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Abstract. We present a novel generalization of the Hyers–Ulam–Rassias stability definition to
study a generalized cubic set-valued mapping in normed spaces. In order to achieve our goals,
we have applied a brand new fixed point alternative. Meanwhile, we have obtained a practicable
example demonstrating the stability of a cubic mapping that is not defined as stable according to
the previously applied methods and procedures.
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1 Introduction and literature reviews

The study for the set-valued dynamics in Banach spaces has been developed in the last
decades. The pioneering published papers by Aumann [2] and Debreu [9] were inspired
by some problems arising in the control theory and mathematical economics. We refer to
the articles by Arrow and Debreu [1], McKenzie [29], and the survey by Hess [18].
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The stability of functional equations was first introduced by Ulam [38] in 1940. He
proposed the following problem: Given a groupG1, a metric group (G2, d), and a positive
number ε, does there exist a δ > 0 such that if a mapping f : G1 → G2 satisfies the
inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there is a homomorphism
T : G1 → G2 such that d(f(x), T (x)) < ε for all x ∈ G1. If the answer is positive,
we say that the homomorphisms from G1 to G2 are stable. In 1941, Hyers [19] gave
a partial solution of Ulam’s problem for the case of approximate additive mappings under
the assumption that G1 and G2 are Banach spaces. In 1978, a generalized version of the
theorem of Hyers by considering the stability problem with unbounded Cauchy differ-
ences was given by Rassias [36]. This phenomenon of stability that was introduced by
Rassias [36] is called the Hyers–Ulam–Rassias stability of functional equations.

Theorem 1. Let f : E → E′ be a mapping from a normed vector space E into a Banach
space E′ subject to the inequality∥∥f(x+ y)− f(x)− f(y)

∥∥ 6 ε
(
‖x‖p + ‖y‖p

)
,

where ε and p are constants with ε > 0, and p 6= 1. Then there exists a unique additive
mapping T : E → E′ such that in the case of p < 1,∥∥f(x)− T (x)∥∥ 6

2ε

2− 2p
‖x‖p ∀x ∈ E,

while in the case of p > 1,∥∥f(x)− T (x)∥∥ 6
2ε

2p − 2
‖x‖p ∀x ∈ E.

The solution to this problem was obtained by Gajda [13] for p > 1, and the problem
for p < 1 was solved by Rassias [36]. Rassias and Semrl [37] proved that the stability
does not occur for p = 1. The result of the Rassias theorem was generalized by Forti [11]
and Gávruta [14], who permitted the Cauchy difference to become arbitrary unbounded.

The stability problems of several functional equations have been extensively investi-
gated by many mathematicians. The results of these kinds of problems have been exten-
sively studied. We refer, for instance, to [6, 12, 15–17, 19, 27] and also [11, 13, 14, 22, 25,
36, 37] and references therein.

A stability problem of Ulam for the cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) (1)

was established by Jun and Kim [22] for mapping f : E1 → E2, where E1 is a normed
space, and E2 a Banach space. Also, they solved the stability problem of Ulam for the
generalized Euler–Lagrange-type cubic functional equation

f(ax+ y) + f(x+ ay) = (a+ 1)(a− 1)2
[
f(x) + f(y)

]
+ a(a+ 1)f(x+ y)
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for fixed integer a with a 6= 0,±1, and

f(ax+ by) + f(bx+ ay) = (a+ b)(a− b)2
[
f(x) + f(y)

]
+ ab(a+ b)f(x+ y)

for fixed integers a, bwith a 6= 0, b 6= 0, and a±b 6= 0, and the equations being equivalent
to (1). Afterwards, referring to [7], Chu et al. extended the cubic functional equation to
the following generalized form:

f

(
n−1∑
j=1

xj + 2xn

)
+ f

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

f(2xj)

= 2f

(
n−1∑
j=1

xj

)
+ 4

n−1∑
j=1

(
f(xj + xn) + f(xj − xn)

)
, (2)

where n > 2 is an integer, and they also investigated the Hyers–Ulam stability. Moreover,
in [25], Jung and Chang investigated a generalized Hyers–Ulam–Rassias stability for
a cubic functional equation by using the fixed point alternative. The first systematic study
of the iterative methods in the stability of mappings is due to Isac and Rassias [20].

The stability of the set-valued functional equations has been widely examined by
a number of authors (see [8, 21, 30–32]), and the Hyers–Ulam stability of the set-valued
functional equations was proved in [21, 26, 28]. Also, there are many interesting stability
results concerning this problem (see [8, 23, 24]).

Quite recently, Eshaghi et al. [10] and M. Ramezani et al. [35] introduced the notion
of orthogonal sets and gave a real generalization of the Banach fixed point theorem in
incomplete metric spaces. The main result of [10] is the following theorem.

Theorem 2. (See [10].) Let (X,⊥, d) be an O-complete orthogonal metric space (not
necessarily complete metric space) and 0 < λ < 1. Let f : X → X be O-continuous,
⊥-contraction with Lipschitz constant λ, and ⊥-preserving. Then f has a unique fixed
point x∗ ∈ X . Also, f is a Picard operator, that is, limn→∞ fn(x) = x∗ for all x ∈ X .

For more details about the orthogonal space, we refer the reader to [3–5, 10, 34, 35].
The aim of this paper is to offer a new generalized Hyers–Ulam–Rassias stability

result for the functional equation (2) for the set-valued mappings in normed spaces, which
are not necessarily Banach spaces, by using the fixed point alternative [10] as in [3].
Examplewise, we present a special case of our results, which is a real extension of the
previous results as of this literature.

At first, we recall some basic definitions and our main tools.

