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Abstract. Virus dynamics models are useful in interpreting and predicting the change in viral load
over the time and the effect of treatment in emerging viral infections like HIV/AIDS, hepatitis B
virus (HBV). We propose a mathematical model involving the role of total immune response (innate,
CTL, and humoral) and treatment for productively infected cells and free virus to understand the
dynamics of virus–host interactions. A threshold condition for the extinction or persistence of
infection, i.e. basic reproductive number, in the presence of immune response (RI ) is established.
We study the global stability of virus-free equilibrium and interior equilibrium using LaSalle’s
principle and Lyapunov’s direct method. The global stability of virus-free equilibrium ensures the
clearance of virus from the body, which is independent of initial status of subpopulations. Central
manifold theory is used to study the behavior of equilibrium points at RI = 1, i.e. when the basic
reproductive number in the presence of immune response is one. A special case, when the immune
response (IR) is not present, has also been discussed. Analysis of special case suggests that the
basic reproductive number in the absence of immune response R0 is greater than that of in the
presence of immune response RI , i.e. R0 > RI . It indicates that infection may be eradicated if
RI < 1. Numerical simulations are performed to illustrate the analytical results using MatLab and
Mathematica.

Keywords: virus dynamics model, humoral immune response, CTL-mediated immune response,
dynamical systems, viral infection.
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1 Introduction

1.1 Onset of viral infection

Diseases caused by viral infections have had a major impact on populations (e.g. hepatitis
B virus, HIV/AIDS). Viruses may be present in the body either in a free state or as an
intracellular parasite. Free viruses enter a cell in a receptor specific manner and infect the
cell. Viral replication is possible only within a cell. The virus replicates within the cell
by utilizing the cells own machinery. Inside the cell, a virus may either exist in a latent
(inactive) form for a prolonged period or it may immediately adopt the host replication
machinery and start producing multiple copies of itself. Once large number of virus
particles have been produced inside the cell, they come out of the cell by destroying it.
Now, these viruses are free to infect the other healthy cells. Upon infection, virus produces
infected cells; all of these infected cells do not contribute in virus production, and some
of them remains in latent stage and can produce virus once reactivated. Within the body,
virus encounters an immune response, which prevents its spread from an infected cell
to adjacent uninfected cells. The present model is being proposed to understand the
dynamics of interaction between uninfected cells, productively infected cells, latently
infected cells, free virus, and the effect of immune response with treatment of productively
infected cells and free virus.

1.2 Mathematical models for HIV infection

In the literature, numerous mathematical models have been developed to study the dy-
namics of HIV infection [1,4,9,17,18,24–26,29,41,42]. The basic viral dynamics model
has been studied in detail by researchers [1, 24]:

dx

dt
= λ− δ0x− αxv,

dy

dt
= αxv − δ1y,

dv

dt
= ky − k0v. (1)

In the above model, x(t) is the number of uninfected cells, y(t) is the number of infected
cells, and v(t) is the number of free virus at any time t > 0. Uninfected cells grow
constantly at the rate λ and die out with the rate δ0x. When free virus interacts with
uninfected cells, it infects uninfected cells with infection rate constant α, and δ1y denotes
the loss rate of infected cells. Virus is produced at the rate ky via lysis of infected cells,
and k0 is clearance rate constant of virus.

1.2.1 Inclusion of effect of immune response

Immune response plays an important role to control viral infection as it fights against
the virus and reduces the virus load. Nowak and Bangham [24] extended the basic virus
dynamics model involving CTL (Cytotoxic T lymphocyte) component of immune re-
sponse, which suggests that an active CTL immune response may reduce virus load.
Vargas-De-León and Esteva [38] studied global stability of virus dynamics model with
linear immune response. Further, Vargas-De-León [37] proposed a virus dynamics model
with lytic and nonlytic immune responses. The effect of nonlinear immune attack rates
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has been explored to understand the global dynamics of infection. It was shown that if the
basic reproductive numberR0 > 1, then the virus will spread and persist within its cellular
population, whereas if R0 < 1, then the virus will not spread. They have also shown
the importance of immune responses to control infection. Wang and Liu [41] proposed
a class of delayed viral models with saturation infection rate and immune response. In
their models, they considered the CTL response (which kills infected cells) and antibody
response (which facilitates removal of viruses) separately to study the analytical behavior
of systems. Roy et al. [29] studied the effect of CTL immune response on the dynamics of
infected CD4+T cells, virus producing CD4+T cells, and virus by introducing a positive
feedback parameters in the model. They also investigated an optimal control therapy using
reverse transcriptase inhibitors (RTIs) that block new infection. Further, Dubey et al. [6]
generalized the discussed model (1) by considering the effect of appropriate immune
response on the infected cells and suggested that under some sufficient conditions, the
number of uninfected cells can be maintained at an appropriate level. Hattaf et al. [13]
studied the spread and transmission of HIV infection via: (i) virus-to-cell infection, and
(ii) cell-to-cell transmission together with the adaptive immune response, which provides
better understanding of HIV infection.

1.2.2 Inclusion of awareness and treatment

The spread of infectious diseases, especially, virus mediated may be controlled by provid-
ing appropriate awareness about the infection through media [21,22,30] and by treatment
with appropriate therapeutic drugs [5]. Researchers have paid attention to drug therapy
or treatment (cure) of targeted cells in virus dynamics models [11, 14–16, 20, 33–35, 40,
43]. Liu et al. [20] developed an HIV pathogenesis dynamics model considering cure
rate. They incorporated the full logistic proliferation term for uninfected cells as well as
infected cells in the model. In this study, they obtained a critical number (the smallest
virus number released by per infected CD4+T cells) and have shown that this critical
number increases with increase in cure rate and observed that the HIV infection can be
controlled by increasing cure rate.

