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Abstract. This paper considers a delayed claim risk model with stochastic return and Brownian
perturbation in which each main claim may be accompanied with a delayed claim occurring
after a stochastic period of time, and the price process of the investment portfolio is described
as a geometric Lévy process. By means of the asymptotic results for randomly weighted sum
of dependent subexponential random variables we obtain some asymptotics for finite-time ruin
probability. A simulation study is also performed to check the accuracy of the obtained theoretical
result via the crude Monte Carlo method.
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distribution, dependence.

1 Introduction

Consider a renewal risk model with main and delayed claims in which, for each positive
integer i, an insurer’s ith main claim Xi occurs at time τi accompanied with a delayed
claim Yi occurring at time τi + Di, where Di denotes an uncertain delay time. Let
{(Xi, Yi), i > 1} be a sequence of independent and identically distributed (i.i.d.) non-
negative random vectors with generic random vector (X,Y ) and marginal distributions F
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and G, respectively. The accident arrival times {τi, i > 1} constitute a renewal counting
process

N(t) = sup{n > 0: τn 6 t}, t > 0,

with a finite mean function λ(t) = E[N(t)], and denote the inter-arrival times by θi =
τi − τi−1, i > 1, with τ0 = 0, which are i.i.d. nonnegative random variables (r.v.s).
The delay times {Di, i > 1} are a sequence of identically distributed and nonnegative
(possibly degenerate at 0) r.v.s with common distribution H . The insurer is allowed to
invest its surplus into a risk-free market. The price process of the investment portfolio is
described by a geometric Lévy process {eRt , t > 0}. Here {Rt, t > 0} is a nonnegative
Lévy process, also representing the stochastic accumulated return rate process, which
starts from zero and has independent and stationary increments. For more discussions
on Lévy processes, see [1, 4, 22]. Then the discounted value of the surplus process with
stochastic return on investment can be defined as

U(t) = x+

t∫
0

c(s)e−Rs ds−
N(t)∑
i=1

Xie
−Rτi −

∞∑
i=1

Yie
−Rτi+Di1{τi+Di6t}

+ δ

t∫
0

e−R̃s B(ds), t > 0, (1)

where 1A denotes the indicator function of a set A, x > 0 is the initial risk reserve
of the insurer, c(t) > 0 is the density function of premium income at time t, δ > 0
is the volatility factor, R̃t, t > 0, is another nonnegative Lévy process representing
the stochastic interest process, and B(t), t > 0, is the diffusion perturbation, which is
a standard Brownian motion. As usual, assume that {(Xi, Yi), i > 1}, {θi, i > 1},
{Di, i > 1}, {Rt, t > 0}, {R̃t, t > 0}, and {B(t), t > 0} are mutually independent,
but some certain dependence may exist within each pair (Xi, Yi). Additionally, assume
that the premium density function c(t) is bounded, i.e., 0 6 c(t) 6 c0 for some c0 > 0
and all t > 0. For any fixed time t > 0, the finite-time ruin probability of risk model (1)
can be defined as

ψ(x; t) = P
(

inf
06s6t

U(s) < 0
∣∣∣ U(0) = x

)
, (2)

and the corresponding infinite-time ruin probability is limt→∞ ψ(x; t) = ψ(x).
Such a risk model (1) has been playing an important role in insurance practice since

a severe accident may trigger more than one claim. First is the main claim caused imme-
diately, while all the others are accumulated as another type, called as the delayed claim,
occurring after a stochastic period of time. For example, a traffic accident may cause an
immediate payoff for vehicle damage, as well as some medical claims for injures of both
drivers and passengers in the subsequent periods. In this paper, we study the asymptotic
expression for the finite-time ruin probability, which has immediate implications under
modern insurance regulatory frameworks such as solvency capital requirement and insur-
ance risk management.
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The ruin probabilities of risk model (1) were initially studied by [28], who considered
a Poisson accident-number process N(t) and some light-tailed claims and established an
exact formula for ψ(x) without perturbation and investment (i.e., δ = 0 and Rt = 0)
in (1) by a martingale approach. In the presence of heavy-tailed claims, [15] studied the
model with two deterministic linear functions for the premium income process and the
stochastic accumulated return rate process (i.e., c(t) = c and Rt = rt for premium rate
c > 0 and interest rate r > 0); [16] considered the case of c(t) = c and Rt = 0;
and both of these two literatures derived the asymptotic relation for ψ(x). A few exten-
sions with dependence structures and stochastic returns can be found in [9–11, 27], who
investigated the asymptotic behavior for both ψ(x; t) and ψ(x). Some related results in
bidimensional risk models can be found in [2, 3, 26], among others. Remark that all the
above works are restricted to some extremely heavy-tailed claims such as the ones with
regularly varying tails or consistently varying tails. Recently, by using the asymptotics for
the tail probability of randomly weighted sum of i.i.d. subexponential r.v.s [25] established
an asymptotic formula for the finite-time ruin probability ψ(x; t) under the independent
model (1) with some moderately heavy-tailed (subexponential) claims, but c(t) = c,
Rt = rt, and δ = 0.