Definition 1. (See [10].) Let X 6= ∅ and ⊥ ⊆ X ×X be a binary relation. If ⊥ satisfies
the following condition

∃x0 ∈ X: (∀y, y ⊥ x0) or (∀y, x0 ⊥ y),

then ⊥ is called an orthogonal relation, and the pair (X,⊥) – an orthogonal set (briefly,
O-set).

Nonlinear Anal. Model. Control, 26(5):821–841, 2021
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Note that in the above definition, we say that x0 is an orthogonal element. Also, we
say that elements x, y ∈ X are ⊥-comparable either x⊥ y or y ⊥ x.

Definition 2. (See [10, 35].) Let (X,⊥) be O-set. A sequence {xn} is called

(i) an orthogonal sequence (briefly, O-sequence) if

(∀n, xn ⊥ xn+1) or (∀n, xn+1 ⊥ xn);

(ii) an strongly orthogonal sequence (briefly, SO-sequence) if

(∀n, k, xn ⊥ xn+k) or (∀n, k, xn+k ⊥ xn).

Every SO-sequence is an O-sequence. But the converse is not true in general.

Definition 3. (See [10, 35].) Let (X,⊥, d) be an orthogonal metric space ((X,⊥) is an
O-set, and (X,⊥) a metric space). X is

(i) orthogonal complete (briefly, O-complete) if every Cauchy O-sequence is con-
vergent;

(ii) strongly orthogonal complete (briefly, SO-complete) if every Cauchy SO-sequence
is convergent.

It is easy to see that every complete metric space is O-complete and every O-complete
metric space is SO-complete. In [3,35], the authors proved that the converse is not true in
general.

Definition 4. (See [10, 35].) Let (X,⊥, d) be an orthogonal metric space. Then f :
X → X is

(i) orthogonal continuous (briefly, O-continuous) at a ∈ X if for each O-sequence
{an} in X , an → a implies f(an)→ f(a).

(ii) strongly orthogonal continuous (briefly, SO-continuous) at a ∈ X if for each
SO-sequence {an} in X , an → a implies f(an)→ f(a).

Also, f is O-continuous (SO-continuous) on X if f is O-continuous (SO-continuous) in
each a ∈ X .

It is obvious that every continuous mapping is O-continuous and every O-continuous
mapping is SO-continuous, but the converse is not hold in general (see [3, 35]).

Definition 5. (See [3].) Let (X,⊥) be an O-set. A mapping f : X → X is said to be
⊥-preserving if f(x)⊥f(y) whenever x⊥y and x, y ∈ X .

Theorem 3. Let (X,⊥, d) be an SO-complete orthogonal metric space (not necessarily
complete metric space) and 0 < λ < 1. Let f : X → X be SO-continuous,⊥-preserving,
and ⊥-contraction with Lipschitz constant λ. Then f has a unique fixed point x∗ ∈ X .
Also, f is a Picard operator, that is, limn→∞ fn(x) = x∗ for all x ∈ X .

Proof. The proof of this result uses the same ideas in Theorem 3.11 of [10], and it suffices
to replace the O-sequence by SO-sequence.

https://www.journals.vu.lt/nonlinear-analysis
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By the aforementioned results we can conclude that Theorem 3 is a real generalization
of Theorem 2. So, in the next steps, we are going to prove the stability of functional
equation (2) in the SO-complete normed spaces.

2 An incomplete distance on subsets of a set

Before introducing the main results, we recall some notations and definitions.
Let (X, ‖·‖) be a normed space (not necessarily a Banach space), and let ⊥ be an

orthogonal relation on X such that (X,⊥, d) is an orthogonal metric space, where d is
the induced metric by ‖·‖.

We say that ⊥ is R-preserving whenever x⊥y implies rx ⊥ ry for each r ∈ R. See
the next example.

Example 1. Let X = R, and let two relations ⊥1 and ⊥2 on X be defined as

x⊥1 y ⇐⇒ xy ∈ {x, y} and x⊥2 y ⇐⇒ ∃k ∈ Z: y = kx.

It is obvious that an orthogonal element of (X,⊥1) and (X,⊥2) is zero. However, (X,⊥1)
is not R-preserving. To see this, if x = 1, y = 2, and r = 3, then x⊥1y, while 3x 6⊥1 3y.
Notice that it is easy to see that (X,⊥2) is R-preserving.

Let Ccb(X) be the set of all nonempty, closed, convex, and bounded subsets of X .
Consider the addition and the scalar multiplication as follows:

C + C ′ = {x+ x′: x ∈ C, x′ ∈ C ′} and λC = {λx: x ∈ C},

where C,C ′ ∈ Ccb(X) and λ ∈ R. One can show that

λC + λC ′ = λ(C + C ′) and (λ+ µ)C = λC + µC

for all λ, µ ∈ R and C,C ′ ∈ Ccb(X). We consider H+ on pairs of elements in Ccb(X)
by

H+(C,C ′) =
1

2

(
ρ(C,C ′) + ρ(C ′, C)

)
,

where ρ(C,C ′) = supx∈C D(x,C ′) and D(x,C ′) = inf{d(x, y): y ∈ C ′}. Pathak
and Shahzad in [33] proved that H+ is a metric on Ccb(X). We define the relation ⊕ on
Ccb(X) as

C ⊕ C ′ = C + C ′.

The following proposition can be proved from some properties of the distanceH+.

Proposition 1. (See [33].) For any C,C ′,K,K ′ ∈ Ccb(X) and λ > 0, the following
properties hold:

(i) H+({a}, {b}) = ‖a− b‖;
(ii) H+(C ⊕ C ′,K ⊕K ′) 6 H+(C,K) +H+(C ′,K ′);

(iii) H+(λC, λK) = λH+(C,K);

Nonlinear Anal. Model. Control, 26(5):821–841, 2021
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(iv) H+(C ⊕ {x}, C ′ ⊕ {x}) = H+(C,C ′) for all x ∈ X;
(v) H+(C,C ′) = inf{r > 0: C ⊂ δ(C ′, r1), C

′ ⊂ δ(C, r2), r = (r1 + r2)/2},
where δ(C, r) = {x ∈ X: D(x,C) < r} for all positive real number r;

(vi) H+(C,C ′) = inf{r > 0: C ⊂ δ(C ′, r1), C
′ ⊂ δ(C, r2), r = (r1 + r2)/2},

where δ(C, r) is the closure of δ(C, r) for each positive real number r.