Hattaf et al. [12, 14] proposed and analyzed a virus dynamics model with general
incidence rate and linear cure rate of the infected cells to uninfected cells. They have
shown that the virus can be cleared and the disease dies out if the basic reproduction
number is less than one. The model and results in [14] were further extended by Tian and
Liu [35]. Gumel and Moghadas [11] studied the role of antiretroviral therapy in control-
ling the HIV infection. They investigated the immunological and therapeutic control of
HIV and found the optimal level of antiretroviral therapy to eradicate HIV. Recently, Hill
et al. [16] summarized that viral dynamics models have provided many important insights
into dynamics of infection and have been extensively used to characterize the response of
HIV to antiretroviral therapy. They addressed the important questions about the treatment
and immunotherapy. For example, what is the efficacy of antiretroviral drugs, and how
does antiretroviral efficacy influence treatment outcomes?

It is noticed that the above models focused on the cure of infected cells, while the cure
or killing (via therapeutic drugs) of free virus is equally important to reduce the count of
infected cells resulting in reduction of infection.
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Considering the above points in view, we propose a five-dimensional virus dynamics
model with saturated infection rate and immune response with treatment of infected cells
as well as free virus. The main aim of this paper is to study the control of the replication
of infected cells and free virus by considering immune response (innate, cellular and
humoral) and appropriate treatment for both; the infected cells and free virus.

2 The mathematical model

It is reported in the virus dynamics models (see [10, 15, 16, 23, 25, 27, 28, 39]) that upon
infection, a fraction of infected cells may be in latent state and thus do not take part in
producing virus. However, latently infected cells become active upon stimulation and then
join the other group of actively virus producing infected cells. In order to understand the
interaction between uninfected cells (x(t)), productively infected cells (y1(t)), latently
infected cells (y2(t)), virus (v(t)), and total immune response (z(t)) during treatment of
both (productively infected cells and virus), we propose a mathematical model consisting
of 5 ordinary differential equations

dx

dt
= λ− δ0x−

αxv

1 + α1v
,

dy1
dt

=
qαxv

1 + α1v
− δ1y1 + βy2 − γ1y1z − θ1y1,

dy2
dt

=
(1− q)αxv

1 + α1v
− δ1y2 − βy2,

dv

dt
= ky1 − k0v − γ2vz − θ2v,

dz

dt
= µ− µ0z + µ1y1z + µ2vz,

(2)

x(0) > 0, y1(0) > 0, y2(0) > 0, v(0) > 0, z(0) > 0. In most of the previous work,
it has been observed that immune response increases either due to infected cells (CTL
immune response) [24,37,38] or virus (humoral immunity [18]). In this study, we assume
that the immune response increases due to infected cells as well as virus (as considered
in our previous study [4, 7, 8]). Keeping the above aspects in view, the virus dynamics
can be governed by system (2) of five ordinary differential equations. The interaction
of subpopulations can be visualized from schematic diagram of model (2) (Fig. 1). Here
x(t), y1(t), y2(t), v(t), and z(t) represent the uninfected cells, productively infected cells,
latently infected cells, free virus, and total immune response, respectively. Uninfected
cells grow from the sources inside the body (thymus) at rate constant λ and die out at rate
δ0x. As shown in our previous work [4], the infection rate f(t) = αx(t)v(t) increases
linearly with x or with v, which may not be realistic in real life. If we take the saturated
incidence rate

f(t) =
αxv

1 + α1v
, α > 0, α1 > 0,

then it gives a rich dynamics of the system [4, 18, 32, 39]. Thus, we considered that free
virus infects uninfected cells at saturated infection rate, which is given by Holling type II
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Figure 1. Schematic diagram of model (2). A mathematical model of viral dynamics augmented to include the
total immune response (IR) during treatment of productively infected cells and free virus. Uninfected cells x,
which proliferate at influx rate λ and die at rate δ0, get infected at rate α (dotted curved arrow) and divided
into two types of infected cells: productively infected cells y1 with fraction q and latently infected cells y2 with
fraction 1 − q. Both type of infected cells loss at rate δ1, and latently infected cells get activated at rate β.
Productively infected cells produce virions v at rate k. The total immune response z proliferates with innate
immune response at rate µ and stimulates with CTL-mediated immune response (dashed elbow connector) at
rate µ1 via productively infected cells and with humoral immune response (dashed elbow connector) at rate µ2
via virus and depletes at rate µ0. Productively infected cells and virus are cured or killed via drug at rates θ1 and
θ2, respectively, and are killed by CTL-mediated and humoral immune response at the rates γ1 and γ2 (dotted
curved lines), respectively. Virus is cleared at rate k0.

functional response (αxv/(1 + α1v), where α and α1 are positive constants) [4, 18]. We
also considered two states of infected cells [23, 39]: virus producing state (y1), in this
state, infected cells produce new virions; latently infected state (y2), in this state, infected
cells do not contribute in producing new virions, but can be reactivated to produce new
virions. The probability that upon infection, a cell enters to the virus producing state is
given by q, and 1 − q is the probability that upon infection, a cell enters to the latently
infected state, and δ1 notates the loss rate constant of these infected cells. The latently
infected cells are getting reactivated at the rate constant β and join the virus producing
infected cells to contribute in production of virus. Free virions are produced via lysis of
productively infected cells at the rate constant k and get cleared from the body with the
rate constant k0. We assumed that µ is the innate immune response of the body. When
virus enters into the body and targets the uninfected cells to infect them, then the infected
cell-specific lymphocytes (cellular immunity) proliferate at rate µ1y1z, and the virus-
specific lymphocytes (humoral immunity) proliferate at rate µ2vz. The corresponding
decrease in the number of productively infected cells and virus is given by rates γ1y1z and
γ2vz, respectively. The immune response decays at the rate µ0z due to natural factors.
It is assumed that the productively infected cells and free virus are killed or removed
with the rates θ1y1 and θ2v due to therapeutic drugs. In modeling, it has been assumed
that drug acts on the productively infected cells by killing these cells or inducing these
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cells to suicide by programmed cell death (PCD) or apoptosis. They do not re-enter the
susceptible category as they are eliminated from the system. Total removal of virus from
within cell to make it normal is not biologically possible, thus can not enter the susceptible
class.

Remark 1. In the absence of immune response (z = 0) and drug therapy (θ1 = θ2 = 0),
model (2) reduces to the model proposed in [39].

In the next section, we show that all the solutions of system (2) are positively invariant
and bounded.