In this paper, we continue to seek the asymptotic behavior for the finite-time ruin
probability in a more general risk model (1) with subexponential claims, risk-free invest-
ment, and diffusion perturbation, where each pair of the main and delayed claims may
be interdependent to some extent. Our obtained results also confirm the intuition that the
asymptotic finite-time ruin probability of risk model (1) with subexponential claims is
insensitive to the Brownian perturbation, which coincide with the results of the models
without delayed claims in [17] and [24]. Our adopting method is the tail asymptotics for
the randomly weighted sum of dependent subexponential r.v.s, which may be interesting
on its own right.

The rest of this paper consists of four sections. Section 2 states the main result after
introducing some necessary preliminaries, and Section 3 performs a simulation study
to check the accuracy of the theoretical result. Section 4 establishes some asymptotic
formulas for the tail probability of finite randomly weighted sum generated by dependent
subexponential r.v.s. The proof of the main result is postponed to Section 5.

2 Preliminaries and main results

Throughout the paper, all limit relationships hold as x → ∞ unless stated otherwise.
For two positive functions f(·) and g(·), write f(x) . g(x) if lim sup f(x)/g(x) 6 1,
write f(x) ∼ g(x) if lim f(x)/g(x) = 1, write f(x) = o(g(x)) if lim f(x)/g(x) = 0,
write f(x) = O(g(x)) if lim sup f(x)/g(x) < ∞, and write f(x) � g(x) if f(x) =
O(g(x)) and g(x) = O(f(x)). For two real-valued numbers x and y, denote by x ∨ y =
max{x, y}, x ∧ y = min{x, y} and denote the positive and negative parts of x, re-
spectively, by x+ = x ∨ 0 and x− = −x ∧ 0. The indicator function of a set A is
denoted by 1A. Furthermore, for two positive bivariate functions f(·, ·) and g(·, ·), we
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write f(x, t) ∼ g(x, t) uniformly for all t in a nonempty set A if

lim
x→∞

sup
t∈A

∣∣∣∣f(x, t)g(x, t)
− 1

∣∣∣∣ = 0;

and write f(x, t) . g(x, t) uniformly for all t ∈ A if

lim sup
x→∞

sup
t∈A

f(x, t)

g(x, t)
6 1.

Denote by Fξ the distribution of a r.v. ξ letting the notation speak for itself. For two real-
valued r.v.s ξ and η, we say that ξ is stochastically not greater than η, denoted by ξ 6st η,
if P(ξ > x) 6 P(η > x) for all x ∈ R.

2.1 Heavy-tailed distributions

It is well known that most insurance claims possess the heavy-tailed feature since many
insurance data are characterised by right heavy-tailedness; see [5, 6, 21]. We will use
heavy-tailed distributions to model the claims. A distribution V on R+ = [0,∞) is said
to be subexponential, denoted by V ∈ S , if V (x) = 1 − V (x) > 0 for all x > 0 and
V n∗(x) ∼ nV (x) holds for all (or, equivalently, for some) n > 2, where V n∗ is the n-fold
convolution of V . More generally, a distribution V on R is still said to be subexponential
if the distribution V (x)1{x>0} is subexponential. The class S contains a lot of important
distributions such as Pareto, lognormal, and heavy-tailed Weibull distributions. Clearly,
by Lemma 1.3.5(a) of [7], if a distribution V on R is subexponential, then it holds that

V (x+ y) ∼ V (x) (3)

for all y ∈ R, which defines the class of long-tailed distributions denoted by L. Auto-
matically, relation (3) holds uniformly on every compact set of y. Hence, it is easy to
see that there exists some positive function h(·), with h(x) = o(x) and h(x) ↑ ∞, such
that relation (3) holds uniformly for all |y| 6 h(x). An important subclass of S is that
of regularly varying tailed distributions. A distribution V on R is said to be regularly
varying tailed with index α > 0, denoted by V ∈ R−α, if V (xy) ∼ y−αV (x) for all
y > 0. A typical example is the Pareto distribution

V (x) = 1− (x+ µ)−α, x > 1− µ, (4)

with parameters α > 0 and µ > 0. The reader is referred to monographs [7] and [8] for
reviews of some related heavy-tailed distributions.

2.2 Main results

Our main result is established under the following assumptions, which describe some
weak dependence among variables.
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Assumption 1. Suppose that real-valued r.v.s ξ1, . . . , ξn satisfy the relation

lim
xi∧xj→∞

P
(
|ξi| > xi

∣∣ ξj > xj
)
= 0

for all 1 6 i 6= j 6 n.

This concept is related to what is called asymptotic independence, see, e.g., [18], and
indicates that neither too positively nor too negatively can ξi and ξj be dependent.

Assumption 2. Suppose that for real-valued r.v.s ξ1, . . . , ξn, there exist two positive
constants x0 and M such that

P
(
|ξi| > xi

∣∣ ξj = xj with j ∈ J
)
6MP(ξi > xi)

holds for all i = 1, . . . , n, ∅ 6= J ⊂ {1, . . . , n} \ {i}, and xi ∧ xj > x0 with j ∈ J .