Given A,B ∈ Ccb(X). We define the relation ⊥∗ between A and B as follows:

A⊥∗ B ⇐⇒ ∀a ∈ A, b ∈ B, a⊥ b.

If x0 is an orthogonal element of (X,⊥), then the singleton {x0} is an orthogonal element
for (Ccb(X),⊥∗).

Theorem 4. If (X, d,⊥) is an SO-complete (not necessarily complete) metric space, then
(Ccb(X),⊕,H+) with orthogonal relation ⊥∗ is SO-complete.

Proof. Let {An} be a Cauchy SO-sequence in (Ccb(X),⊕,H+). We need to show that
{An} converges to some element in Ccb(X).

Let A be the set of limit points of sequences {an} with an ∈ An for all n ∈ N. Our
aim is to prove that A ∈ Ccb(X) and {An} converges to A. To see end, let us to divide
the proof in the following steps.

Step 1: A is closed. Let a ∈ A. Definition of A ensures that we can choose the
sequence {ak} in A converging to a. This leads to for all k ∈ N, there exists {ykn}n in
X such that for any n ∈ N, ykn ∈ An and ykn → ak as n → ∞. Let {nk} be a strictly
increasing sequence of positive integers such that for any k ∈ N, ‖yknk

−ak‖ < 1/2k. We
observe that ∥∥yknk

− a
∥∥ 6

∥∥yknk
− ak

∥∥+ ‖ak − a‖.
As k →∞, the right-hand of above inequality converges to zero, which implies a ∈ A.

Step 2: A is convex. Let a, b ∈ A and 0 < t < 1. Take two sequences {an} and {bn}
such that for each n ∈ N, an, bn ∈ An and an → a and bn → b as n→∞. Since for any
n ∈ N, An is a convex set, then tan + (1 − t)bn ∈ An. The closeness of A implies that
ta+ (1− t)b ∈ A.

Step 3: A is nonempty. We observe from {An} is a Cauchy sequence that there
exists a strictly increasing sequence {nk} such that for all k ∈ N and n,m > nk,
H+(An, Am) < 1/2k+1. Definition of H+ ensures that for each k ∈ N, there exists
ank+1

∈ Ank+1
for which ‖ank

− ank+1
‖ < 1/2k. This results show that the sequence

{ank
}k is Cauchy.

On the other hand, since {An} is an SO-sequence, it follows that

(∀k,m, ank
⊥ ank+m

) or (∀k,m, ank+m
⊥ ank

).

Therefore, {ank
} is a Cauchy SO-sequence inX . SinceX is SO-complete and ank

∈Ank

for each k ∈ N, the conclusion follows easily.
Step 4: limn→∞H+(An, A) = 0. Fix ε > 0. There exists a positive integer N1 such

that for all m > n > N1, H+(An, Am) < ε. By definition of H+ and condition (v) of

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On the new Hyers–Ulam–Rassias stability 827

Proposition 1 we see that for all m > n > N1, An ⊂ δ(Am, ε1) and Am ⊂ δ(An, ε2),
where ε = (ε1 + ε2)/2. Let a ∈ A and {ai} be a sequence such that ai ∈ Ai for all
i and {ai} converges to a. We observe that for all i > n > N1, ai ∈ δ(An, ε2), and
the continuity of D implies that a ∈ δ(An, ε2) for all n > N1. This results show that
A ⊂ δ(An, ε2) for all n > N1.

On the other hand, we can choose a positive integer N2 such that for all n,m > N2,
H+(Am, An) < ε1/4 and a strictly increasing sequence {ni} of positive integers such
that n1 > N2 andH+(Ani

, Ani+1
) < ε1/2

i+2 for all i ∈ N.
Assume n > N2 and y ∈ An. It follows from H+(An, An1

) < ε1/4 that there is
an1 ∈ An1 for which ‖y − an1‖ 6 ε1/2. Similarly, for each i, since H+(Ani , Ani+1) <
ε1/2

i+2, then there is ani+1 ∈ Ani+1 for which ‖ani − ani+1‖ < ε1/2
i+1. We easily

see that {ani
} is a Cauchy sequence. Arguing in the Step 3, we obtain that {ani

} is an
SO-sequence in X and so converges to an element a ∈ X . Moreover, for all i ∈ N,

‖y − a‖ 6 ‖y − an1‖+ ‖an1 − an2‖+ · · ·+ ‖ani−1 − ani‖+ ‖ani − a‖.

For large enough numbers of i, ‖y−a‖ < ε1, which implies that y ∈ δ(A, ε1), and hence,
An ⊂ δ(A, ε1) for all n > N2.

Now, take N = max{N1, N2}, then condition (vi) of Proposition 1 ensures that
H+(An, A) < ε for each n > N . This completes the proof of Step 4.

3 New generalized Hyers–Ulam–Rassias stability

Throughout this section, we assume (X, ‖·‖X) and (Y, ‖·‖Y ) are two normed spaces.
Also, ⊥ and ⊥∗ are the same orthogonal relations on Y and Ccb(Y ) as defined in the
previous section, respectively. We consider the relation ⊥ as R-persevering and d as the
metric induced by ‖·‖Y .

Definition 6. Let f : X → Ccb(Y ) be a set-valued mapping.

