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Abstract. In this paper, we establish some point ofϕ-coincidence and commonϕ-fixed point results
for two self-mappings defined on a metric space via extended CG-simulation functions. By giving
an example we show that the obtained results are a proper extension of several well-known results
in the existing literature. As applications of our results, we deduce some results in partial metric
spaces besides proving an existence and uniqueness result on the solution of system of integral
equations.
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1 Introduction

In 2015, Khojasteh et al. [16] introduced the notion of simulation functions and employ it
to unify several fixed point results in the existence literature including Banach contraction
principle. Thereafter, several authors studied and extended this notion enlarging such
class of auxiliary functions. In this regard, in 2017, Roldán and Samet [10] bring in the
concept of an extended simulation function and proved some fixed point results utilizing
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there extended notion. One year later, Liu et al. [19] obtained a new generalization
of simulation functions using the class of C-function (the class of C-functions initiated
by Ansari [2] in 2014) called CG-simulation functions. In [31], the author successively
extended the fixed point results from the metric setting to the partial metric setting. In [29],
the ordered approach was involved to fixed point results. In [30], the author used the fixed
point result to solve a first-order periodic differential problem.

Very recently, Chanda et al. [6] bring in the notion of extended CG-simulation func-
tions, which generalized several notions such as simulation functions, extended simula-
tion functions and CG-simulation functions.

On the other hand, the notion of ϕ-fixed point (a fixed point that belongs to the zero set
of a given function ϕ : X → [0,∞)) was introduced by Jleli and Samet [12] to establish
some ϕ-fixed point theorems on a metric space (X, d), which has been used to deduce
some fixed point results on partial metric space (X, p).

For more details, we refer the reader to [3, 7, 8, 11, 13–15, 17, 18, 20, 25–28] and
references cited therein.

Motivated by the above research work, in this paper, we use the idea of extended
CG-simulation functions to study the existence and uniqueness of point of ϕ-coincidence
and common ϕ-fixed point for two self-mappings defined on complete metric and partial
metric spaces. The obtained results extend and generalize several results as shown in the
following diagram:

Our Result reduce−→ Radenović et al. [24]
reduce−→ Khojasteh et al. [16]

↓
reduce

↓
Banach [4]

reduce

↓
reduce

↑
Rolden et al. [10]

reduce−→ Karapinar et al. [14]
reduce−→ Jileli et al. [12]

2 Preliminaries

With a view to have a self-contained presentation, we collect the relevant background
material (basic notions, definitions, and fundamental results) starting with the definition
of simulation functions, which runs as follows.

Definition 1. (See [16].) A simulation function is a mapping ζ : [0,∞)2 → R satisfying
the following conditions:

(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(t, s) < s− t for all t, s > 0,
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,

then lim supn→∞ ζ(tn, sn) < 0.

Roldan et al. [9] modified Definition 1 in order to enlarge the class of simulation
functions by sharping the condition (ζ3) as follows:
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(ζ3′) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 and
tn < sn, then lim supn→∞ ζ(tn, sn) < 0.

Several examples of simulation functions can be found in [16]. Let us denote by Z
the class of all simulation functions.

Roldán and Samet [10] extended the notion of simulation functions as under.

Definition 2. (See [10].) A function ξ : [0,∞)2 → R is said to be an extended simulation
function if the following conditions hold:

(ξ1) ξ(t, s) < s− t for all t, s > 0,
(ξ2) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn = l > 0

and sn > l, n ∈ N0, then lim supn→∞ ξ(tn, sn) < 0,
(ξ3) for any sequence {tn} in (0,∞), if limn→∞ tn = l > 0 and ξ(tn, l) > 0, n ∈ N0,

then l = 0.

Proposition 1. (See [10, Ex. 2.6].) Every simulation function is an extended simulation
function, but the converse is not true in general.

For basic examples and more details about extended simulation functions, we refer
the reader to [10]. The family of all extended simulation functions will be denoted by εZ .

Ansari [2] introduced the family of C-class functions as below.

Definition 3. (See [2].) A continuous function G : [0,∞)2 → R is said to be a C-class
function if it satisfies the following conditions (for all t, s ∈ [0,∞)):

(i) G(s, t) 6 s,
(ii) G(s, t) = s implies that either t = 0 or s = 0.

The family of all C-class functions will be denoted by C.

Definition 4. (See [19].) A function G : [0,∞)2 → R has a property CG if there exists
a constant CG > 0 such that

(G1) G(s, t) > CG implies s > t,
(G2) G(t, t) 6 CG for all t ∈ [0,∞).

Liu et al. [19] defined CG-simulation functions as follows.

Definition 5. (See [19].) A function ζ∗ : [0,∞)2 → R is said to be a CG-simulation
function if the following conditions are satisfied:

(ζ∗1) ζ∗(0, 0) = 0,
(ζ∗2) ζ∗(t, s) < G(s, t) for all t, s > 0, where G ∈ C with the property CG ,
(ζ∗3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 and

tn < sn, then lim supn→∞ ζ∗(tn, sn) < CG .

For basic examples of CG-simulation functions, we refer the reader to [19]. Let us
denote by ZG the family of all CG-simulation functions.

Chanda et al. [6] extended the notion of CG-simulation functions as under.