When xj is not a possible value of ξj , i.e., P(ξj ∈ ∆) = 0 for some open set ∆
containing xj , the conditional probability in Assumption 2 is understood as 0. This de-
pendence structure was introduced by [12] and is related to the so-called negative (or
positive) regression dependence proposed by [14]. As pointed by [12], if r.v.s ξ1, . . . , ξn
follow a joint n-dimensional Farlie–Gumbel–Morgenstern (FGM) distribution of the form

F (x1, . . . , xn) =

n∏
k=1

Vk(xk)

(
1 +

∑
16i<j6n

γijVi(xi)Vj(xj)

)
, (5)

where γij are real-valued numbers such that F (x1, . . . , xn) is a proper n-dimensional
distribution, V1, . . . , Vn are absolutely continuous marginal distributions satisfying
Vk(−x) = o(Vk(x)), k = 1, . . . , n, then Assumptions 1 and 2 are both satisfied. In
addition, Assumption 2 implies Assumption 1.

Now we are ready to state our main result in which Assumption 2 is satisfied for
ξ1 = X and ξ2 = Y with n = 2 and remark that the delay times Di, i > 1, can be
arbitrarily dependent.

Theorem 1. Consider the risk model (1) in which the generic random vector (X,Y )
satisfies Assumption 2 with F ∈ S. Let T > 0 be any fixed time such that P(τ1 6 T ) > 0.

(i) If G ∈ S and G(x) � F (x), then

ψ(x;T ) ∼
T∫

0−

P
(
Xe−Rs > x

)
λ(ds) +

T∫
0−

P
(
Y e−Rs > x

)
(λ ∗H)(ds),

where (λ ∗H)(s) =
∫ s
0−
H(s− t)λ(dt).

(ii) If G(x) = o(F (x)), then

ψ(x;T ) ∼
T∫

0−

P
(
Xe−Rs > x

)
λ(ds).
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We remark that in Theorem 1, the condition of (X,Y ) satisfying Assumption 2 can
be reduced to

P
(
|X| > x

∣∣ Y = y
)
6MF (x), P

(
|Y | > x

∣∣ X = y
)
6MG(x)

when x ∧ y > x0 for some M > 0 and x0 > 0. The following corollary is a simplified
version of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, assume that F ∈ R−α for some α > 0,
the process {N(t), t > 0} is a homogeneous Poisson process with intensity λ > 0, and
the distribution H of the delay time is exponentially distributed with intensity λH > 0.
Let T > 0 be any fixed time such that P(τ1 6 T ) > 0.

(i) If G ∈ R−α and G(x) � F (x), then

ψ(x;T ) ∼ λ
(
eTφ(α) − 1

φ(α)
F (x) +

eT (φ(α)−λH) − 1

λH − φ(α)
G(x)

)
, (6)

where φ(z) = logE[e−zR1 ].
(ii) If G(x) = o(F (x)), then

ψ(x;T ) ∼ λ(eTφ(α) − 1)

φ(α)
F (x).

3 A simulation study

In this section, we use some numerical simulations to verify the accuracy of the asymp-
totic result for ψ(x;T ) in Corollary 1. To this end, via the crude Monte Carlo (CMC)
method we compare the simulated ruin probability ψ(x;T ) in (2) with the asymptotic one
on the right-hand side of (6).

Throughout this section, model specifications for the numerical studies are listed
below:

• The main and delayed claims X and Y are modelled by a bivariate FGM distribution
of (5), which can be reduced to P(X 6 x, Y 6 y) = F (x)G(y)(1 + γF (x)G(y))
with parameter γ ∈ [−1, 1]; and their marginal distributions are identical to a Pareto
distribution (4) with parameters α > 0 and µ > 0. Clearly, F = G ∈ R−α.

• The accident arrival counting process {N(t), t > 0} is a homogeneous Poisson
process with intensity λ > 0. That is, the accident inter-arrival times {θi, i > 1}
are i.i.d. nonnegative r.v.s with a common exponential distribution having parameter
λ > 0.

• The delay times {Di, i > 1} are i.i.d. nonnegative r.v.s with a common exponential
distribution having parameter λH > 0.

• The stochastic accumulated return rate process {Rt, t > 0} is specialised to

Rt = r0t+

M(t)∑
i=1

Zi, (7)

https://www.journals.vu.lt/nonlinear-analysis
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where r0 > 0 is a constant, {M(t), t > 0} is a homogeneous Poisson process with
intensity ρ > 0, and {Zi, i > 1} are i.i.d. nonnegative r.v.s; see a similar discussion
in [13]. Clearly, such an Rt constitutes a nonnegative Lévy process [4, Prop. 3.10], it
can be calculated that in Corollary 1,

φ(z) = logE
[
e−zR1

]
= −r0z +

(
E
[
e−zZ1

]
− 1
)
ρ.

Further, assume that Z1 is uniformly distributed on [0, 1].

• The stochastic interest process {R̃t, t > 0} reduces to R̃t = rt with constant interest
rate r > 0.

The various parameters are set to:

T = 10, c(s) = 1, δ = 1, r = 1,

γ = 0.5, α = 1.2, µ = 1,

λ = 1, λH = 0.5, r0 = 1, ρ = 1.