(i) The n-dimensional cubic set-valued functional equation is defined by

f

(
n−1∑
j=1

xj + 2xn

)
⊕ f

(
n−1∑
j=1

xj − 2xn

)
⊕
n−1∑
j=1

f(2xj)

= 2f

(
n−1∑
j=1

xj

)
⊕ 4

n−1∑
j=1

(
f(xj + xn)⊕ f(xj − xn)

)
for every x1, . . . , xn ∈ X , where n > 2 is an integer.

(ii) Every solution of the n-dimensional cubic set-valued functional equation is called
an n-dimensional cubic set-valued mapping.

Theorem 5. Let n > 2 be an integer,m∈{1, . . . , n−1} and (Y, d,⊥) be an SO-complete
metric space (not necessarily a complete metric space). Assume that f : X → Ccb(Y ) is
a set-valued mapping such that f(x/2r) and f(x)/8r are⊥∗-comparable for each x ∈ X

Nonlinear Anal. Model. Control, 26(5):821–841, 2021
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and r ∈ N, and also, there exist two functions φ : Xn → [0,∞) and α : [0,∞)→ [0, 1)
satisfying the following conditions:

H+

(
f

(
n−1∑
j=1

xj + 2xn

)
⊕ f

(
n−1∑
j=1

xj − 2xn

)
⊕
n−1∑
j=1

f(2xj),

2f

(
n−1∑
j=1

xj

)
⊕ 4

n−1∑
j=1

(
f(xj + xn)⊕ f(xj − xn)

))
6 φ(x1, . . . , xn) (3)

for all x1, . . . , xn ∈ X and also

(A1) lim supt→s+ α(t) < 1 for all s > 0;
(A2) For all x1, . . . , xn ∈ X ,

φ

(
x1
2
, . . . ,

xn
2

)
6

1

8
α
(
φ(x1, . . . , xn)

)
φ(x1, . . . , xn);

(A3) For all x ∈ X ,

α

(
φ

((
x

2
, . . . ,

x

2︸ ︷︷ ︸
m terms

, 0, . . . , 0

))
6 α

(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)
.

Then there exist an n-dimensional cubic set-valued mapping F : X → Ccb(Y ) and
a subset X∗ in X with card(X∗) > 1 such that for some positive real number L < 1, we
have

H+
(
f(x), F (x)

)
6

L

m(1− L)
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0) (4)

for all x ∈ X∗. In particular, if X∗ = X , then the mapping F is unique.

Proof. We denote by S0 the set

S0 =
{
g : X → Ccb(Y )

∣∣ g(0) is a singelton set
}

and the generalized metric D on S0 as follows:

D(h, g) = inf
{
M > 0

∣∣ H+
(
h(x), g(x)

)
6Mφ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0) ∀x ∈ X
}
.

Consider the set S = {g ∈ S0 | D(g, f) < ∞}. Putting xj = 0 (j = 1, 2, . . . ,m) in
(A2) yields that φ(0, . . . , 0) = 0, and by using (3) we observe that f(0) = {0}. Hence S
is a nonempty set.

Now, let T : S → S0 be a function as given by Tg(x) = 8g(x/2) for all x ∈ X . We
must show that T is a self-adjoint mapping, that is, T (S) ⊆ S. To see this, put xj = 0

https://www.journals.vu.lt/nonlinear-analysis
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(j = 1, . . . ,m) and xm+1 = xm+2 = · · · = xn = 0 in inequality (3). Since the range
of f is convex and applying (A2), we have

H+
(
f(mx)⊕ f(mx)⊕mf(2x), 2f(mx)⊕ 8mf(x)

)
6 φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0),

and so,

H+
(
mf(2x), 8mf(x)

)
6 φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0) (5)

for all x ∈ X . Dividing by 8m in (5), we get

H+

(
f(2x)

8
, f(x)

)
6

1

8m
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0) (6)

for all x ∈ X . Replacing x by x/2 in (6) and applying (A2), we have

H+

(
f(x), 8f

(
x

2

))
6

1

m
φ

(
x

2
, . . . ,

x

2︸ ︷︷ ︸
m terms

, 0, . . . , 0

)

6
1

8m
α
(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)

6
1

8m
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0) (7)

for all x ∈ X . This ensures that D(Tf, f) 6 1/(8m). On the other hand, if g ∈ S,
definition of D conclude that D(Tg, Tf) 6 D(g, f), and the triangle inequality implies
that D(Tg, f) 6 D(Tg, Tf) +D(Tf, f) <∞, that is, Tg ∈ S. Consider

O(x) =
{
f(x), (Tf)(x),

(
T 2f

)
(x),

(
T 3f

)
(x), . . .

}
for all x ∈ X . Define the relation ⊥S on S as the following:

g ⊥S h ⇐⇒
({
g(x), h(x)

}
∩O(x) 6= ∅ or g(x)⊥∗ h(x)

)
∀x ∈ X.

It follows from Theorem 4 that (S,D,⊥S) is an SO-complete metric space. Since the
relation ⊥ is R-preserving, definition of ⊥S and ⊥∗ imply that T is ⊥S-preserving. By
using the hypothesis we obtain(

f

(
x

2r

)
⊥∗ f(x)

8r

)
or

(
f(x)

8r
⊥∗ f

(
x

2r

))
for all x ∈ X and r ∈ N. From R-preserving of ⊥ and definition of T we get((

T rf
)
(x)⊥∗ f(x)

)
or

(
f(x)⊥∗

(
T rf

)
(x)
)

Nonlinear Anal. Model. Control, 26(5):821–841, 2021

https://doi.org/10.15388/namc.2021.26.24367


830 M. Ramezani et al.

for all x ∈ X and r ∈ N. This means that(
T rf ⊥S f

)
or

(
f ⊥S T rf

)
for all r ∈ N. It follows from ⊥S-preserving of T that(

∀r, s ∈ N, T r+sf ⊥S T rf
)

or
(
∀r, s ∈ N, T rf ⊥S T r+sf

)
.