3 Boundedness and positivity of solutions of model (2)(2)(2)

In order to see the well-posedness of the model, from the first equation of model (2) we
note that dx/dt > −[δ0 + αv/(1 + α1v)]x, which gives

x(t) > x(0) exp

[
−

t∫
0

(
δ0 +

αv(s)

1 + α1v(s)

)
ds

]
.

Similarly, from other four equations we obtain

y1(t) > y1(0) exp

[
−

t∫
0

(
δ1 + γ1z(s) + θ1

)
ds

]
,

y2(t) > y2(0) exp

[
−

t∫
0

(δ1 + β) ds

]
,

v(t) > v(0) exp

[
−

t∫
0

(
k0 + γ2z(s) + θ2

)
ds

]
,

z(t) > z(0) exp

[ t∫
0

(
µ1y1(s) + µ2v(s)− µ0

)
ds

]
.

Thus, we state the following Lemma.

Lemma 1. If x(0) > 0, y1(0) > 0, y2(0) > 0, v(0) > 0, and z(0) > 0, then all solutions
of model (2) are positive.

Now, in order to see the boundedness and invariance of system (2), from the first
equation of model (2) we have ẋ 6 λ − δ0x. Using elementary calculus, we get that
lim supt→∞ x(t) 6 λ/δ0. Further, ẋ + ẏ1 + ẏ2 6 λ − δ(x + y1 + y2), where δ =
min{δ0, δ1}. This implies

lim sup
t→∞

(
x(t) + y1(t) + y2(t)

)
6
λ

δ
.
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Again, we have v̇ = ky1 − k0v − γ2vz − θ2v 6 kλ/δ − (k0 + θ2)v. This implies that

lim
t→∞

sup v(t) 6
kλ

δ(k0 + θ2)
=: vm.

Now let L = (µ1/γ1)y1 + (µ2/γ2)v + z. Differentiating L along all the solutions of
system (2), we get

L̇ =
µ1qαxv

γ1(1 + α1v)
+
µ1β

γ1
y2 +

µ2k

γ2
y1 + µ

− µ1

γ1
(δ1 + θ1)y1 −

µ2

γ2
(k0 + θ2)v − µ0z

6 µm − δmL,
where

µm =
µ1qαλvm

γ1δ(1 + α1vm)
+
λ

δ

(
µ1β

γ1
+
µ2k

γ2

)
+ µ,

and
δm = min{δ + θ1, k0 + θ2, µ0}.

This implies that
lim
t→∞

supL(t) 6
µm
δm

.

Furthermore, ẋ < 0 if x > λ/δ0, ẏ1 < 0 if y1 > λ/δ, ẏ2 < 0 if y2 > λ/δ, v̇ < 0 if
v > vm, and L̇ < 0 if L > µm/δm. This shows that solutions of system (2) point towards
the region Ω defined in Lemma (1). Hence Ω is positively invariant, and solutions of
system (2) are bounded. Thus, we can state the following lemma.

Lemma 2. The set Ω = {(x, y1, y2, v, z) ∈ R5
+: 0 < x+ y1 + y2 6 λ/δ, 0 < v 6 vm,

0 < z 6 µm/δm} is positively invariant region of system (2).

This proves that the model is biologically well behaved.
In the next section, first we find equilibrium points of system (2). Then determine the

basic reproduction number of system (2). Afterwards, the local and global stability of the
equilibrium points has been studied.

4 Stability analysis of model (2)(2)(2)

From model (2) it is clear that the system has two nonnegative equilibria:

(i) Virus-free equilibrium (VFE) E0(x0, 0, 0, 0, z0), the point where infection is not
present,

(ii) Interior equilibrium (IE) E1(x∗, y∗1 , y
∗
2 , v
∗, z∗), the equilibrium point where in-

fection persists.

VFE is trivial and given by E0(x0, 0, 0, 0, z0) = E0(λ/δ0, 0, 0, 0, µ/µ0).
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We use the next generation operator method [3,36] to determine the basic reproduction
number. We are considering y1, y2, and v to be the infection compartments. Let X =
(y1, y2, v)T, F1(X) is the nonnegative infection matrix (gain in infection terms), and
V1(X) (the matrix for transfer terms between compartments) associated with system (2).
Then we can rewrite system (2) as

Ẋ = F1(X)− V1(X),

where

F1(X) =

 qαxv
1+α1v

+ βy2
0
0

 and V1(X) =

 (δ1 + θ1 + γ1z)y1
(δ1 + β)y2 − (1−q)αxv

1+α1v

(k0 + θ2 + γ2z)v − ky1

 .
The Jacobian of matrices F1(X) and V1(X) evaluated at VFE; E0(λ/δ0, 0, 0, 0, µ/µ0) is
given by

F1 =

0 β qαλ
δ0

0 0 0
0 0 0

 and V1 =

 δ1 + θ1 + γ1
µ
µ0

0 0

0 δ1 + β − (1−q)αλ
δ0

−k 0 k0 + θ2 + γ2
µ
µ0

 .
Then ρ(F1V

−1
1 ) gives the spectral radius (largest eigenvalue) of the next generation

matrix (F1V
−1
1 ) as defined in [36]. Thus,

RI = ρ(F1V
−1
1 ) =

αλk(qδ1 + β)

(δ1 + β)δ0(δ1 + θ1 + γ1µ
µ0

)(k0 + θ2 + γ2µ
µ0

)
,

where RI is the basic reproduction number in the presence of immune response. This can
be defined as the average number of newly infected cells produced by single infected cell
when introduced into a completely susceptible cells. It is apparent from the expression of
the basic reproductive ratio (RI ) that it decreases with the increase in therapeutic drug (for
both infected cells and virus) as well as with the improvement of immune response. In
the present model, we consider immune response, so the given basic reproduction number
is determined in the presence of immune response. Further, we can state the following
theorem using the above results and Theorem 2 of [36].

Theorem 1. The virus-free equilibrium E0 is locally asymptotically stable if RI < 1,
and unstable if RI > 1.

Local stability of virus-free equilibrium shows that the infection will die out if basic
reproduction number is less than one and infection will further go on if basic reproduction
number is more than one. To ensure that the virus-free equilibrium is independent of
initial concentration of cells, there is a need to study the global stability, which is shown
in the next theorem.