For the simulated estimation ψ̂(x;T ), we first divide the time interval [0, T ] into
n parts, and for the given tk = kT/n, k = 1, . . . , n, we generate m samples N (j)(tk),
j = 1, . . . ,m. Then, for each j = 1, . . . ,m, generate N (j)(tk) pairs of (X(j)

i , Y
(j)
i ), the

accident inter-arrival times θ(j)i , and the delay times D(j)
i , i = 1, . . . , N (j)(tk). For each

j = 1, . . . ,m, generate R(j)
tk

according to (7). Thus, the discounted value of the surplus
process U (j)(tk) can be calculated according to (1). In this way, the ruin probability
ψ(x;T ) can be estimated by

ψ̂(x;T ) =
1

m

m∑
j=1

1{
∧n
k=1 U

(j)(tk)<0}. (8)

In Fig. 1, we compare the CMC estimate ψ̂(x;T ) in (8) with the asymptotic value
given by (6) on the left and show their ratio on the right.
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Figure 1. Comparison between the simulated and asymptotic values of finite-time ruin probability (a) and their
ratio (b).
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The CMC simulation is conducted with the sample size m = 7 × 106, the time step
size T/n = 10−3 with n = 104, and the initial wealth x from 500 to 3000. From Fig. 1 it
can be seen that with the increase of the initial wealth x, both estimates decrease gradually
and the two lines get closer. In addition, the ratio of the simulated and asymptotic values
for the finite-time ruin probability are close to 1. The fluctuation is due to the poor
performance of the CMC method, which requires a sufficiently large sample size to meet
the demands of high accuracy.

4 Tail behavior of randomly weighted sum

In this section, we investigate the asymptotic tail probability of finite randomly weighted
sum generated by dependent subexponential r.v.s, which plays an important role in prov-
ing our main result and may be interesting on its own right. Before giving the results, we
firstly introduce a series of lemmas. In the sequel, let (ξ∗1 , . . . , ξ

∗
n) be a random vector with

independent components and the same marginal distributions as those of (ξ1, . . . , ξn),
which is independent of all the other random sources.

Lemma 1.

(i) If V1 ∈ S, V2 ∈ L, and V 1(x) � V 2(x), then V1 ∗ V2 ∈ S.
(ii) If V1 ∈ S and V2(x) = o(V1(x)), then V1 ∗ V2 ∈ S and V1 ∗ V2(x) ∼ V1(x).

(iii) Let (ξ1, ξ2) be a real-valued random vector with marginal distributions V1 and
V2, respectively, and satisfying Assumption 2 with n = 2. If V1 ∈ S and V2(x) =
o(V1(x)), then Fξ1+ξ2 ∈ S and

P(ξ1 + ξ2 > x) ∼ V1(x). (9)

Proof. The proofs of parts (i) and (ii) are referred to Theorem 3.11 (or Corollary 3.16)
and Corollary 3.18 of [8], respectively.

(iii) It is easy to see that Fξ1+ξ2 ∈ S if (9) holds. By V1 ∈ S ⊂ L there exists
a function h(x) ↑ ∞ such that h(x) = o(x), and

V1
(
x+ yh(x)

)
∼ V1(x) (10)

holds for any fixed y ∈ R.
On the one hand, for sufficiently large x, according to ξ2 belonging to (−∞, h(x)],

(h(x), x− h(x)], and (x− h(x), ∞), we divide the tail probability P(ξ1 + ξ2 > x) into
three parts denoted by I1, I2, and I3. By (10) and V2(x) = o(V1(x)) we have

I1 6 V1
(
x− h(x)

)
∼ V1(x) (11)

and
I3 6 V2

(
x− h(x)

)
= o
(
V1(x)

)
. (12)

https://www.journals.vu.lt/nonlinear-analysis
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As for I2, by Assumption 2, for sufficiently large x,

I2 =

x−h(x)∫
h(x)

P
(
ξ1 > x− u

∣∣ ξ2 = u
)
V2(du)

6MP
(
ξ∗1 + ξ∗2 > x, h(x) < ξ∗2 6 x− h(x)

)
=M

(
P(ξ∗1 + ξ∗2 > x)−P

(
ξ∗1 + ξ∗2 > x, ξ∗2 6 h(x)

)
−P

(
ξ∗1 + ξ∗2 > x, ξ∗2 > x− h(x)

))
=:M(I21 − I22 − I23).

Clearly, part (ii) gives I21 ∼ V1(x), and similarly to (12), I23 = o(V1(x)). According to
the dominated convergence theorem and V1 ∈ S ⊂ L, we have I22 ∼ V1(x). Thus,

I2 = o
(
V1(x)

)
. (13)

Combining (11)–(13), we obtain the upper bound

P(ξ1 + ξ2 > x) . V1(x).

On the other hand,

P(ξ1 + ξ2 > x) > P
(
ξ1 + ξ2 > x, ξ2 > −h(x)

)
> P

(
ξ1 > x+ h(x), ξ2 > −h(x)

)
= P

(
ξ1 > x+ h(x)

)
−P

(
ξ1 > x+ h(x), ξ2 < −h(x)

)
=: J1 − J2.

It is easy to see that J1 ∼ V1(x), and further, by Assumption 2 and (10),

J2 =

∞∫
x+h(x)

P(ξ2 < −h(x) | ξ1 = u)V1(du)

6MP
(
ξ2 > h(x)

)
V1
(
x+ h(x)

)
= o
(
V1(x)

)
.