Nonlinear Anal. Model. Control, 26(5):781–800, 2021
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Definition 6. (See [6].) A function θ : [0,∞)2 → R is said to be an extended CG-simu-
lation function if the following conditions are hold:

(θ1) θ(t, s) < G(s, t) for all t, s > 0, where G ∈ C with the property CG ,
(θ2) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn = l > 0

and sn>l, n ∈ N0, then lim supn→∞ θ(tn, sn) < CG ,
(θ3) for any sequence {tn} in (0,∞), if limn→∞ tn = l > 0 and θ(tn, l) > CG , n ∈ N0,

then l = 0.

Let us denote by ε(Z,G) the family of all extended CG-simulation functions.

Remark 1. Every simulation function, CG-simulation function, an extended simulation
function is an extended CG-simulation function (see [6, Props. 3.3, 3.4 and 3.5]). The
converse is not true in general (see Example 1).

In support of Remark 1, the following example is given in [6].

Example 1. Let θ : [0,∞)2 → R be a function defined by

θ(t, s) =

{
1− t

2 if s = 0,
ks
1+t if s > 0

for all t, s ∈ [0,∞), k ∈ [0, 1), and let G(s, t) = s/(1+ t) with CG = 1. Then θ ∈ ε(Z,G),
but θ does not belong to Z , ZG , and εZ .

In the present paper, X is a nonempty set, and the following notions are used:

• Fix(T ) = {x ∈ X: Tx = x},
• Pcoin(T, S) = {x ∈ X: x = Tv = Sv for some v ∈ X},
• Com(T, S) = {x ∈ X: x = Tx = Sx},
• Zϕ = {x ∈ X: ϕ(x) = 0, where ϕ : X → [0,∞) is a given function}.

Now, we present the notion of ϕ-fixed point, which runs as follows.

Definition 7. (See [12].) Let T be a self-mapping on X and ϕ : X → [0,∞) a given
function. An element x ∈ X is said to be ϕ-fixed point of T if and only if it is a fixed
point of T and ϕ(x) = 0, that is, x ∈ Fix(T ) ∩ Zϕ.

Let T and S be two self-mappings defined on X .

• A sequence {xn} ⊆ X is called a Picard–Jungck sequence of T and S based on x0
if Sxn+1 = Txn for all n ∈ N0.

• T and S are said to be weakly compatible if they are commute at their coincidence
points, that is, TSx = STx for all x ∈ X such that Tx = Sx.

Proposition 2. (See [1].) Let T and S be two weakly compatible self-mappings defined
on X . If T and S have a unique point of coincidence u, then u is a unique common fixed
point of T and S.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A study of common fixed points that belong to zeros of a certain given function 785

Let F be the set of all functions F : [0,∞)3 → [0,∞) satisfying the following con-
ditions for all a, b, c ∈ [0,∞):

(F1) max{a, b} 6 F (a, b, c),
(F2) F (a, 0, 0) = a,
(F3) F is continuous.

The following functions F : [0,∞)3 → [0,∞) belong to F :

1. F (a, b, c) = a+ b+ c,
2. F (a, b, c) = max{a, b}+ c,
3. F (a, b, c) = (a+ b)(c+ 1)n, n = 0, 1, 2, . . . .

3 Main results

At the beginning of this section, we define the notions of point of ϕ-coincidence and
common ϕ-fixed point of the self-mappings T and S defined on a nonempty set X .

Definition 8. Let S and T be two self-mapping on X , and let ϕ : X → [0,∞) be a given
function. An element z in X is said to be

• point of ϕ-coincidence of T and S if and only if it is a point of coincidence of T
and S and ϕ(z) = 0, that is, z ∈ Pcoin(T, S) ∩ Zϕ;

• common ϕ-fixed point of T and S if and only if it is a common fixed point of T
and S such that ϕ(z) = 0, that is, z ∈ Com(T, S) ∩ Zϕ.

Now, we prove the following proposition.

Proposition 3. Let T and S be two weakly compatible self-mappings defined on X .
Suppose that T and S have unique point of ϕ-coincidence u, then u is a unique common
ϕ-fixed point of T and S.

Proof. Suppose that u is a unique point of ϕ-coincidence of the mappings T and S, that
is, u is a unique point of coincidence of T and S with ϕ(u) = 0. Then it follows from
Proposition 2 that u is a unique common fixed point of the mappings T and S and hence
a unique common ϕ-fixed point (as ϕ(u) = 0).

Let (X, d) be a metric space. For a given three functions F ∈ F , θ ∈ E(Z,G), and
ϕ : X → [0,∞), we consider the self-mappings T, S : X → X that satisfy the following
contractive condition:

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
,Mϕ

F (x, y)
)
> CG (1)

for all x, y ∈ X such that Sx 6= Sy, where

Mϕ
F (x, y) = max

{
F
(
d(Sx, Sy), ϕ(Sx), ϕ(Sy)

)
, F
(
d(Sx, Tx), ϕ(Sx), ϕ(Tx)

)
,

F
(
d(Sy, Ty), ϕ(Sy), ϕ(Ty)

)}
.

Before formulating our main results, we prove some auxiliary results as under.