That is, {T rf} and consequently {(T rf)(x)} for all x ∈ X are SO-sequences in S and
Ccb(X), respectively. In order to show that the SO-sequence {T rf} is Cauchy, replacing
x by x/2r and multiplying by 8r in (7) and using (A2) and (A3), we get

H+
((
T r+1f

)
(x),

(
T rf

)
(x)
)
6
[
α
(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)]r

φ(x, . . . , x︸ ︷︷ ︸
m terms

, 0, . . . , 0)

for all x ∈ X and r ∈ N. Considering

Lx = α
(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)
,

we obtain that

H+
((
T sf

)
(x),

(
T rf

)
(x))

6
s−1∑
i=r

H+
((
T i+1f

)
(x),

(
T if

)
(x)
)
6

s−1∑
i=r

Lixφ(x, . . . , x︸ ︷︷ ︸
m terms

, 0, . . . , 0)

=
Lrx(1− Ls−1x )

1− Lx
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)

for all x ∈ X and r, s ∈ N with r < s. Since Lx < 1, letting r, s → ∞ in the
above inequality, we deduce that the sequence {(T rf)(x)} is a Cauchy sequence for each
x ∈ X . By SO-completeness of Ccb(Y ) we obtain that for every x ∈ X , there exists an
element F (x) ∈ Ccb(Y ), which is a limit point of {(T rf)(x)}. That is, F : X → Ccb(Y )
is well defined and given by

F (x) = lim
r→∞

(
T rf

)
(x) = lim

r→∞
8rf

(
x

2r

)
(8)

for all x ∈ X . On the other hand, since lim supt→0+ α(t) < 1, then there exist λ ∈ (0,∞]
and 0 < L < 1 such that α(t) 6 L for all 0 6 t < λ. Put

X∗ =
{
x ∈ X

∣∣ φ(x, . . . , x︸ ︷︷ ︸
m terms

, 0, . . . , 0) < λ
}
.

It follows from φ(0, . . . , 0) = 0 that 0 ∈ X∗. Also, if x0 is an arbitrary nonzero point
of X , then by using (A2) we can easily see that

φ

(
x0
2r
, . . . ,

x0
2r︸ ︷︷ ︸

m terms

, 0, . . . , 0

)
6

1

8r
φ(x0, . . . , x0︸ ︷︷ ︸

m terms

, 0, . . . , 0).
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So, there exists a natural number r0 for which

φ

(
x0
2r0

, . . . ,
x0
2r0︸ ︷︷ ︸

m terms

, 0, . . . , 0

)
< λ,

and this means that x0/2r0 belongs to X∗. This implies that card(X∗) > 1. Now, we
replace X by X∗ in definition of S0. For g, h ∈ S, we have the following implications:

D(g, h) < K

=⇒ H+
(
g(x), h(x)

)
6 Kφ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0), x ∈ X∗,

=⇒ 8H+

(
g

(
x

2

)
, h

(
x

2

))
6 K8φ

(
x

2
, . . . ,

x

2︸ ︷︷ ︸
m terms

, 0, . . . , 0

)
, x ∈ X∗,

=⇒ H+

(
8g

(
x

2

)
, 8h

(
x

2

))
6 Kα

(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)

× φ(x, . . . , x︸ ︷︷ ︸
m terms

, 0, . . . , 0), x ∈ X∗,

=⇒ H+

(
8g

(
x

2

)
, 8h

(
x

3

))
6 KLφ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0), x ∈ X∗,

=⇒ H+
(
Tg(x), Th(x)

)
6 KLφ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0), x ∈ X∗,

=⇒ D(Tg, Th) 6 KL.

Hence, we see that D(Tg, Th) 6 LD(g, h) for all g, h ∈ S. It follows from L < 1 that
T is a contraction. Consequently, T is an SO-continuous mapping and is a contraction
on⊥S-comparable elements with Lipschitz constant L. Since (S,D,⊥S) is SO-complete
and T is also⊥S-preserving, then from Theorem 3 we conclude that T has a unique fixed
point and T is a Picard operator. This means that the sequence {T rf} is convergent to
the fixed point of T . It follows from (8) that F is a unique fixed point of T . Moreover,

D(F, f) 6 D(F, TF ) +D(TF, Tf) +D(Tf, f)
6 LD(F, f) +D(Tf, f).

Therefore, D(F, f) 6 D(Tf, f)/(1− L). Relation (7) ensures that inequality (4) holds.
Finally, we need to show that F is an n-dimensional cubic set-valued mapping. To this

end, let x1, . . . , xn be fixed elements of X . Since {φ(x1/2r, . . . , xn/2r)} is a nonnega-
tive and decreasing sequence, then there is τ > 0 for which φ(x1/2r, . . . , xn/2r)→ τ as
r → ∞. Taking into account (A1), we have lim supt→τ+ α(t) < 1, so there exist δ > 0
and ν < 1 such that for all t ∈ [τ, τ + δ), α(t) < ν. Consider the positive integer N such
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that for all r > N , φ(x1/2r, . . . , xn/2r) ∈ [τ, τ + δ). By virtue of (3) we obtain

H+

(
F

(
n−1∑
j=1

xj + 2xn

)
⊕ F

(
n−1∑
j=1

xj − 2xn

)
⊕
n−1∑
j=1

F (2xj),

2F

(
n−1∑
j=1

xj

)
⊕ 4

n−1∑
j=1

(
F (xj + xn)⊕ F (xi − xn)

))

6 lim
r→∞

8rφ

(
x1
2r
, . . . ,

xn
2r

)
6 lim
r→∞

r−1∏
i=0

α

(
φ

(
x1
2i
, . . . ,

xn
2i

))
φ(x1, . . . , xn)

= lim
r→∞

r−1∏
i=N

ν ·
N−1∏
i=0

α

(
φ

(
x1
2i
, . . . ,

xn
2i

))
φ(x1, . . . , xn)

6 lim
r→∞

νr−N ·
N−1∏
i=0

α

(
φ

(
x1
2i
, . . . ,

xn
2i

))
φ(x1, . . . , xn) = 0.