Therefore, the lower bound

P(ξ1 + ξ2 > x) & V1(x)

is derived.

Lemma 2. Let ξ1, . . . , ξn be n real-valued r.v.s with distributions V1, . . . , Vn, respec-
tively. If Assumption 1 is satisfied, then for every set ∅ 6= I ( {1, . . . , n}, every
j ∈ {1, . . . , n} \ I , and any b > 0,

lim
x∧y→∞

sup
ci∈[0,b], i∈I

P

(∣∣∣∣∑
i∈I

ciξi

∣∣∣∣ > x
∣∣∣ ξj > y

)
= 0.
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Proof. Clearly,

sup
ci∈[0,b], i∈I

P

(∣∣∣∣∣∑
i∈I

ciξi

∣∣∣∣∣ > x
∣∣∣ ξj > y

)
6
∑
i∈I

P

(
|ξi| >

x

bn

∣∣∣ ξj > y

)
,

which tends to 0 as x ∧ y →∞ by Assumption 1.

The next lemma can be derived by using Lemma 2 and the arguments in the proof of
Lemma 4.3 of [12]. We omit its detailed proof.

Lemma 3. Let ξ1, . . . , ξn be n real-valued r.v.s with distributions V1, . . . , Vn, respec-
tively. If Assumption 1 is satisfied and Vi ∈ L, i = 1, . . . , n, then for any 0 < a 6 b <∞
and uniformly for all ci ∈ [a, b], i = 1, . . . , n,

P

(
n∑
i=1

ciξi > x

)
&

n∑
i=1

P(ciξi > x).

Along the similar line of the proofs of Lemmas 5.1 and 5.2 in [12], we can obtain
the following two lemmas in which the uniformity for all ci ∈ [a, b], i = 1, . . . , n,
holds by addressing the uniform convergence for the weighted sum with independent
subexponential summands and nonrandom weights; see, e.g., Lemma 1 of [23].

Lemma 4. Let ξ1, . . . , ξn be n real-valued r.v.s with distributions V1, . . . , Vn, respec-
tively. If Assumption 2 is satisfied, Vi ∈ L and Vi(x) � V (x) for some distribution
V ∈ S, i = 1, . . . , n, then there exist two positive numbers x0 and dn such that for any
0 < a 6 b <∞ and each k = 1, . . . , n,

P

(
n∑

i=1,i6=k

ciξi > x
∣∣∣ ξk = xk

)
6 dnP

(
n∑

i=1,i6=k

ciξ
∗
i > x

)

holds for all x ∧ xk > x0 and ci ∈ [a, b], i = 1, . . . , n.

Lemma 5. Let ξ∗1 , . . . , ξ
∗
n be n independent and nonnegative r.v.s with distributions V1,

. . . , Vn, respectively. If Vi ∈ L and Vi(x) � V (x) for some distribution V ∈ S,
i = 1, . . . , n, then, for any function h(x) satisfying h(x) < x and h(x) ↑ ∞, any
k = 1, . . . , n, and 0 < a 6 b <∞, it holds that uniformly for all ci ∈ [a, b], i = 1, . . . , n,

P

(
n∑
i=1

ciξ
∗
i > x, h(x) < ckξ

∗
k 6 x

)
= o(1)

n∑
i=1

P(ciξ
∗
i > x).

Lemma 6. Under the conditions of Lemma 4, for 0 < a 6 b <∞, it holds that uniformly
for all ci ∈ [a, b], i = 1, . . . , n,

P

(
n∑
i=1

ciξi > x

)
.

n∑
i=1

P(ciξi > x). (14)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Finite-time ruin probability with delayed claims 811

Proof. By noting P(
∑n
i=1 ciξi > x) 6 P(

∑n
i=1 ciξ

+
i > x) we only prove (14) for

nonnegative ξ1, . . . , ξn. Recalling h(·) in (10), it holds that

P

(
n∑
i=1

ciξi > x

)
6

n∑
i=1

P
(
ciξi > x− h(x)

)
+P

(
n∑
i=1

ciξi > x, h(x) <

n∨
k=1

ckξk 6 x− h(x)

)
=: I1 + I2.

By (10), I1 ∼
∑n
i=1 P(ciξi > x) holds uniformly for all ci ∈ [a, b], i = 1, . . . , n. As

for I2, by Lemmas 4 and 5, it holds that for sufficiently large x and uniformly for all
ci ∈ [a, b], i = 1, . . . , n,

I2 6
n∑
k=1

P

(
n∑
i=1

ciξi > x, h(x) < ckξk 6 x− h(x)

)

=

n∑
k=1

(x−h(x))/ck∫
h(x)/ck

P

(
n∑

i=1, i 6=k

ciξi > x− cky
∣∣∣ ξk = y

)
Vk(dy)

6 dn

n∑
k=1

(x−h(x))/ck∫
h(x)/ck

P

(
n∑

i=1, i 6=k

ciξ
∗
i > x− cky

)
Vk(dy)

= dn

n∑
k=1

P

(
n∑
i=1

ciξ
∗
i > x, h(x) < ckξ

∗
k 6 x− h(x)

)

= o(1)

n∑
i=1

P(ciξi > x).

