (q + c)/2, 0 6 t 6 1. Obviously, u(t) = (q + c)/2 ∈ P (ω, q, c) and

ω(u) = inft∈[ξ−τ0,ξ+τ0] u(t) = (q + c)/2 > q, then {u ∈ P (ω, q, c): ω(u) > q} 6= ∅.
For any u ∈ P (ω, q, c), we can get that u(t) > q for t ∈ [ξ − τ0, ξ + τ0] and 0 6

u(t) 6 c for t ∈ [0, 1]. By Lemma 5, we can easily get that T1u is monotone increasing
on [0, ξ] and T1u is monotone decreasing on (ξ, 1]. From (H6), we get f(t, u, v) > Nq,
t ∈ [ξ − τ0, ξ] and g(t, u, v) > Nq, t ∈ (ξ, ξ + τ0].

Hence,

inf
t∈[ξ−τ0,ξ]

T1u(t) = T1u(ξ − τ0) > T1u(0) = γ1T1u(ξ)

> γ1

ξ∫
ξ−τ0

G1(ξ, s)Nq ds

>
γ1γ(ξα − (ξ − τ0)

α
)

(1− γ1)Γ(α+ 1)
N1q = q,
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and

inf
t∈(ξ,ξ+τ0]

T1u(t) = T1u(ξ + τ0) > T1u(1) = γ2T1u(ξ+)

> γ2

ξ+τ0∫
ξ

G2(ξ, s)Nq ds

>
γ2γ((1− ξ)β − (1− ξ − τ0)

β
)

(1− γ2)Γ(β + 1)
N2q = q.

Therefore, for u ∈ P (ω, q, c), we have ω(T1u(t)) > q. Hence, condition (i) in
Lemma 3 holds.

Due to Lemma 3 involves paramaters d, q, c, r with 0 < d < q < c 6 r. Let c = r,
then by condition (i) in Lemma 3 it is clearly that for u ∈ P (ω, q, c) and ‖Tu‖ > c, we
have ω(Tu) > q.

Therefore, condition (iii) in Lemma 3 also satisfied. Then Lemma 3 implies that the
boundary value problem (1) has at least three solutions u1, u2, u3 on Pc and ‖u1‖ < d,
ω(u2) > q, ‖u3‖ > d, ω(u3) < q.

5 Illustration

In order to illustrate the applicability of our main results, the following boundary value
problem is considered in this section.

Example 1. For the following boundary value problem

c
tD

3/2

π/8−
u(t) + u(t)

+

(
u(t) + u

(
t+

3

5

))(
1

100
sin t+

u(t) + u(t+ 3
5
)

cos t

)
= 0, t ∈

[
0,
π

8

]
,

c
π/8+D

7/4
t u(t)

+

(
u(t) + u

(
t− 1

3

))(
1

4
cos t+

(
u(t) + u

(
t− 1

3

))2
sin t

)
= 0, t ∈

(
π

8
, 1

]
,

u′
((

π

8

)−)
= −

(
2u′

((
π

8

)+)
+ b

)
= a,

u(0) =
1

2
u

((
π

8

)−)
, u(1) =

1

2
u

((
π

8

)+)
,

(12)

we can establish the following results:

(i) If a ∈ [0, 0.019191], b ∈ [0, 0.028873], then boundary value problem (12) has at
least one positive solution.

(ii) If a ∈ (2.46995 × 106,+∞), b ∈ (2.22295 × 107,+∞), then boundary value
problem (12) has no positive solutions.
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Proof. Boundary value problem (12) can be regarded as boundary value problem (1),
where α = 3/2, β = 7/4, ξ = π/8, ρ1 = 2, ρ2 = 0, γ1 = γ2 = 1/2, τ1 = 3/5,
τ2 = 1/3, f(t, u, v) = (u + v)(1/100) sin t + (u + v) cos t and g(t, u, v) = (u +
v)((1/4) cos t+ (u+ v)2 sin t).

Let τ0 = 1/4 < min{τ1, τ2}, we can easily obtain that M1 ≈ 0.811256, M2 ≈
0.218239 > 0, N1 ≈ 13.8342 and N2 ≈ 12.7312, f0 ≈ 0.00382783 < M1, g0 ≈
0.23097 < M2 and g∞ = +∞ > N2.

Then there exist constants r1 = 0.151, r2 = 0.234, r = min{r1/2, r2/2} =
0.0755, R0 = 7.5 × 106, It is easy to get that a0 = (ξα−1M1r)/2 = 0.019191,
b0 = (ξα−1M1r)/Γ(α+ 1) = 0.028873, a2 = 2.46995× 106 and b1 = 2.22295× 107.

(i) According to Theorem 1, if a ∈ [0, a0] and b ∈ [0, b0], then boundary value
problem (12) has at least one positive solution.

(ii) According to Theorem 4, if a ∈ (a2,+∞) and b ∈ (b1,+∞), then boundary
value problem (12) has no positive solutions.
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