Nonlinear Anal. Model. Control, 26(5):781–800, 2021
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Lemma 1. Let T and S be two self-mappings defined on a metric space (X, d). Assume
that there exist three functions F ∈ F , θ ∈ E(Z,G), and ϕ : X → [0,∞) such that (1)
holds. If {xn}n∈N0

is a Picard–Jungck sequence of the pair (S, T ) based on x0 ∈ X such
that Sxn 6= Sxn+1 for all n ∈ N, then

(i) limn→∞ d(Sxn, Sxn+1) = limn→∞ ϕ(Sxn) = 0,
(ii) {Sxn} is a Cauchy sequence.

Proof. Let x0 ∈ X be an arbitrary point and {xn}n∈N0
be the Picard–Jungck sequence

of the pair (T, S) based on x0, that is, Txn = Sxn+1 for all n ∈ N0. Assume that
Sxn 6= Sxn+1 for all n ∈ N.

(i) In view of (F1), we have

F
(
d(Sxn, Sxn+1

)
, ϕ(Sxn), ϕ(Sxn+1)

)
> d(Sxn, Sxn+1) > 0 for all n ∈ N.

Now, we show that Mϕ
F (xn, xn+1) > 0. For simplicity, let an = F (d(Sxn, Sxn+1),

ϕ(Sxn), ϕ(Sxn+1)) for all n ∈ N. Then

Mϕ
F (xn, xn+1) = max

{
F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
,

F
(
d(Sxn, Txn), ϕ(Sxn)ϕ(Txn)

)
,

F
(
d(Sxn+1, Txn+1), ϕ(Sxn+1), ϕ(Txn+1)

)}
= max

{
F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
,

F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
,

F
(
d(Sxn+1, Sxn+2), ϕ(Sxn+1), ϕ(Sxn+2)

)}
= max{an, an, an+1} = max{an, an+1} > 0.

Setting x = xn and y = xn+1 for all n ∈ N in (1) and utilizing (θ1), we get

CG 6 θ
(
F
(
d(Txn, Txn+1), ϕ(Txn), ϕ(Txn+1)

)
,Mϕ

F (xn, xn+1)
)

= θ
(
F
(
d(Sxn+1, Sxn+2), ϕ(Sxn+1), ϕ(Sxn+2)

)
,Mϕ

F (xn, xn+1)
)

= θ
(
an+1,max{an, an+1}

)
< G

(
max{an, an+1}, an+1

)
,

which follows from (G1) that an+1 < max{an, an+1}, that is, an+1 < an for all n ∈ N.
This implies that the sequence of real numbers {an} is decreasing and bounded below by
zero. Therefore, there exists r > 0 such that

lim
n→∞

an = r.

Our claim is r = 0. On the contrary, suppose that r > 0 and consider two sequences

tn = F
(
d(Sxn+1, Sxn+2), ϕ(Sxn+1), ϕ(Sxn+2)

)
= an+1

and
sn =Mϕ

F (xn, xn+1) = max{an, an+1} = an

https://www.journals.vu.lt/nonlinear-analysis
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for all n ∈ N. Then limn→∞ tn = limn→∞ sn = r. As {an} is strictly decreasing, then
r < an = sn for all n ∈ N, and hence, condition (θ2) implies that

CG 6 lim sup
n→∞

θ
(
F
(
d(Sxn+1, Sxn+2), ϕ(Sxn+1), ϕ(Sxn+2

))
,Mϕ

F (xn, xn+1)
)

< CG ,

which is a contradiction. So, we conclude that

lim
n→∞

an = lim
n→∞

F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
= 0. (2)

Using condition (F1), we have

0 < d(Sxn, Sxn+1) 6 F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
and

0 < ϕ(Sxn) 6 F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
.

Letting n→∞ in the above two inequalities and using (2), we deduce that

lim
n→∞

d(Sxn, Sxn+1) = lim
n→∞

ϕ(Sxn) = 0.

(ii) Let us assume that the sequence {Sxn} is not Cauchy. Then (due to Lemma 13
of [5]) there exist ε > 0 and two subsequences {Sxnk

} and {Sxmk
} of {Sxn} with

mk > nk > k for all k ∈ N such that

d(Sxnk
, Sxmk

) > ε and d(Sxnk
, Sxmk−1) 6 ε (3)

with
lim
n→∞

d(Sxnk
, Sxmk

) = lim
n→∞

d(Sxnk+1, Sxmk+1) = ε. (4)

Let tk = F (d(Sxnk+1, Sxmk+1), ϕ(Sxnk+1), ϕ(Sxmk+1)) and sk = Mϕ
F (xnk

, xmk
)

for all k ∈ N. Using (3), (4), (F2), part (i) of Lemma 1 and the continuity of F , one easily
can show that

lim
k→∞

tk = lim
k→∞

sk = F (ε, 0, 0) = ε = l > 0.

Making use of (F1), we have

sk =Mϕ
F (xnk

, xmk
) > F

(
d(Sxnk

, Sxmk
), ϕ(Sxnk

), ϕ(Sxmk
)
)

> d(Sxnk
, Sxmk

) > ε = l

for all k ∈ N. Applying (θ2), we obtain

CG 6 lim sup
n→∞

θ
(
F
(
d(Sxnk+1

, Sxmk+1
), ϕ(Sxnk+1

), ϕ(Sxmk+1
)
)
,Mϕ

F (xnk
, xmk

)
)

< CG ,

which is a contradiction. Hence, we must have that {Sxn} is a Cauchy sequence.