Therefore, the desired relation (14) follows.

Combining Lemmas 3 and 6 gives the first result on the uniform asymptotics for the
tail probability of the weighted sum with nonrandom weights.

Proposition 1. Under the conditions of Lemma 4, for 0 < a 6 b < ∞, it holds that
uniformly for all ci ∈ [a, b], i = 1, . . . , n,

P

(
n∑
i=1

ciξi > x

)
∼

n∑
i=1

P(ciξi > x).

Let ξ1, . . . , ξn be n nonnegative r.v.s satisfying Assumption 2, and θ1, . . . , θn be n
arbitrarily dependent, nondegenerate at 0, and nonnegative r.v.s independent of ξ1, . . . , ξn.
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If θ1, . . . , θn are bounded from above, then for each 1 6 i 6= j 6 n,

P(θiξi > x, θjξj > x) 6 P

(
θiξi > x, ξj >

x

b

)

=

b∫
0

∞∫
x/b

P

(
ξi >

x

u

∣∣∣ ξj = y

)
P(ξj ∈ dy)P(θi ∈ du)

6M

b∫
0

∞∫
x/b

P

(
ξi >

x

u

)
P(ξj ∈ dy)P(θi ∈ du)

=MP

(
ξj >

x

b

)
P(θiξi > x)

= o(1)P(θiξi > x), (15)

where b > 0 is the common upper bound of θ1, . . . , θn.
By using (15) and Proposition 1 we can mimic the proof of Theorem 1 of [23] to estab-

lish the asymptotic formula for the randomly weighted sum of dependent subexponential
and nonnegative summands.

Proposition 2. Let ξ1, . . . , ξn be n nonnegative r.v.s with distributions V1, . . . , Vn, re-
spectively, and satisfying Assumption 2; and let θ1, . . . , θn be n nonnegative r.v.s, which
are arbitrarily dependent, bounded from above, nondegenerate at 0, and independent of
ξ1, . . . , ξn. If Vi ∈ L and Vi(x) � V (x) for some distribution V ∈ S, i = 1, . . . , n, then

P

(
n∑
i=1

θiξi > x

)
∼

n∑
i=1

P(θiξi > x).

Now we state the last result, which is an extension of Proposition 2.

Proposition 3. Assume that all conditions of Proposition 2 are satisfied. Let η be a real-
valued r.v. independent of all other sources. If P(η > x) = o(V (x/c)) for all c > 0,
then

P

(
n∑
i=1

θiξi + η > x

)
∼

n∑
i=1

P(θiξi > x).

Proof. On the one hand, since θi is nondegenerate at 0, there exists some small ε0 > 0
such that P(θ1 > ε0) > 0. For such ε0, by the condition P(η > x) = o(V (x/ε)) we
have that for any ε > 0, there exists some large x0 such that P(η > x) 6 εV (x/ε0) for
all x > x0. Construct a new nonnegative r.v. ζ, independent of all other sources, with tail
distribution

P(ζ > x) =

{
εV ( xε0 ), x > x0,

1, x < x0.
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Clearly, Fζ ∈ S and η 6s.t. ζ. Then, by Proposition 2,

P

(
n∑
i=1

θiξi + η > x

)
6 P

(
n∑
i=1

θiξi + ζ > x

)

∼
n∑
i=1

P(θiξi > x) + εV

(
x

ε0

)

∼
n∑
i=1

P(θiξi > x),

by letting x → ∞ then ε ↓ 0, where in the last step, we used V1(x) � V (x) and the fact
P(θ1ξ1 > x) > P(θ1ξ1 > x, θ1 > ε0) > P(θ1 > ε0)V (x/ε0).

On the other hand, according to Fatou’s lemma and Proposition 2,

lim inf
x→∞

P(
∑n
i=1 θiξi + η > x)∑n
i=1 P(θiξi > x)

> lim inf
x→∞

P(
∑n
i=1 θiξi − η− > x)∑n
i=1 P(θiξi > x)

>

∞∫
0−

lim inf
x→∞

P(
∑n
i=1 θiξi > x+ u)∑n
i=1 P(θiξi > x)

P
(
η−∈ du

)

=

∞∫
0−

lim inf
x→∞

∑n
i=1 P(θiξi > x+ u)∑n
i=1 P(θiξi > x)

P
(
η−∈ du

)

>

∞∫
0−

lim inf
x→∞

n∧
i=1

P(θiξi > x+ u)

P(θiξi > x)
P
(
η−∈ du

)
= 1,

where in the last step, we used Fθiξi ∈ L due to Lemma 2 of [23].

Remark 1. Propositions 2 and 3 still hold if not all weights are degenerate at 0.

5 Proofs of main results

Write the last stochastic integral on the right-hand side of (1) as

p(t) =

t∫
0

e−R̃s B(ds) (16)

and its supremum and infimum as

p∗(t) = sup
06s6t

p(s) > 0 and p∗(t) = inf
06s6t

p(s) 6 0
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for any t > 0. Before proving the main result, we firstly establish two lemmas. The first
one gives the distribution of the above supremum and infimum of the stochastic integral,
which may be interesting in its own right.