Theorem 2. The virus-free equilibrium E0 is globally asymptotically stable if RI < 1.

Proof. Let us define the following Lyapunov function:

L = y1 +
β

δ1 + β
y2 +

δ1 + θ1 + γ1
µ
µ0

k
v.

Nonlinear Anal. Model. Control, 26(4):678–701, 2021

https://doi.org/10.15388/namc.2021.26.21434


686 P. Dubey et al.

Taking the derivative of L along all the solutions of model (2), we get

L̇ =

[
(qδ1 + β)αxv

(δ1 + β)(1 + α1v)
−

(δ1 + θ1 + γ1
µ
µ0

)(k0 + θ2 + γ2z)

k
v − γ1y1z +

µ

µ0
γ1y1

]
6

[
(qδ1 + β)αxv

δ1 + β
−

(δ1 + θ1 + γ1
µ
µ0

)(k0 + θ2 + γ2z)

k
v − γ1y1z +

µ

µ0
γ1y1

]
.

From VFE equation, x = x0 = λ/δ0, and z = z0 = µ/µ0 we have

L̇ 6

[
(qδ1 + β)αλ

δ0(δ1 + β)
−

(δ1 + θ1 + γ1
µ
µ0

)(k0 + θ2 + γ2
µ
µ0

)

k

]
v.

RI < 1 implies that

(qδ1 + β)αλ

δ0(δ1 + β)
<

(δ1 + θ1 + γ1
µ
µ0

)(k0 + θ2 + γ2
µ
µ0

)

k
,

therefore, we obtain that L̇ 6 0 if RI < 1. Since the largest invariant set in {(x, y1, y2,
v, z) ∈ Ω: L̇ = 0} is the singleton set {E0}, by LaSalle’s invariance principle [19] this
implies that E0 is globally asymptotically stable.

Biologically, this theorem depicts that infection is cleared from the body if the av-
erage number of newly infected cells is less than one, which is independent of initial
concentration of cells.

4.1 Existence of interior equilibrium E1(x∗, y∗
1, y

∗
2, v

∗, z∗)

Equating equations of system (2) to zero, we note that x∗, y∗1 , y∗2 , v∗, and z∗ are the
positive solutions of the following algebraic equations:

λ− δ0x−
αxv

1 + α1v
= 0, (3)

qαxv

1 + α1v
− δ1y1 − γ1y1z + βy2 − θ1y1 = 0, (4)

(1− q)αxv
1 + α1v

− δ1y2 − βy2 = 0, (5)

ky1 − k0v − γ2vz − θ2v = 0, (6)
µ− µ0z + µ1y1z + µ2vz = 0. (7)

After solving equations (3), (5), (6), we get

x =
λ(1+α1v)

δ0 + (δ0α1+α)v
, y1 =

k0+θ2+γ2z

k
v, y2 =

(1−q)αλv
(δ1+β)(δ0+(δ0α1+α)v)

.
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Now, substituting these values of x, y1, y2 in equations (4) and (7), we get the following
equations:

µ1γ2
k

vz2 +

(
µ1(k0 + θ2)

k
+ µ2

)
vz − µ0z + µ = 0, (8)

γ1γ2z
2 +Bz + (δ1 + θ1)(k0 + θ2)− αλk(qδ1 + β)

(δ1 + β)(δ0 + (δ0α1 + α)v)
= 0, (9)

where B = (δ1 + θ1)γ2 + (k0 + θ2)γ1 > 0.
We solve equations (8) and (9) using isocline method. Let us consider

f1(z, v) =
µ1γ2
k

vz2 +

(
µ1(k0 + θ2)

k
+ µ2

)
vz − µ0z + µ = 0, (10)

f2(z, v) = γ1γ2z
2 +Bz + (δ1 + θ1)(k0 + θ2)

− αλk(qδ1 + β)

(δ1 + β)(δ0 + (δ0α1 + α)v)
= 0. (11)

From equation (10) we note the following:

(i) When v = 0, z = µ/µ0 =: z1.
(ii) When v →∞, we have either z = 0 or z = −(µ1(k0 + θ2) + µ2k)/(µ1γ2).

(iii) dz

dv
= −∂f1/∂v

∂f1/∂z
= − µ1γ2z

2 + (µ1(k0 + θ2) + µ2k)z

(2µ1γ2z + µ2k)v + (µ1(k0 + θ2)v − µ0k)
.

Then dz/dv<0 if λ>µ0δ/µ1, which is trivial from the persitence theory (see Lemma 2).
This implies that z is decreasing function of v. Now, from equation (11) we note the
following:

(i) When v = 0, we have

γ1γ2z
2 +Bz + (δ1 + θ1)(k0 + θ2)− αλk(qδ1 + β)

(δ1 + β)δ0
= 0, (12)

which gives z = (−B+
√
B2 − 4AC)/(2A) =: z2, whereA = γ1γ2,B = (δ1+θ1)γ2+

(k0 + θ2)γ1, and C = (δ1 + θ1)(k0 + θ2)− αλk(qδ1 + β)/((δ1 + β)δ0).
The above polynomial (12) has unique positive root if C < 0, i.e. if R0 > 1, where

R0 = (αλk(qδ1 + β))/((δ1 + β)δ0(δ1 + θ1)(k0 + θ2)) is the basic reproduction number
in the absence of immune response, which is computed in Section 5.

(ii) Now, when z = 0, in equation (11), we have

v =
1

δ0α1 + α

(
αλk(qδ1 + β)

(δ1 + β)(δ1 + θ1)(k0 + θ2)
− δ0

)
=

δ0
δ0α1 + α

(R0 − 1),

which is positive if R0 > 1.

(iii)
dz

dv
= −∂f2/∂v

∂f2/∂z
= −

αλk(qδ1+β)(δ0α1+α)
(δ1+β)(δ0+(δ0α1+α)v)2

2γ1γ2z +B
< 0.
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The above analysis shows that the two isoclines (10) and (11) intersects each other
in the positive quadrant if z2 > z1, i.e. RI > 1. Thus, the interior equilibrium exists
if RI > 1. This shows that if the number of newly infected cells produced by a single
infected cell when all other cells are healthy is more than one, then infection persists and
interior equilibrium exists.