Therefore, F is an n-dimensional cubic set-valued mapping as desired.

Corollary 1. Let n > 2 be an integer and m ∈ {1, . . . , n − 1}. Let Y be a Banach
space and f : X → Y be a mapping such that there exists a function φ : Xn → [0,∞)
satisfying ∥∥∥∥∥f

(
n−1∑
j=1

xj + 2xn

)
+ f

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

f(2xj)

− 2f

(
n−1∑
j=1

xj

)
− 4

n−1∑
j=1

(
f(xj + xn)− f(xj − xn)

)∥∥∥∥∥
Y

6 φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X . If there exists a positive real number L < 1 such that

φ(x1, . . . , xn) 6
1

8
Lφ(2x1, . . . , 2xn) (9)

for all x1, . . . , xn ∈ X , then there exists a unique n-dimensional cubic mapping F :
X → Y , which satisfies the inequality∥∥f(x)− F (x)∥∥

Y
6

L

m(1− L)
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)

for all x ∈ X . The mapping F is given by

F (x) = lim
r→∞

8rf

(
x

2r

)
∀x ∈ X.
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Proof. For every y1, y2 ∈ Y , define y1 ⊥ y2 if and only if ‖y1‖Y 6 ‖y2‖Y . It is
clear that (Y,⊥) is an O-set. Moreover, we can consider (Y, d,⊥) as a closed subset
of (Ccb(Y ),H+,⊥∗), which d is the metric induced by ‖·‖Y . Since Y is a Banach space,
so (Y, d,⊥) is an SO-complete metric space. From definition of ⊥ follows that[

∀x ∈ X, r ∈ N, f
(
x

2r

)
⊥ f(x)

8r

]
or [

∀x ∈ X, r ∈ N,
f(x)

8r
⊥ f

(
x

2r

)]
.

It is enough to pick α(t) = L for all t ∈ [0,∞). The result is an immediate consequence
of Theorem 5.

Theorem 6. Let n > 2 be an integer, m ∈ {1, . . . , n − 1}, and (Y, d,⊥) be an
SO-complete metric space (not necessarily complete metric space). Suppose that f :
X → Ccb(Y ) is a set-valued mapping such that f(2rx) and 8rf(x) are ⊥∗-comparable
for each x ∈ X and r ∈ N, and there exists a function φ : Xn → [0,∞) satisfying
equation (3) of Theorem 5 and the following property:

(B1) φ(x1, . . . , xn) = 0 if and only if xj = 0 for all j ∈ {1, . . . , n}, and {φ(2rx1, . . . ,
2rxn)} is an increasing sequence for all x1, . . . , xn ∈ X that are not all zero.
Also, {

φ
(
2rx0, . . . , 2

rx0︸ ︷︷ ︸
m terms

, 0, . . . , 0
)}

is an unbounded sequence for some x0 ∈ X .

If α : [0,∞) → [0, 1) is a mapping, which satisfies relation (A1) of Theorem 5 and the
following conditions:

(B2) For all x1, . . . , xn ∈ X that are not all zero,

φ(2x1, . . . , 2xn) 6 8α
([
φ(x1, . . . , xn)

]−1)
φ(x1, . . . , xn);

(B3) For every nonzero element x of X ,

α
([
φ(2x, . . . , 2x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
]−1)

6 α
([
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
]−1)

.

Then there exist an n-dimensional cubic set-valued mapping F :X→Ccb(Y ) and a sub-
set X∗ in X with card(X∗) > 1 such that for some positive real number L < 1, we have

H+
(
f(x), F (x)

)
6

1

1− L
1

8m
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0) (10)

for all x ∈ X∗. Moreover, if X∗ = X , then F is unique.
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Proof. By the same reasoning as in the proof of Theorem 5, there exist λ ∈ (0,∞] and
0 < L < 1 such that α(t) 6 L for each 0 6 t < λ. Set

X∗ :=
{
x ∈ X

∣∣ x 6= 0,
[
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
]−1

< λ
}
∪ {0}.

As a result of (B1), we can easily see that for some x0 ∈ X , the sequence{[
φ(2rx0, . . . , 2

rx0︸ ︷︷ ︸
m terms

, 0, . . . , 0)
]−1}

is a decreasing sequence which converges to zero. This concludes that card(X∗) > 1. By
the same argument of Theorem 5 one can show that the mapping T : S → S defined by
Tg(x) = g(2x)/8 for all x ∈ X is a ⊥S-preserving mapping and is a contraction with
Lipschitz constant L on X∗. Define F : X → Ccb(Y ) by F (x) = limr→∞ f(2rx)/8r

for all x ∈ X . ReplacingX∗ byX in definition of S0 and applying Theorem 3, we obtain
that F is a unique fixed point of T . It follows from (6) that D(f, Tf) 6 1/(8m) and so

D(f, F ) 6 D(f, Tf) +D(Tf, TF ) 6 D(f, Tf) + LD(f, F ),

and consequently,

D(f, F ) 6 1

1− L
D(f, Tf) 6 1

1− L
1

8m
.

That is, inequality (10) holds. To show that the function F is an n-dimensional set-valued
mapping on X , let x1, . . . , xn be fixed elements of X , which are not all zero. Since{[

φ
(
2rx, . . . , 2rx︸ ︷︷ ︸

m terms

, 0, . . . , 0
)]−1}

is a nonnegative and decreasing sequence, so the rest of the proof is similar to the proof
of Theorem 5.