Nonlinear Anal. Model. Control, 26(5):781–800, 2021
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Lemma 2. Let T and S be two self-mappings defined on a metric space (X, d). Assume
that there exist three functions F ∈ F , θ ∈ E(Z,G), and ϕ : X → [0,∞) such that (1)
holds. Then the point of ϕ-coincidence of T and S is unique, provided it exists.

Proof. For the seek of contradiction, we suppose that T and S have two distinct points of
ϕ-coincidence u and v, that is, Sw = Tw = u 6= v = Tz = Sz for some z, w ∈ X and
ϕ(u) = ϕ(v) = 0. In view of (F2), we have

F
(
d(Tz, Tw), ϕ(Tz), ϕ(Tw)

)
= F

(
d(v, u), 0, 0

)
= d(v, u) > 0.

Again, in view of (F2), we also have Mϕ
F (z, w) > 0, in fact,

Mϕ
F (z, w) = max

{
F
(
d(Sz, Sw), ϕ(Sz), ϕ(Sw)

)
, F
(
d(Sz, Tz), ϕ(Sz), ϕ(Tz)

)
,

F
(
d(Sw, Tw), ϕ(Sw), ϕ(Tw)

)}
= max

{
F
(
d(v, u), 0, 0

)
, F (0, 0, 0), F (0, 0, 0)

}
= F

(
d(v, u), 0, 0

)
= d(v, u) > 0.

Setting x = z and y = w in (1) and utilizing (θ1) and (G2), we get

CG 6 θ
(
F
(
d(Tz, Tw), ϕ(Tz), ϕ(Tw)

)
,Mϕ

F (z, w)
)

= θ
(
d(v, u), d(v, u)

)
< G

(
d(v, u), d(v, u)

)
6 CG ,

which is a contradiction. Hence, the point of ϕ-coincidence of T and S is unique.

Now, we are equipped to state and prove our main results starting with the following
one.

Theorem 1. Let T and S be two self-mappings defined on a metric space (X, d). Suppose
that there exists a Picard–Jungck sequence {xn}n∈N0

of T and S, and the following
conditions are satisfied:

(i) there exist F ∈F , θ∈E(Z,G) and a lower semicontinuous function ϕ : X→ [0,∞)
such that (1) holds,

(ii) (SX, d) (or (TX, d)) is complete.

Then

(a) Pcoin(T, S) ⊆ Zϕ, and the pair (T, S) has a unique point of ϕ-coincidence.
(b) Com(T, S) ⊆ Zϕ. Moreover, if (T, S) is weakly compatible pair, then it has

a unique common ϕ-fixed point.

Proof. (a) Firstly, we show that Pcoin(T, S) ⊆ Zϕ. To do so, let u ∈ Pcoin(T, S), that
is, u = Tz = Sz for some z ∈ X . Since

Mϕ
F (z, z) = max

{
F
(
d(Sz, Sz), ϕ(Sz), ϕ(Sz)

)
, F
(
d(Sz, Tz), ϕ(Sz), ϕ(Tz)

)
,

F
(
d(Sz, Tz), ϕ(Sz), ϕ(Tz)

)}
= max

{
F
(
0, ϕ(u), ϕ(u)

)
, F
(
0, ϕ(u), ϕ(u)

)
, F
(
0, ϕ(u), ϕ(u)

)}
= F

(
0, ϕ(u), ϕ(u)

)
,

https://www.journals.vu.lt/nonlinear-analysis
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therefore, on using (1) with x = y = z, we get

CG 6 θ
(
F
(
d(Tz, Tz), ϕ(Tz), ϕ(Tz)

)
,Mϕ

F (z, z)
)

= θ
(
F
(
0, ϕ(u), ϕ(u)

)
, F
(
0, ϕ(u), ϕ(u)

))
. (5)

Now, we claim that F (0, ϕ(u), ϕ(u)) = 0. On contrary, let F (0, ϕ(u), ϕ(u)) > 0. In
view of (5), (θ1), and (G2), we have

CG 6 θ
(
F
(
0, ϕ(u), ϕ(u)

)
, F
(
0, ϕ(u), ϕ(u)

))
< G

(
F
(
0, ϕ(u), ϕ(u)

)
, F
(
0, ϕ(u), ϕ(u)

))
6 CG ,

a contradiction. Therefore, we must have F (0, ϕ(u), ϕ(u)) = 0. Now, employing (F1),
we obtain

ϕ(u) 6 max
{
0, ϕ(u)

}
6 F

(
0, ϕ(u), ϕ(u)

)
= 0,

which implies that ϕ(u) = 0, and hence, Pcoin(T, S) ⊆ Zϕ.
Secondly, we show that T and S have a point of ϕ-coincidence. Let x0 ∈ X be an

arbitrary point, and let {xn}n∈N be the Picard–Jungck sequence of T and S based at x0,
that is, Sxn+1 = Txn for all n ∈ N0. If d(Sxn0 , Sxn0+1) = 0 for some n0 ∈ N, then
xn0

is a coincidence point of T and S. Therefore, T and S have a point of coincidence
and hence a point of ϕ-coincidence (as Pcoin(T, S) ⊆ Zϕ), which is unique (due to
Lemma 2). Now, suppose that d(Sxn, Sxn+1) > 0 for all n ∈ N. Then by Lemma 1,
the sequence {Sxn} is Cauchy. Assume that (SX, d) is complete, then there exists u =
Sz ∈ SX (for some z ∈ X) such that

lim
n→∞

d(Sxn, Sz) = 0. (6)