4.2 Analysis at RI = 1

To study the behaviour of the equilibrium points at RI = 1, we use the center manifold
theorem [2] as, at RI = 1, linearization has a simple zero eigenvalue, hence linearization
is inconclusive [31]. We made following assumptions to apply center manifold theorem
to system (2).

Let x = x1, y1 = x2, y2 = x3, v = x4, and z = x5, then system (2) can be rewrite as

ẋ1 = λ− δ0x1 −
αx1x4

1 + α1x4
= f1,

ẋ2 =
qαx1x4

1 + α1x4
− δ1x2 + βx3 − γ1x2x5 − θ1x2 = f2,

ẋ3 =
(1− q)αx1x4

1 + α1x4
− δ1x3 − βx3 = f3,

ẋ4 = kx2 − k0x4 − γ2x4x5 − θ2x4 = f4,

ẋ5 = µ− µ0x5 + µ1x2x5 + µ2x4x5 = f5.

(13)

At RI = 1, we have α as bifurcation parameter, and this is given by

α = α∗ =
(δ1 + β)δ0(δ1 + θ1 + γ1µ

µ0
)(k0 + θ2 + γ2µ

µ0
)

λk(qδ1 + β)
.

The linearization of the above system (13) at E0 and for α = α∗ gives one simple zero
eigenvalue, and other eigenvalues have negative real part, so central manifold theory was
applied. We find the right eigenvector u of the Jacobian matrix at E0, and α = α∗

corresponding to the zero eigenvalue, which is given by u = [u1, u2, u3, u4, u5]T, where
u1 = −α∗x0/δ0, u2 = (k0 + θ2 + γ2z0)/k, u3 = (1 − q)α∗x0/δ0, u4 = 1, u5 =
(z0(µ1(k0 + θ2 + γ2z0) + µ2k))/k. The Jacobian matrix at E0 and α = α∗ has a left
eigenvector w = [w1, w2, w3, w4, w5], where w1 = 0, w2 = 1, w3 = β/(δ1 + β),
w4 = (δ1 + θ1 + γ1z0)/k, w5 = 0. Further, the associated nonzero partial derivatives of
the functions associated with system (13) at VFE E0 and α = α∗ are:

∂2f2
∂x1∂x4

=
∂2f2
∂x4∂x1

= qα∗,
∂2f2
∂x24

= −2qα∗α1x0,
∂2f2
∂x2∂x5

=
∂2f2
∂x5∂x2

= −γ1,

∂2f3
∂x1∂x4

=
∂2f3
∂x4∂x1

= (1− q)α∗, ∂2f3
∂x24

= −2(1− q)α∗α1x0,

∂2f4
∂x4∂x5

=
∂2f4
∂x5∂x4

= −γ2,
∂2f2

∂x4∂α∗
= qx0,

∂2f3
∂x4∂α∗

= (1− q)x0.
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Figure 2. Plot of free virus versus basic reproduction number RI .

From Theorem 4.1 of [2] the bifurcation constants a and b are given by

a =

5∑
k,i,j=1

wkuiuj
∂2fk
∂xi∂xj

(E0)

= − qδ1 + β

δ0(δ1 + β)
(α∗ + 2δ0α1)α∗x0 − w2u2u5γ1 − w4u4u5γ2.

For the given values of wk’s, k = 2, 3, 4, and ui, uj’s, i, j = 1, 2, 3, 4, 5, a < 0, and

b =

5∑
k,i=1

wkui
∂2fk
∂xi∂α∗

(E0) = w2(u4qx0) + w3

(
u4(1− q)x0

)
=

(qδ1 + β)x0
δ1 + β

> 0.

Thus, from Theorem 4.1(iv) of [2] we conclude the following result.

Theorem 3. AtRI =1, virus-free equilibrium changes its stability from stable to unstable,
which shows that system (2) exhibits a transcritical bifurcation at RI = 1 (Fig. 2).

In Fig. 2, we plotted the V component of the steady states against RI . When RI < 1,
only E0 exists and is stable, and as RI crosses 1, i.e. when RI becomes greater than 1,
a transcritical bifurcation of steady state E0 occurs, and E0 becomes unstable, while E1

comes into existence.
In the next theorem, we show that E1 is locally asymptotically stable under certain

conditions.

Theorem 4. The interior equilibrium E1(x∗, y∗1 , y
∗
2 , v
∗, z∗) is locally asymptotically sta-

ble in R5
+ if the following inequalities hold true:

3αv∗x∗ < 2λ(1 + α1v
∗), (14)(

µ2k

γ2v∗
+

µ1qαx
∗

γ1y∗1(1 + α1v∗)2

)2

<
1

4

µ1µ2P (k0 + θ2 + γ2z
∗)

γ1γ2y∗1v
∗ , (15)

3γ2α
2x∗3v∗ < c4λµ2z

∗(k0 + θ2 + γ2z
∗)(1 + α1v

∗)4, (16)
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where

c4 < min

{
1

3

λγ1(1 + α1v
∗)2Py∗1

µ1x∗z∗q2α2v∗2
,

1

3

x∗P (δ1 + β)2γ1y
∗
1

λµ1z∗(1− q)2β2

}
, P = δ1 + θ1 + γ1z

∗.