Lemma 7. Let {R̃t, t > 0} be a Lévy process, and {B(t), t > 0} be a Brownian motion
independent of {R̃t, t > 0}. Then, for any fixed T > 0 and any x > 0,

P
(
p∗(T ) > x

)
= P

(
p∗(T ) < −x

)
= 2P

(
Z
√
ξ(T ) > x

)
, (17)

where Z is a standard normal r.v. independent of ξ(t) =
∫ t
0
e−2R̃s ds, t > 0.

We remark that if R̃t = rt for some r > 0, then Lemma 7 reduces to Theorem D.3(ii)
of [20].

Proof of Lemma 7. Since {R̃t, t > 0} is independent of {B(t), t > 0}, according to
Proposition C.2 of [19], the stochastic integral p(t) in (16) is a continuous Ocone martin-
gale; that is, it can be expressed as a time-changed Brownian motion

p(t) =W
(
[p, p]t

)
=W

(
ξ(t)

)
, t > 0, (18)

for some Brownian motion {W (t), t > 0} independent of {ξ(t), t > 0}, where [p, p]t is
the quadratic variation of p(t). It follows from (18) that

p∗(T )
d
= −p∗(T )

d
= |Z|

√
ξ(T ),

which coincides with (17), where d
= represents equality in distribution.

Further, if {R̃t, t > 0} is a nonnegative Lévy process, then ξ(T ) 6 T for any fixed
T > 0. Hence, by Lemma 7 we have that for any x > 0,

P
(
δp∗(T ) > x

)
= P

(
δp∗(T ) < −x

)
6 2Φ

(
x

δ
√
T

)
, (19)

where Φ is the standard Gaussian distribution function. Therefore, by mimicking the
proof of Theorem 1.1 of [24] we derive that

Lemma 8. Let {ξi, i > 1} be a sequence of i.i.d. nonnegative r.v.s with common dis-
tribution belonging to S, let {N(t), t > 0} be a renewal counting process with arrival
times τ1, τ2, . . . and mean function λ(t), and let {Rt, t > 0} and {R̃t, t > 0} be two
nonnegative Lévy processes. Assume that {ξi, i > 1}, {N(t), t > 0}, {Rt, t > 0}, and
{R̃t, t > 0} are mutually independent. Then, for any T > 0 such that P(τ1 6 T ) > 0, it
holds that

lim
m→∞

sup
x>0

P(
∑N(T )
i=1 ξie

−Rτi + p∗(T ) > x, N(T ) > m)∫ T
0−

P(ξ1e−Rs > x)λ(ds)

= lim
m→∞

sup
x>0

∑∞
n=m+1

∑n
i=1 P

(
ξie
−Rτi > x, N(T ) = n

)∫ T
0−

P(ξ1e−Rs > x)λ(ds)
= 0.
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5.1 Proof of Theorem 1

We firstly prove part (i). We deal with the upper bound for ψ(x;T ). Choosing some large
m, we have that for all x > 0,

ψ(x;T ) 6 P

(
N(T )∑
i=1

Xie
−Rτi +

N(T )∑
i=1

Yie
−Rτi+Di1{τi+Di6T} + p∗(T ) > x

)

=

(
m∑
n=1

+

∞∑
n=m+1

)
P

(
n∑
i=1

Xie
−Rτi +

n∑
i=1

Yie
−Rτi+Di

× 1{τi+Di6T} + p∗(T ) > x, N(T ) = n

)
=: I1 + I2.

For I2, by Proposition 1, P(X + Y > x) ∼ F (x) + G(x) ∼ P(X∗ + Y ∗ > x), which
implies FX+Y ∈ S due to Lemma 1(i), and P(X + Y > x) = O(F (x)) due to
F (x) � G(x). Then

T∫
0−

P
(
(X + Y )e−Rs > x

)
λ(ds)

=

T∫
0−

∞∫
0

P(X + Y > xeu)

F (xeu)
· F
(
xeu
)
P(Rs ∈ du)λ(ds)

= O(1)

T∫
0−

P
(
Xe−Rs > x

)
λ(ds).

This, together with Lemma 8, leads to

lim
m→∞

lim sup
x→∞

I2∫ T
0−

P(Xe−Rs > x)λ(ds)

6 lim
m→∞

lim sup
x→∞

∑∞
n=m+1 P(

∑n
i=1(Xi+Yi)e

−Rτi+p∗(T )>x, N(T )=n)∫ T
0−

P(Xe−Rs>x)λ(ds)

= 0. (20)

Now we turn to I1. For each 1 6 n 6 m,

P

(
n∑
i=1

Xie
−Rτi +

n∑
i=1

Yie
−Rτi+Di1{τi+Di6T} + p∗(T ) > x, N(T ) = n

)

6 P

(
n∑
i=1

Xie
−Rτi1{N(T )=n}+

n∑
i=1

Yie
−Rτi+Di1{τi+Di6T,N(T )=n}+p

∗(T )>x

)
.
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If P(N(T ) = n) > 0, then the first n weights are nondegenerate at 0. Note that by (19)
and F ∈ S we have that for all c > 0,

P
(
p∗(T ) > x

)
= o

(
F

(
x

c

))
.