Since ϕ is lower semicontinuous, therefore, in view of (6) and part (i) of Lemma 1, we
have

0 6 ϕ(Sz) = ϕ(u) 6 lim inf
n→∞

ϕ(Sxn) = 0,

which implies that
ϕ(Sz) = ϕ(u) = 0. (7)

Now, we prove that u is a point of ϕ-coincidence. On contrary, assume that u is not a point
of ϕ-coincidence for (T, S). We distinguish the following two cases:

Case 1. Assume that u = Sz 6= Tz for all z ∈ X . Let l = F (d(Sz, Tz), 0, ϕ(Tz))
and tn = F (d(Txn, T z), ϕ(Txn), ϕ(Tz)) for all n ∈ N0. Then, in view of (F1), we
have

l = F
(
d(Sz, Tz), 0, ϕ(Tz)

)
> d(Sz, Tz) > 0. (8)

Using the continuity of F , (6), and part (i) of Lemma 1, we have

lim
n→∞

tn = lim
n→∞

F
(
d(Sxn+1, T z), ϕ(Sxn+1), ϕ(Tz)

)
= l.
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Observe that

Mϕ
F (xn, z) = max

{
F
(
d(Sxn, Sz), ϕ(Sxn), ϕ(Sz)

)
,

F
(
d(Sxn, Txn), ϕ(Sxn), ϕ(Txn)

)
,

F
(
d(Sz, Tz), ϕ(Sz), ϕ(Tz)

)}
= max

{
F
(
d(Sxn, Sz), ϕ(Sxn), 0

)
,

F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
,

F
(
d(Sz, Tz), 0, ϕ(Tz)

)}
.

Owing to the continuity of F , we get

lim
n→∞

F
(
d(Sxn, Sz), ϕ(Sxn), 0

)
= F (0, 0, 0) = 0,

lim
n→∞

F
(
d(Sxn, Sxn+1), ϕ(Sxn), ϕ(Sxn+1)

)
= F (0, 0, 0) = 0.

As a consequence, we can find n0 ∈ N such that

Mϕ
F (xn, z) = F

(
d(Sz, Tz), 0, ϕ(Tz)

)
= l for all n > n0. (9)

Therefore, using (1), (9), and (θ3), we obtain (for all n ∈ N with n > n0)

θ(tn, l) = θ
(
F
(
d(Txn, T z), ϕ(Txn), ϕ(Tz)

)
,Mϕ

F (xn, z)
)
> CG

=⇒ l = 0 =⇒ F
(
d(Sz, Tz), 0, ϕ(Tz)

)
= 0,

which contradicts (8). Therefore, u must be a point of ϕ-coincidence of the pair (T, S).
Case 2. Assume that ϕ(u) 6= 0. This assumption contradicts Eq. (7). Therefore,

again u must be a point of ϕ-coincidence of the pair (T, S).
Similarly, if we assume that (TX, d) is complete, then we again reach to a contradic-

tion. Therefore, these contradictions in all cases show that u is a point of ϕ-coincidence
of T and S, which is unique (due to Lemma 2).

(b) Following a similar argument used in part (a), one can easily prove that
Com(T, S) ⊆ Zϕ. Now, as T and S are weakly compatible mappings, in view of
Lemma 2 and Proposition 3, the mappings T and S have a unique common ϕ-fixed point.
This completes the proof.

For a given three functions F ∈ F , θ ∈ E(Z,G), and ϕ : X → [0,∞), let the
contractive condition (1) in Theorem 1 be replaced by the following one:

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
, F
(
d(Sx, Sy), ϕ(Sx), ϕ(Sy)

))
> CG (10)

for all x, y ∈ X such that Sx 6= Sy. Then the proof of the following theorem is similar
and much easier than that in the proof of Theorem 1, so the proof is omitted. Notice that
there is no direct relation between these theorems as the extended CG-simulation function
need not be monotone in its second argument.
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Theorem 2. Let T and S be two self-mappings defined on a metric space (X, d). Assume
that there exists a Picard–Jungck sequence {xn}n∈N of T and S, and the following
conditions are satisfied:

(i) there exist F ∈ F , ζ ∈ E(Z,G) and a lower semicontinuous function ϕ : X →
[0,∞) such that (10) holds,

(ii) (SX, d) (or (TX, d)) is complete.
Then

(a) Pcoin(T, S) ⊆ Zϕ, and the pair (T, S) has a unique point of ϕ-coincidence.
(b) Com(T, S) ⊆ Zϕ. Moreover, if (T, S) is weakly compatible pair, then it has

a unique common ϕ-fixed point.

The following example shows that Theorem 1 is a genuine extension of [24, Thm. 2.2]
and [10, Thm. 3.1].

Example 2. Consider the metric space (l∞, d), where l∞ is the space of all bounded
sequences of complex numbers, and d is defined by

d(x, y) = sup
i∈N

∣∣x(i)− y(i)∣∣ for all x, y ∈ l∞.

Let X = {e0, ei, i ∈ N}, where e0 is the zero sequence, and ei is the sequence whose ith
term equals to 4 and all other terms are zeros. It is clear that the pair (X, d) is a complete
metric space. Define two mappings T, S : X → X by

Tx =

{
e0 if x = e0, e1,

e2 otherwise
and Sx =

{
e0 if x = e0,

ei+1 if x = ei.