Proof. Let X = x − x∗, Y1 = y1 − y∗1 , Y2 = y2 − y∗2 , V = v − v∗ and Z = z − z∗ be
the small perturbations about the interior equilibrium E1. Using the above new variables,
we linearize system (2) around the interior equilibrium E1. Then, in the linear model, we
consider the following positive definite function:

W1 =
1

2
X2 +

1

2
c1Y1

2 +
1

2
c2Y2

2 +
1

2
c3V

2 +
1

2
c4Z

2,

where c1, c2, c3, and c4 are positive constants to be chosen suitably.
Now differentiatingW1 with respect to time t along the solutions of linearized version

of model (2), a little algebraic manipulation yields

Ẇ1 = −1

2
a11X

2 + a12XY1 −
1

2
a22Y

2
1 −

1

2
a11X

2 + a13XY2 −
1

2
a33Y

2
2

− 1

2
a11X

2 + a14XV −
1

2
a44V

2 − 1

2
a22Y

2
1 + a23Y1Y2 −

1

2
a33Y

2
2

− 1

2
a22Y

2
1 + a24Y1V −

1

2
a44V

2 − 1

2
a22Y

2
1 + a25Y1Z −

1

2
a55Z

2

− 1

2
a33Y

2
2 + a34Y2V −

1

2
a44V

2 − 1

2
a44V

2 + a45V Z −
1

2
a55Z

2,

where

a11 =
2

3

λ

x∗
, a22 =

1

2
c1P, a33 =

2

3
c2(δ1+β), a44 =

1

2
c3(k0+θ2+γ2z

∗),

a55 = c4
µ

z∗
, a12 =

c1qαv
∗

1+α1v∗
, a13 =

c2(1−q)αv∗

1+α1v∗
, a14 = − αx∗

(1+α1v∗)2
,

a23 = c1β, a24 =
c1qαx

∗

(1+α1v∗)2
+ c3k, a25 = c4µ1z

∗ − c1γ1y∗1 ,

a34 =
c2(1−q)αx∗

(1+α1v∗)2
, a45 = c4µ2z

∗ − c3γ2v∗.

Sufficient conditions for Ẇ1 to be negative definite are given as follows:

a212 < a11a22, a213 < a11a33, a214 < a11a44, (17)

a223 < a22a33, a224 < a22a44, a225 < a22a55, (18)

a234 < a33a44, a245 < a44a55. (19)

By choosing c1 = c4µ1z
∗/(γ1y

∗
1) and c3 = c4µ2z

∗/(γ2v
∗) we note that conditions (18)3

and (19)2 are satisfied. Let us choose c2 = x∗(δ1 + β)/((1−q)2λ), then conditions (17)3

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Viral-host interaction with treatment and immune response 691

and (19)1 are equivalent, and we see that (16)⇒ (17)3 and (19)1. Further, if we choose
c4 in such a manner that it satisfies the inequality

c4 < min

{
1

3

λγ1(1 + α1v
∗)2Py∗1

µ1x∗z∗q2α2v∗2
,

1

3

x∗P (δ1 + β)2γ1y
∗
1

λµ1z∗(1− q)2β2

}
,

then conditions (17)1 and (18)1 are correspondingly satisfied. Further, we note that (14)
⇒ (17)2 and (15)⇒ (18)2. Hence the theorem follows.

In the next theorem, we are able to find sufficient conditions for E1 to be globally
asymptotically stable.

Theorem 5. Let the following inequalities hold in the interior of the positive orthant Ω:

3αv∗x∗ < 2λ(1 + α1v
∗), (20)(

µ2k

γ2v∗
+

µ1qαx
∗

γ1y∗1(1 + α1v∗)

)2

<
1

4

µ1µ2P (k0 + θ2 + γ2z
∗)

γ1γ2y∗1v
∗ , (21)

2µ1γ1µm
2y∗1 < µδm

2P, (22)

2µ2γ2µm
2v∗ < µδm

2(k0 + θ2 + γ2z
∗), (23)

3γ2α
2λ2x∗v∗ < m4µ2z

∗(k0 + θ2 + γ2z
∗)δ0

2(1 + α1v
∗)2, (24)

where

m4 < min

{
1

3

λγ1y
∗
1P (1 + α1vm)2

µ1x∗z∗q2α2vm2
,

1

3

x∗P (δ1 + β)2γ1y
∗
1

λµ1z∗(1− q)2β2

}
.

Then E1(x∗, y∗1 , y
∗
2 , v
∗, z∗) is globally asymptotically stable with respect to all solutions

in the interior of the positive orthant Ω.

Proof. We consider the following positive definite function about E1:

W2 =
1

2
(x− x∗)2 +

m1

2
(y1 − y∗1)2 +

m2

2
(y2 − y∗2)2 +

m3

2
(v − v∗)2 +

m4

2
(z − z∗)2,

where m1, m2, m3, and m4 are positive constants to be chosen suitably.
Now differentiatingW2 with respect to time t along the solutions of model (2), we get

Ẇ2 = −1

2
b11(x− x∗)2 + b12(x− x∗)(y1 − y∗1)− 1

2
b22(y1 − y∗1)2

− 1

2
b11(x− x∗)2 + b13(x− x∗)(y2 − y∗2)− 1

2
b33(y2 − y∗2)2

− 1

2
b11(x− x∗)2 + b14(x− x∗)(v − v∗)− 1

2
b44(v − v∗)2

− 1

2
b22(y1 − y∗1)2 + b23(y1 − y∗1)(y2 − y∗2)− 1

2
b33(y2 − y∗2)2

− 1

2
b22(y1 − y∗1)2 + b24(y1 − y∗1)(v − v∗)− 1

2
b44(v − v∗)2
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− 1

2
b22(y1 − y∗1)2 + b25(y1 − y∗1)(z − z∗)− 1

2
b55(z − z∗)2

− 1

2
b33(y2 − y∗2)2 + b34(y2 − y∗2)(v − v∗)− 1

2
b44(v − v∗)2

− 1

2
b44(v − v∗)2 + b45(v − v∗)(z − z∗)− 1

2
b55(z − z∗)2,

where

b11 =
2

3

λ

x∗
, b22 =

1

2
m1P, b33 =

2

3
m2(δ1+β), b44 =

1

2
m3(k0+θ2+γ2z

∗),

b55 = m4
µ

z∗
, b12 =

m1qαv

1+α1v
, b13 =

m2(1− q)αv∗

1 + α1v∗
,

b14 = − αx

(1+α1v∗)(1+α1v)
, b23 = m1β, b24 =

m1qαx
∗

(1+α1v∗)(1+α1v)
+m3k,

b25 = m4µ1z −m1γ1y1, b34 =
m2(1−q)αx

(1+α1v∗)(1+α1v)
, b45 = m4µ2z −m3γ2v.