Corollary 2. Let n > 2 be an integer and Y be a Banach space. Suppose that f : X → Y
is a mapping such that there exists a function φ : Xn → [0,∞) satisfying conditions (B1)
of Theorem 6 and, in addition,∥∥∥∥∥f

(
n−1∑
j=1

xj + 2xn

)
+ f

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

f(2xj)

− 2f

(
n−1∑
j=1

xj

)
− 4

n−1∑
j=1

(
f(xj + xn)− f(xj − xn)

)∥∥∥∥∥
Y

6 φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X . If there exists a positive real number L < 1 such that

φ(2x1, . . . , 2xn) 6 8Lφ(x1, . . . , xn)
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for all x1, . . . , xn ∈ X , then for everym ∈ {1, . . . , n−1}, there exists a unique n-dimen-
sional cubic mapping F : X → Y , which satisfies the inequality∥∥f(x)− F (x)∥∥

Y
6

1

1− L
1

8m
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)

for all x ∈ X . The mapping F is given by

F (x) = lim
r→∞

f(2rx)

8r
∀x ∈ X.

Proof. Take the same metric d and the orthogonal relation of Corollary 1. By the same
argument of Corollary 1 one can show that (Y, d,⊥) is an SO-complete metric space and
f(2rx) and 8rf(x) are ⊥-comparable for each x ∈ X and r ∈ N. Putting α(t) = L for
all t ∈ [0,∞) and applying Theorem 6, we can easily obtain the results.

Corollary 3. Suppose that Y is a Banach space and θ > 0 and p 6= 3 are fixed. Assume
that f : X → Y is a function satisfies the functional inequality∥∥∥∥∥f

(
n−1∑
j=1

xj + 2xn

)
+ f

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

f(2xj)

− 2f

(
n−1∑
j=1

xj

)
− 4

n−1∑
j=1

(
f(xj + xn)− f(xj − xn)

)∥∥∥∥∥
Y

6 θ

n∑
j=1

‖xj‖pX (11)

for all x1, . . . , xn ∈ X . Then there exists a unique n-dimensional cubic mapping F :
X → Y such that the inequality∥∥f(x)− F (x)∥∥

Y
6

8θ

2p − 8
‖x‖pX (12)

holds for all x ∈ X , where p > 3, or the inequality∥∥f(x)− F (x)∥∥
Y
6

θ

8− 2p
‖x‖pX (13)

holds for all x ∈ X , where p < 3.

Proof. Take the same metric d and the orthogonal relation of Corollary 1. By the same
argument of Corollary 1 one can show that (Y, d,⊥) is an SO-complete metric space.
Moreover, definition of ⊥ ensures that f(x/2r) and f(x)/8r are ⊥-comparable for each
x ∈ X and r ∈ N. Similarly, f(2rx) and 8rf(x) are ⊥-comparable for each x ∈ X and
r ∈ N.
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We define φ(x1, . . . , xn) = θ
∑n
j=1 ‖xj‖

p
X for each x1, . . . , xn ∈ X . It follows that

φ

(
x1
2
, . . . ,

xn
2

)
6

1

23
1

2p−3
φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X , where p > 3. Set α(t) = 1/2p−3 for all t ∈ [0,∞). This ensures
that X∗ = X and relations (A1) and (A3) of Theorem 5 hold. Applying Theorem 5, we
see that inequality (4) holds with L = 1/2p−3, which yields inequality (12). On the other
hand, the function φ satisfies properties (B1), (B2) and also

φ(2x1, . . . , 2xn) 6 232p−3φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X , where p < 3. Putting α(t) = 2p−3 for every t ∈ [0,∞), it is
easily seen that X∗ = X and conditions (A1) and (B3) are hold. Employing Theorem 6,
we see that inequality (10) holds with L = 1/23−p. This implies inequality (13).

The next example shows that Theorem 6 is a real extension of Corollary 1.

Example 2. Let n > 2 be an integer and m ∈ {1, . . . , n− 1}, and Y be a Banach space.
Let {τp} be a sequence defined by τ0 = 0, τ1 = 1, and τp = p + 1/p for all natural
number p with p > 2. It is easy to see that {τp} is a strictly increasing sequence of real
numbers. Suppose that f : X → Y is a mapping satisfying∥∥∥∥∥f

(
n−1∑
j=1

xj + 2xn

)
+ f

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

f(2xj)

− 2f

n−1∑
j=1

xj − 4

n−1∑
j=1

(
f(xj + xn)− f(xj − xn)

)∥∥∥∥∥
Y

6 φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X . Define a mapping φ : Xn → [0,∞) by

φ(x1, . . . , xn) =


τp
∑n
j=1 ‖xj‖3X ,

∑n
j=1 ‖2xj‖3X −

∑n
j=1 ‖xj‖3X > 1,

and p is the smallest natural number such that∑n
j=1 ‖xj‖3X < τp <

∑n
j=1 ‖2xj‖3X ,

0 otherwise

and the function α : [0,∞)→ [0, 1) as

α(t) =

{
τp−1

τp
, p is the smallest natural number such that t 6 τp,

0 otherwise.

Then the following hold:

(i) For every s > 0, lim supt→s+ α(t) < 1.
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(ii) For every x ∈ X ,

α

(
φ

(
x

2
, . . . ,

x

2︸ ︷︷ ︸
m terms

, 0, . . . , 0

))
6 α

(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)
.

(iii) For every x1, . . . , xn ∈ X ,

φ

(
x1
2
, . . . ,

xn
2

)
6

1

8
α
(
φ(x1, . . . , xn)

)
φ(x1, . . . , xn).