First, we show that [24, Thm. 2.3] is not applicable in this example. In fact, on con-
trary, assume that there exists ζ∗ ∈ ZG such that ζ∗(d(Tx, Ty), d(Sx, Sy)) > CG
for all x, y ∈ X such that Sx 6= Sy with CG > 0. Then, taking x = e0, y = e2 and
using (ζ∗2) and (G2), we obtain

CG 6 ζ∗
(
d(Te0, T e2), d(Se0, Se2)

)
= ζ∗(4, 4) < G(4, 4) 6 CG ,

which is a contradiction. This contradiction ensures that there is no ζ∗ ∈ ZG such that
ζ∗(d(Tx, Ty), d(Sx, Sy)) > CG . Therefore, [24, Thm. 2.3] is not applicable.

Now, to show the applicability of Theorem 1, we define two essential functions ϕ :
X → [0,∞] and F : [0,∞)→ [0,∞) by

ϕ(x) =

{
0 if x = e0,

10 otherwise
and F (a, b, c) = a+ b+ c for all a, b, c ∈ [0,∞).

It is easy to see that F ∈ F , and ϕ is a lower semicontinuous function.
Now, consider the extended CG-simulation function θ : [0,∞)2 → R given by

θ(t, s) =

{
1− t

2 if s = 0,
ks
1+t if s > 0

with CG = 1 and k =
7

8
.
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We have to prove that the contractive condition (1) holds for all x, y ∈ X such that x 6= y.
For this purpose, we consider three cases:

Case 1. If x = e0 and y = e1, then F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) = 0 and
Mϕ

F (x, y) = 14, and hence, we have

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
,Mϕ

F (x, y)
)

=
kMϕ

F (x, y)

1 + F (d(Tx, Ty), ϕ(Tx), ϕ(Ty))
=

49

4
> 1 = CG .

Case 2. If x ∈ {e0, e1} and y ∈ X −{e0, e1}, then F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) =
14 and Mϕ

F (x, y) = 20, and hence, we have

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
,Mϕ

F (x, y)
)

=
kMϕ

F (x, y)

1 + F (d(Tx, Ty), ϕ(Tx), ϕ(Ty))
=

7

6
> 1 = CG .

Case 3. If x, y ∈ X − {e0, e1}, then F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) = 20 and
Mϕ

F (x, y) = 24, and hence, we have

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
,Mϕ

F (x, y)
)

=
kMϕ

F (x, y)

1 + F (d(Tx, Ty), ϕ(Tx), ϕ(Ty))
= 1 = CG .

Therefore, in all cases, the contractive condition (1) is satisfied. Also, observe that T and
S are weakly compatible and TX is complete subspace ofX . Hence, all the hypotheses of
Theorem 1 are satisfied, and consequently, the mappings T and S have a unique common
fixed point (namely, x = e0).

As consequences of our newly proved results, we deduce several corollaries, which
can be viewed as generalizations of various results in the existing literature.

Putting S = IX , the identity mapping on X , in Theorems 1 and 2 and taking to
the account that every CG-simulation function is an extended CG-simulation function, we
deduce the following two corollaries, which seem to be new to the existing literature.

Corollary 1. Let T be a self-mapping defined on a metric space (X, d). Suppose that
there exist F ∈ F , θ ∈ ZG (or θ ∈ E(Z,G)), and a lower semicontinuous function
ϕ : X → [0,∞) such that

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
, Nϕ

F (x, y)
)
> CG for all x, y ∈ X,

where
Nϕ

F (x, y) = max
{
F
(
d(x, y), ϕ(x), ϕ(y)

)
, F
(
d(x, Tx), ϕ(x), ϕ(Tx)

)
,

F
(
d(y, Ty), ϕ(y), ϕ(Ty)

)}
.

Then Fix(T ) ⊆ Zϕ and T has a unique ϕ-fixed point.
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Corollary 2. Let T be a self-mapping on a metric space (X, d). Suppose that there exist
F ∈ F , θ ∈ ZG (or θ ∈ E(Z,G)), and a lower semicontinuous function ϕ : X → [0,∞)
such that

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
, F
(
d(x, y), ϕ(x), ϕ(y)

))
> CG for all x, y ∈ X.

Then Fix(T ) ⊆ Zϕ, and T has a unique ϕ-fixed point.

Since every simulation function (also, extended simulation function) is an extended
CG-simulation function, then from Theorems 1 and 2 we deduce the following two corol-
laries, which also seem to be new to the existing literature.

Corollary 3. Let T and S be two self-mappings defined on a metric space (X, d). Assume
that there exists a Picard–Jungck sequence {xn}n∈N of T and S, and the following
conditions are satisfied:

(i) there exist F ∈ F , θ ∈ Z (or θ ∈ EZ ) and a lower semicontinuous function
ϕ : X → [0,∞) such that

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
,Mϕ

F (x, y)
)
> 0 for all x, y ∈ X,

where

Mϕ
F (x, y) = max

{
F
(
d(Sx, Sy), ϕ(Sx), ϕ(Sy)

)
,

F
(
d(Sx, Tx), ϕ(Sx), ϕ(Tx)

)
,

F
(
d(Sy, Ty), ϕ(Sy), ϕ(Ty)

)}
,

(ii) (SX, d) (or (TX, d)) is complete.