Sufficient conditions for Ẇ2 to be negative definite are given as follows:

b212 < b11b22, b213 < b11b33, b214 < b11b44, (25)

b223 < b22b33, b224 < b22b44, b225 < b22b55, (26)

b234 < b33b44, b245 < b44b55. (27)

Let us choose

m1 =
m4µ1z

∗

γ1y∗1
, m2 =

x∗(δ1 + β)

(1− q)2λ
, and m3 =

m4µ2z
∗

γ2v∗
.

Then we note that for chosen value ofm4, conditions (25)1 and (26)1 are correspondingly
satisfied. Further, (20)⇒ (25)2, (21)⇒ (26)2, (22)⇒ (26)3, (23)⇒ (27)2, (24)⇒ (25)3
and (27)1. Hence the theorem follows.

Theorem 5 shows that by decreasing α and by increasing θ1 and θ2, appropriately,
conditions (20)–(24) may be satisfied. This shows that stability of the system increases by
decreasing the infection rate of uninfected cells and by increasing the treatment rates of
infected cells and virus at some appropriate levels.

5 A special case of model (2)(2)(2) without immune response

In the absence of immune response, model (2) reduces to the following model:

dx

dt
= λ− δ0x−

αxv

1 + α1v
,

dy1
dt

=
qαxv

1 + α1v
− δ1y1 + βy2 − θ1y1,

dy2
dt

=
(1− q)αxv

1 + α1v
− δ1y2 − βy2,

dv

dt
= ky1 − k0v − θ2v.

(28)
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Similar to model (2), this model (28) also exhibits two equilibria: (i) the virus-free
equilibrium (VFE) e0(λ/δ0, 0, 0, 0) and (ii) the interior equilibrium (IE) e1(x̄, ȳ1, ȳ2, v̄).

Using next generation operator method, as discussed in the previous section, the
basic reproduction number R0 can be computed, and we note that R0 is given by R0 =
αλk(qδ1 + β)/((δ1 + β)δ0(δ1 + θ1)(k0 + θ2)).

Under the similar analysis as done in the previous sections, one can prove the follow-
ing theorem easily.

Theorem 6.

(i) The virus-free equilibrium e0 is locally asymptotically stable if R0 < 1, and e0
is unstable if R0 > 1.

(ii) The virus-free equilibrium e0 is globally asymptotically stable in Ω if R0 < 1.
(iii) Model (28) exhibits a transcritical bifurcation at R0 = 1.

5.1 Existence of interior equilibrium e1(x̄, ȳ1, ȳ2, v̄)

In case of interior equilibrium e1(x̄, ȳ1, ȳ2, v̄), we note that x̄, ȳ1, ȳ2 and v̄ are given by

x̄ =
λ(1 + α1v̄)

δ0 + (δ0α1 + α)v̄
, ȳ1 =

k0 + θ2
k

v̄, ȳ2 =
(1− q)αλv̄

(δ1 + β)(δ0 + (δ0α1 + α)v̄)
,

v̄ =
1

δ0α1 + α

(
αλk(qδ1 + β)

(δ1 + β)(δ1 + θ1)(k0 + θ2)
− δ0

)
.

It is clear that v̄ is positive if R0 = αλk(qδ1 + β)/(δ0(δ1 + β)(δ1 + θ1)(k0 + θ2)) > 1.
This shows that the interior equilibrium in absence of immune response exists if R0 > 1.
The stability behaviour of the interior equilibrium e1 can be studied in a similar manner
as done in the previous section.

By comparing R0 and RI we note that RI < R0. This shows that rate of infection
will be slow in the presence of immune response.

6 Simulation results

In this section, we present the numerical simulation results to elucidate the analytical
findings. MatLab 7.10 and Mathematica 7.0 are used for simulation purposes.

6.1 Global stability and phase plane analysis of the subsystem

We note that the interior equilibrium E1(x∗, y∗1 , y
∗
2 , v
∗, z∗) exists for the set of values of

parameters given in Table 1, and (x∗, y∗1 , y
∗
2 , v
∗, z∗) are given as follows: x∗ = 948.6799,

y∗1 = 1.2014, y∗2 = 0.5565, v∗ = 0.2357, and z∗ = 0.1260.
We observe that all conditions given in Theorems 4 and 5 are satisfied. This shows that

E1 is locally as well as globally asymptotically stable for the set of values of parameters
in Table 1.
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Table 1. Description of parameters (units) used in model (2) and their values.

Parameters (units) Description Values Source

λ (mm−3d−1) Influx rate constant of x(t) 10 [4, 33, 34]
δ0 (d−1) Death rate constant of x(t) 0.01 [4, 33, 34]
δ1 (d−1) Loss rate constant of y1(t) and y2(t) 0.015 [33, 34]
k (d−1) Viral production rate constant 0.08 –
k0 (d−1) Clearance rate constant of v(t) 0.02 –
α (mm−3d−1) Infection rate constant 0.005 –
α1 (mm−3d−1) Inhibition rate constant to infection 5 –
γ1 (d−1) Killing rate constant of y1(t) by CTL IR 0.2 –
γ2 (d−1) Killing rate constant of v(t) by humoral IR 0.3 –
µ (d−1) Source rate of IR 0.25 –
µ0 (d−1) Depletion rate constant of IR 2 –
µ1 (d−1) Activation rate constant of CTL IR 0.0035 –
µ2 (d−1) Activation rate constant of humoral IR 0.052 –
β (d−1) Activation rate constant of y2(t) 0.4 –
θ1 (d−1) Drug effectiveness for y1(t) 0.38 –
θ2 (d−1) Drug effectiveness for v(t) 0.35 –
q Probability of infected cell joining y1 0.55 [25]
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Figure 3. Global stability of the subsystem.