(iv) For every positive real number s, there exist a constant L ∈ (0, 1) and an n-
dimensional cubic mapping F : X → Y such that∥∥F (x)− f(x)∥∥

Y
6

L

m(1− L)
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)

for all x with ‖x‖X 6 s.

Proof. Take the same metric d and the orthogonal relation of Corollary 1. By the same
argument of Corollary 1 one can show that (Y, d,⊥) is an SO-complete metric space and
f(x/2r) and f(x)/(8r) are ⊥-comparable for each x ∈ X and r ∈ N.

Let us take x1, . . . , xn ∈ X and (
∑n
j=1 ‖xj‖3X)−

∑n
j=1 ‖xj/2‖3X > 1, and let p be

the smallest natural number such that
∑n
j=1 ‖xj/2‖3X < τp <

∑n
j=1 ‖xj‖3X . Then

φ

(
x1
2
, . . . ,

xn
2

)
= τp

n∑
j=1

∥∥∥∥xj2
∥∥∥∥3
X

.

We observe that
n∑
j=1

‖2xj‖3X −
n∑
j=1

‖xj‖3X > 8.

This follows that there exists k0 ∈ N, which

n∑
j=1

‖xj‖3X < τk0 <

n∑
j=1

‖2xj‖3X .

Assume that k is the smallest natural number satisfying the above condition. Clearly,
k > p and

φ(x1, . . . , xn) = τk

n∑
j=1

‖xj‖3X .

Now, we suppose that q is the smallest natural number that τk
∑n
j=1 ‖xj‖3X 6 τq , then

α(φ(x1, . . . , xn)) = τq−1/τq . Since
∑n
j=1 ‖xj‖3X > 1, then τk < τq , and we conclude
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τp/τk < τp/τp+1 < τq−1/τq . This implies that

φ

(
x1
2
, . . . ,

xn
2

)
= τp

n∑
j=1

∥∥∥∥xj2
∥∥∥∥3
X

=
1

8
τp

n∑
j=1

‖xj‖3X 6
1

8

τq−1
τq

τk

n∑
j=1

‖xj‖3X

=
1

8
α
(
φ(x1, . . . , xn)

)
φ(x1, . . . , xn).

That is, condition (i) holds. From definition α it is easily seen that α is a nondecreasing
mapping.

Finally, it follows from lim supt→ s+ α(t) = 0 that for every s > 0, there exists
L < 1 such that

α
(
φ(x, . . . , x︸ ︷︷ ︸

m terms

, 0, . . . , 0)
)
< L

for all x with ‖x‖X 6 s. By the same proof of Theorem 5 we prove (iv).

Notice that there is no L < 1 such that inequality (9) holds, and hence, the stability
of f does not imply by Corollary 1.

Now, we observe in the following example that our results go further than the stability
on Banach spaces.

Example 3. Let θ > 0 and p 6= 3 be given. Consider Y = C([0, 1],R) (the set all of
continuous functions on [0, 1]) with norm ‖h‖Y = (

∫ 1

0
|h(x)|s dx)1/s = ‖h‖s, where

1 < s < ∞. Suppose that f : X → Y is a mapping satisfying inequality (11) and the
following condition:

∃γ > 0: f

(
x

2

)
=
γ

8
f(x), x ∈ X. (14)

Then there exists a unique n-dimensional cubic mapping F : X → Y such that inequal-
ity (12) holds for all x ∈ X , where p > 3, or inequality (13) holds for all x ∈ X , where
p < 3.

Proof. Let q be the conjugate of s, i.e., 1/s+ 1/q = 1. For all h, g ∈ Y , define

h⊥ g ⇐⇒
1∫

0

h(x)g(x) dx =

( 1∫
0

h(x)s dx

)1/s( 1∫
0

g(x)q dx

)1/q

= ‖h‖s‖g‖q

and d(h, g) = ‖h−g‖Y . We claim that (Y,⊥, d) is an SO-complete metric space. Indeed,
let {hn} be a Cauchy SO-sequence in Y , and for all n, k ∈ N, hn⊥hn+k. The relation⊥
ensures that for all n ∈ N,

∃λn 6= 0: hsn = λnh
q
n+1 a.e. or hqn+1 = λnh

s
n a.e. (15)

We distinguish two cases.
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Case 1. There exists a subsequence {hnk
} of {hn} such that hnk

= 0 a.e. for all k.
This implies that hn → 0 ∈ X .

Case 2. For all sufficiently large n ∈ N, hn 6= 0. Take n0 ∈ N such that for all
n > n0, hn 6= 0. It follows from (15) that for all n > n0, there exists λn 6= 0 for which
hn = λnh

s/q
n0 . It leads to

|λn − λm|
∥∥hs/qn0

∥∥
p
=
∥∥λnhs/qn0

− λmhs/qn0

∥∥
p
= ‖hn − hm‖p

for each m,n > n0. As n → ∞, the right-hand side of the above inequality tends to 0.
Therefore, {λn} is a Cauchy sequence in R. Assume that λn → λ as n → ∞. Put
h = λh

s/q
n0 . It follows that h ∈ Y and for all n > n0,

‖hn − h‖s =
∥∥λnhs/qn0

− λhs/qn0

∥∥ = |λn − λ|
∥∥hs/qn0

∥∥
s
.

This implies that hn → h as n→∞. Note that the case hn+k ⊥ hn for all n, k ∈ N is in
a similar way.

By virtue of (14) and definition of ⊥ we obtain that f(x/2r) and f(x)/8r are ⊥-
comparable elements for each x ∈ X and r ∈ N. Moreover, putting x := rx in (14), we
can also see that f(2rx) and 8rf(x) are ⊥-comparable elements in Y for all x ∈ X and
r ∈ N. The rest of the proof is similar to the proof of Corollary 3.
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