Then
(a) Pcoin(T, S) ⊆ Zϕ, and the pair (T, S) has a unique point of ϕ-coincidence.
(b) Com(T, S) ⊆ Zϕ. Moreover, if (T, S) is weakly compatible pair, then it has

a unique common ϕ-fixed point.

Corollary 4. Let T and S be two self-mappings defined on a metric space (X, d). Assume
that there exists a Picard–Jungck sequence {xn}n∈N of T and S, and the following
conditions are satisfied:

(i) there exist F ∈ F , θ ∈ Z (or θ ∈ EZ ), and a lower semicontinuous function
ϕ : X → [0,∞) such that

θ
(
F
(
d(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
, F
(
d(Sx, Sy), ϕ(Sx), ϕ(Sy)

))
> 0 for all x, y ∈ X,

(ii) (SX, d) (or (TX, d)) is complete.

Then
(a) Pcoin(T, S) ⊆ Zϕ, and the pair (T, S) has a unique point of ϕ-coincidence.
(b) Com(T, S) ⊆ Zϕ. Moreover, if (T, S) is weakly compatible pair, then it has

a unique common ϕ-fixed point.
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4 Applications

In this section, we employ our main results obtained in metric spaces (Theorems 1 and 2)
to deduce some related results in partial metric spaces besides proving an existence and
uniqueness result on the solution of system of functional equations.

4.1 Application to partial metric spaces

In 1994, Matthews [21] introduced the notion of partial metric spaces as below.

Definition 9. (See [21].) Let X be a nonempty set. A partial metric is a mapping p :
X ×X → [0,∞) satisfying the following conditions:

(P1) p(x, x) = p(y, y) = p(x, y)⇔ x = y,
(P2) p(x, x) 6 p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z)

for all x, y, z ∈ X . The pair (X, p) is called a partial metric space.

Observe that, in the setting of partial metric spaces, the distance from a point to itself
need not to be zero.

In the following definition, we present some well-known basic notions related to
partial metric spaces.

Definition 10. (See [21].) Let (X, p) be a partial metric space.

(i) A sequence {xn} in X is called convergent and converges to x in X if p(x, x) =
limn→∞ p(xn, xn) = limn→∞ p(xn, x).

(ii) A sequence {xn} ⊆ X is said to be a Cauchy sequence if limn,m→∞ p(xn, xm)
exists and is finite.

(iii) A partial metric space (X, p) is called a complete partial metric space if every
Cauchy sequence inX converges to a point x inX such that p(x, x) = limn,m→∞ p(xn, xm).

For a partial metric p on a nonempty set X , the function dp : X ×X → [0,∞) given
by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X (11)

remains a standard metric on X .

Lemma 3. (see [21, 23].) Let (X, p) be a partial metric space. Then

(i) {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a Cauchy sequence in
the metric space (X, dp).

(ii) If the metric space (X, dp) is complete, then the partial metric space (X, p) is
also complete and vice versa. Furthermore, limn→∞ dp(xn, x) = 0 if and only if
p(x, x) = limn→∞ p(xn, x) = limn,m→∞ p(xn, xm).
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Lemma 4. (see [22].) Let (X, p) be a partial metric space, and let ϕ : X → [0,∞)
a function defined by ϕ(x) = p(x, x) for all x ∈ X . Then ϕ is lower semicontinuous in
(X, dp).

From Theorem 1 we deduce the following fixed point result in the setting of partial
metric spaces.

Theorem 3. Let T and S be two self-mappings defined on a partial metric space (X, p).
Assume that there exists a Picard–Jungck sequence {xn}n∈N of T and S, and the follow-
ing conditions are satisfied:

(i) there exists a function θ ∈ E(Z,G) such that

θ
(
p(Tx, Ty),max

{
p(Sx, Sy), p(Sx, Tx), p(Sy, Ty)

})
> CG for all x, y ∈ X, (12)

(ii) (SX, p) (or (TX, p)) is complete.

Then T and S have a unique point of coincidence u. Moreover, if T and S are weakly
compatible, then u is a unique common fixed point with p(u, u) = 0.

Proof. Consider the metric d∗ on X defined as

d∗ =
dp
2
, (13)

where dp is given in (11). Due to Lemma 3, (X, d∗) forms a complete metric space.
Define two functions F : [0,∞)3 → [0,∞) and ϕ : X → [0,∞) by

F (a, b, c) = a+ b+ c and ϕ(u) =
p(u, u)

2
. (14)

Observe that ϕ is lower semicontinuous (due to Lemma 4) and F ∈ F .
Now, using (13) and (14) in (12), we get

θ
(
F
(
d∗(Tx, Ty), ϕ(Tx), ϕ(Ty)

)
,Mϕ

F (x, y)
)
> CG for all u, v ∈ X,

where

Mϕ
F (x, y) = max

{
F
(
d∗(Sx, Sy), ϕ(Sx), ϕ(Sy)

)
,

F
(
d∗(Sx, Tx), ϕ(Sx), ϕ(Tx)

)
,

F
(
d∗(Sy, Ty), ϕ(Sy), ϕ(Ty)

)}
.

Therefore, all the hypotheses of Theorem 1 are satisfied, and hence, the result follows,
which completes the proof.