The phase plane analysis of the subsystem of model (2) in the xy1-, xy2-, xv-, and
xz-planes are shown in Fig. 3. From these figure we note that all the trajectories initi-
ating from different initial values converge to the same equilibrium point. The initial
values are shown in the legend can be read as IV1 → [800, 2, 1, 0.2, 0.04], IV2 →
[1100, 2.5, 0.5, 0.3, 0.03], IV3 → [920, 3, 1.5, 0.04, 0.05], and IV4 → [850, 0.05, 0.2,
0.05, 0.01]. Since the system is globally asymptotically stable, therefore it is independent
of initial status of the subpopulations.
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6.2 Effect of saturated transmission rate on uninfected cells and productively in-
fected cells

Figures 4(a) and 4(b) represent the effect of α on uninfected cells and productively in-
fected cells, respectively. We observe that the concentration of uninfected cells is high
(Fig. 4(a)) and that of productively infected cells is low (at zero level) for α = 0.001
and, in this case, RI = 0.4598 < 1. This shows that infection is no more at this stage.
Further, the number of uninfected cells decreases with increase in α, which is obvious for
real world scenarios when infection increases the number of uninfected or healthy cells
declines. In Fig. 4(b), the number of productively infected cells increases with increase in
infection rate α, which is also usual in real situations. Thus, infection can be controlled
by controlling the spread of infection within the cells with the help of immune response
and appropriate drugs. Figures 4(c) and 4(d) show the effect of α1, whereas α1 changes
reversibly with infection rate. In Fig. 4(c), we observe oscillations for small value of
α1 = 0.005. In the expression for infection rate, when α1 approaches zero, then this
infection rate term αxv/(1 + α1v) becomes bilinear, which is not realistic in case of
large number of productively infected cells. It may be noted that behavior of productively
infected cells is complementary to the behavior of uninfected cells, so similar explanation
can be given for the oscillations in Fig. 4(d).

6.3 Effect of treatment and immune response on productively infected cells and
free virus

The effect of therapeutic drugs θ1 and θ2 given to productively infected cells y1 and free
virus v are shown in Figs. 5(a) and 5(b), respectively. From these figures it follows that
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Figure 4. Effect of α and α1 on uninfected cells (x) and productively infected cells (y1), respectively.
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Figure 5. Effect of θ1 on productively infected cells y1 and effect of θ2 on free virus v, respectively.
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in the absence of treatment (θ1 = θ2 = 0), the number of productively infected cells
and free virus are high. As efficacy of therapeutic drugs θ1 and θ2 increases, the number
of productively infected cells and free virus decreases and settles down at their respective
equilibrium levels. This highlights the efficacy of the drug in controlling the concentration
of productively infected cells and free virus, respectively.

Figures 6(a) and 6(b) show that when immune response is not present, then trajectories
settle at higher concentration of productively infected cells and free virus, while the
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concentration of the productively infected cells and free virus decreases with increase
in immune response (µ) and approaches to zero for higher values of µ. In Figs. 6(c)
and 6(d), the trajectories settle at high level for µ1 = 0, and for higher values of µ1,
these trajectories are settled down at lower concentration of productively infected cells
and free virus, but not approaching to zero as µ1 is the increase in immune response
due to stimulation from productively infected cells. Similar explanation can be given
for Figs. 6(e) and 6(f), where µ2 is the increase in immune response due to stimulation
from free virus. It is interesting to note that if immune responses are at high levels, then
productively infected cells and free virus can be brought back to zero level with adequate
drugs, and thus, the infection may lead to reduction in viral load.

6.4 Variation of reproduction number

In the last figure (Fig. 7), we have shown the variation of RI with respect to therapeutic
drugs given to productively infected cells (θ1) and virus (θ2), respectively. We observe
that for the less values of the therapeutic drug given to the productively infected cells
(θ1 = 0.15) and that of viruses (θ2 = 0.3), the corresponding value of RI is 5. It is
apparent from Fig. 7 that if we increase the amount of therapeutic drug given to the
productively infected cells (θ1 = 1) and virus (θ2 = 1.1), the corresponding value of
RI decreases, i.e. RI = 0.5. This emphasize that combination of therapy is useful in
reducing the viral load and, ultimately, to lower the infection.

7 Conclusions

In this paper, we constructed a virus dynamics model to understand the viral–host interac-
tion and elucidate the effect of total immune response (innate, CTL, and humoral) together
with the treatment given to the free virus as well as the productively infected cells. The
model is comprised of 5-state variables, that is, uninfected cells, productively infected
cells, latently infected cells, free virus, and total immune response. We performed stability

Nonlinear Anal. Model. Control, 26(4):678–701, 2021

https://doi.org/10.15388/namc.2021.26.21434


698 P. Dubey et al.

analysis of the model and observed that there exists two nonnegative equilibria: virus-free
equilibrium (VFE, no persistent of virus) and interior equilibrium (IE, persistent of virus).
From the global stability analysis of the virus-free equilibrium (VFE) it is depicted that
the clearance of virus from the body is independent of initial status of subpopulations
(Theorem 2). From the analysis of the model at RI = 1 it is observed that VFE loses
its stability from the stable state to unstable state, which gives birth to the transcritical
bifurcation (Fig. 2), and the interior equilibrium exists for RI > 1.

Simulation results show that the saturated infection rate gives realistic dynamics of
transmission as bilinear infection rate leads to oscillatory behavior in subpopulations
(Figs. 4(c) and 4(d)). The reduction in infection rate and increment in the effectiveness of
therapy given to the productively infected cells and virus appropriately will lead to lower
the count of infection and viral load. It is also shown that the number of new infection can
be lowered via providing adequate treatment to both free virus and productively infected
cells (Fig. 7). However, virus dynamics models suggest that the infection will extinct once
the therapeutic drugs can target the latently infected cells, which lead to new infection
upon activation.

The model also provides the insights into the dynamics of viral infection in absence
of immune response. It is evident from the analysis of model (28) that the virus-free
equilibrium (VFE) is globally asymptotically stable if R0 < 1. The basic reproductive
number in absence of immune response R0 is greater than basic reproductive number in
the presence of immune response RI , i.e. R0 > RI . This implies that in the presence of
immune response, the number of secondary infections will be less, which suggests that
infection may be eradicated if RI < 1. From the expression of RI it is observed that
the number of secondary infections decreases with the enhancement of immune response
and drug efficacy. This shows that RI may be made less than one by increasing drug
efficacy and improving the immune conditions. Thus, increase in treatment is effective in
controlling the number of productively infected cells and free viruses. In addition, action
of immune response also reduces the virus load. It has also been shown in Fig. 7 that the
reproduction number can be reduced by applying adequate combination of therapeutic
drugs, which helps in reduction of viral load.
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