Then, according to Proposition 3 and Remark 1,

P

(
n∑
i=1

Xie
−Rτi +

n∑
i=1

Yie
−Rτi+Di1{τi+Di6T} + p∗(T ) > x, N(T ) = n

)

.
n∑
i=1

P
(
Xie

−Rτi1{N(T )=n} > x
)

+

n∑
i=1

P
(
Yie
−Rτi+Di1{τi+Di6T, N(T )=n} > x

)
. (21)

Trivially, if P(N(T ) = n) = 0, then both sides of (21) are 0, and notation . is understood
as =. Thus,

I1 .

( ∞∑
n=1

−
∞∑

n=m+1

)
n∑
i=1

(
P
(
Xe−Rτi1{N(T )=n} > x

)
+P

(
Y e−Rτi+Di1{τi+Di6T, N(T )=n} > x

))
=: I11 − I12. (22)

Interchanging the order of the sum in I11 yields

I11 =

T∫
0−

P
(
Xe−Rs > x

)
λ(ds) +

T∫
0−

P
(
Y e−Rs > x

)
(λ ∗H)(ds). (23)

As for I12,

I12 6
∞∑

n=m+1

n∑
i=1

(
P
(
Xe−Rτi > x, N(T ) = n

)
+P

(
Y e−Rτi > x, N(T ) = n

))
.

Applying F (x) � G(x) and Lemma 8 gives that

lim
m→∞

lim sup
x→0

I12∫ T
0−

P(Xe−Rs > x)λ(ds)
= 0. (24)

Combining (20) and (22)–(24), we obtain the upper bound for ψ(x;T ).
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Now we estimate the lower bound for ψ(x;T ). Since p∗(T ) > 0, we have that for
any fixed integer m and all x > 0,

ψ(x;T ) > P

(
N(T )∑
i=1

Xie
−Rτi +

N(T )∑
i=1

Yie
−Rτi+Di1{τi+Di6T} − p

∗(T )− c0T > x

)

>
m∑
n=1

P

(
n∑
i=1

Xie
−Rτi1{N(T )=n} +

n∑
i=1

Yie
−Rτi+Di1{τi+Di6T,N(T )=n}

− p∗(T )− c0T > x

)
. (25)

Since −p∗(T )− c0T is nonpositive, we have that for all c > 0 and any x > 0,

P
(
−p∗(T )− c0T > x

)
= 0 = o

(
F

(
x

c

))
.

As done in dealing with I1, we can derive the lower bound for ψ(x;T ).
The proof of part (ii) is much similar to that of (i), and we only show the difference.

For the upper bound, it is easy to see that (20) still holds by using Lemma 1(iii) and the
fact

T∫
0−

P
(
(X + Y )e−Rs > x

)
λ(ds) ∼

T∫
0−

P
(
Xe−Rs > x

)
λ(ds). (26)

Note that for each 1 6 n 6 m,

P

(
n∑
i=1

Xie
−Rτi +

n∑
i=1

Yie
−Rτi+Di1{τi+Di6T} + p∗(T ) > x, N(T ) = n

)

6 P

(
n∑
i=1

(Xi + Yi)e
−Rτi1{N(T )=n} + p∗(T ) > x

)
.

Then, as done in (22)–(24), by using Lemma 1(iii), Proposition 3, Lemma 8, and (26) we
can obtain

I1 .

T∫
0−

P
(
Xe−Rs > x

)
λ(ds),

which, together with (20), leads to

ψ(x;T ) .

T∫
0−

P
(
Xe−Rs > x

)
λ(ds).

For the lower bound, by (25), for any fixed integer m and all x > 0,

ψ(x;T ) >
m∑
n=1

P

(
n∑
i=1

Xie
−Rτi1{N(T )=n} − p∗(T )− c0T > x

)
.
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As done in (22)–(24), we can derive

ψ(x;T ) &

T∫
0−

P
(
Xe−Rs > x

)
λ(ds).

5.2 Proof of Corollary 1

We only prove part (i) and omit the similar proof of (ii). By Proposition 3.14 of [4] we
have that for any t > 0 and z ∈ R,

E
[
e−zRt

]
= etφ(z). (27)

Since N(t) is a homogeneous Poisson process with intensity λ and the distribution H is
exponential with parameter λH , it can be calculated that (λ∗H)(ds) = λ(1−e−λHs) ds.
Then by G ∈ R−α and (27) we have

T∫
0−

P
(
Y e−Rs > x

)
(λ ∗H)(ds)

= λ

T∫
0

(
1− e−λHs

) 1∫
0

G

(
x

y

)
P
(
e−Rs ∈ dy

)
ds

∼ λG(x)
T∫

0

(
1− e−λHs

)
E
[
e−αRs

]
ds

= λ

(
eTφ(α) − 1

φ(α)
− eT (φ(α)−λH) − 1

φ(α)− λH

)
G(x),

where in the second step, we used the dominated convergence theorem. Similarly,

T∫
0−

P
(
Xe−Rs > x

)
λ(ds) ∼ λ(eTφ(α) − 1)

φ(α)
F (x).

Therefore, the desired relation follows from Theorem 1.
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