Similarly, from Theorem 2 we deduce the following related result in partial metric
spaces.
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Theorem 4. Let T and S be two self-mappings defined on partial metric space (X, p).
Assume that there exists a Picard–Jungck sequence {xn}n∈N of T and S, and the follow-
ing conditions are satisfied:

(i) there exists a function θ ∈ E(Z,G) such that

θ
(
p(Tx, Ty), p(Sx, Sy)

)
> CG for all x, y ∈ X,

(ii) (SX, p) (or (TX, p)) is complete.

Then T and S have a unique point of coincidence u. Moreover, if T and S are weakly
compatible, then u is a unique common fixed point with p(u, u) = 0.

Proof. The proof follows on the similar lines of proof of Theorem 3.

Taking S = IX , the identity mapping on X , in Theorems 3 and 4 and taking to
the account that every CG-simulation function is an extended CG-simulation function, we
deduce the following two corollaries, which seem to be new to the existing literature.

Corollary 5. Let T be a self-mapping defined on a partial metric space (X, p). Suppose
that there exists θ ∈ ZG (or θ ∈ E(Z,G)) such that

θ
(
p(Tx, Ty),max

{
p(x, y), p(x, Tx), p(y, Ty)

})
> CG for all x, y ∈ X.

Then T has a unique fixed point u with p(u, u) = 0.

Corollary 6. Let T be a self-mapping defined on a partial metric space (X, p). Suppose
that there exists θ ∈ ZG (or θ ∈ E(Z,G)) such that

θ
(
p(Tx, Ty), p(x, y)

)
> CG for all x, y ∈ X.

Then T has a unique fixed point u with p(u, u) = 0.

4.2 Application to system of integral equations

In this section, to highlight the applicability of Theorem 2, we investigated the existence
and uniqueness of a common solution of the following system of integral equations:

u(t) = f(t) +

t∫
0

G
(
t, s, u(s)

)
ds, t ∈ [0, 1], (15)

v(t) = g(t) +

t∫
0

Q
(
t, s, v(s)

)
ds, t ∈ [0, 1], (16)

where Q,G : [0, 1] × [0, 1] × R → R and f, g : [0, 1] → R are given functions. Let
X = C([0, 1],R) denotes the set of all real valued continuous functions defined on [0, 1].
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For any arbitrary u ∈ X , define a norm ‖u‖ = supt∈[0,1] |u(t)|. Let X be endowed with
the metric

d(u, v) = ‖u− v‖ = sup
t∈[0,1]

∣∣u(t)− v(t)∣∣.
Then (C([0, 1],R), ‖·‖) is a Banach space.

Now, we are equipped to state and prove our result in this section as under.

Theorem 5. Consider the system of Eqs. (15) and (16). Assume that the following condi-
tions are satisfied:

(i) G, Q, f , and g are continuous functions,
(ii) T, S : X → X are two mappings defined by

Tu(t) = f(t) +

t∫
0

G
(
t, s, u(s)

)
ds, t ∈ [0, 1],

Su(t) = g(t) +

t∫
0

Q
(
t, s, u(s)

)
ds, t ∈ [0, 1],

with the property that TSu = STu for all u ∈ X such that Tu = Su,
(iii) for all u, v ∈ X and t, s ∈ [0, 1], we have

∣∣G(t, s, u)−G(t, s, v)∣∣ 6 |Su− Sv|
‖Su− Sv‖+ 1

.

Then the system of the integral equations (15) and (16) have a unique common solution.

Proof. For all u, v ∈ X , we have∣∣T (u(t))− T (v(t))∣∣
=

∣∣∣∣∣
t∫

0

(
Q
(
t, s, u(s)

)
−G

(
t, s, v(s)

))
ds

∣∣∣∣∣
6

t∫
0

∣∣G(t, s, u(s))−G(t, s, v(s))∣∣ ds 6 t∫
0

|Su− Sv|
‖Su− Sv‖+ 1

ds

6
1

‖Su− Sv‖+ 1

t∫
0

sup
t∈[0,1]

|Su− Sv|ds = ‖Su− Sv‖
‖Su− Sv‖+ 1

t,

which on taking supremum leads to

d(Tu, Tv) = ‖Tu− Tv‖ 6 ‖Su− Sv‖
‖Su− Sv‖+ 1

=
d(Su, Sv)

d(Su, Sv) + 1
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or
d(Su, Sv)

d(Su, Sv) + 1
− d(Tu, Tv) > 0.

Now, we define two essential functions F and ϕ as

F (a, b, c) = a+ b+ c for all a, b, c ∈ [0,∞)

and
ϕ(x) = 0 for all x ∈ X.

Hence, the above inequality can be written as

F (d(Su, Sv), ϕ(Su), ϕ(Sv))

F (d(Su, Sv), ϕ(Su), ϕ(Sv)) + 1
− F

(
d(Tu, Tv), ϕ(Tu), ϕ(Tv)

)
> 0.

Thus, the contractive condition (10) is satisfied with θ(t, s) = s/(s+ 1)− t and CG = 0.
Therefore, all the hypotheses of Theorem 2 are satisfied. Hence, the result is estab-
lished.

Acknowledgment. The authors thanks anonymous referees for their remarkable com-
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CF-simulation functions, Filomat, 32(10):3731–3750, 2018, https://doi.org/10.
2298/FIL1810731C.
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