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ABSTRACT 

List coloring is a vertex coloring of a graph where each vertex can be 
restricted to a list of allowed colors. For a given graph G and a set L(v) of 
colors for every vertex v, a list coloring is a function that maps every vertex 
v to a color in the list L(v) such that no two adjacent vertices receive the 
same color. It was first studied in the 1970s in independent papers by Vizing 
and by Erdős, Rubin, and Taylor. A block graph is a type of undirected 
graph in which every biconnected component (block) is a clique. A complete 
bipartite graph is a bipartite graph with partitions V 1, V 2 such that for 
every two vertices v_1∈V_1 and v_2∈V_2 there is an edge (v 1, v 2). If 
|V_1 |=n and |V_2 |=m it is denoted by K_(n,m). In this paper we provide a 
polynomial algorithm for finding a list coloring of block graphs and prove 
that the problem of finding a list coloring of K_(n,m) is NP-complete even if 
for each vertex v the length of the list is not greater than 3 (|L(v)|≤3). 
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Introduction. All graphs considered in this paper are undirected (unless explicitly said), 

finite, and have no loops or multiple edges. For an undirected graph 𝐺, let 𝑉(𝐺) and 𝐸(𝐺) denote the 

sets of vertices and edges of 𝐺, respectively. The degree of a vertex 𝑣 ∈ 𝑉(𝐺) is denoted by 𝑑𝐺(𝑣).  

Let 𝐼𝑘 be the set  {1, … , 𝑘} of colors. For a set 𝑆 let 2𝑆 be the set of all the subsets of the set 𝑆. For a 

graph 𝐺 and a function 𝐿: 𝑉(𝐺) → 2𝐼𝑘 a list coloring 𝛽: 𝑉(𝐺) → 𝐼𝑘 is a coloring of the graph vertices with 

integers from 𝐼𝑘 such that for every vertex 𝑣, 𝛽(𝑣) ∈ 𝐿(𝑣) and every two adjacent vertices have different 

colors. It was first introduced in [3] and [4]. For each vertex 𝑣 the set 𝐿(𝑣) is called a list of colors.  

A block graph or clique tree [1] is a type of undirected graph in which every biconnected 

component (block) is a clique (every two distinct vertices in the clique are adjacent). Fig. 1 illustrates 

an example of a block graph. 

 

Fig 1. A block graph. 

PHYSICS AND MATHEMATICS 



World Science 8(69), 2021 

 

2 RS Global 

 

A cut vertex is any vertex whose removal increases the number of connected components [1] 

illustrated in Fig 2. Any connected graph decomposes into a tree of biconnected components called the 

block-cut tree of the graph [2]. In block graphs each block is clique. 
 

 

Fig 2. Each color corresponds to a biconnected component. Multi-colored vertices are cut vertices, 

and thus belong to multiple biconnected components. 

A complete bipartite graph is а simple bipartite graph such that two vertices are adjacent if and 

only if they are in different partite sets. When the sets have sizes 𝑛 and 𝑚, the (unlabeled) complete 

bipartite graph is denoted by 𝐾𝑛,𝑚 [1]. 

For a directed graph �⃗� if there is an edge from a vertex 𝑢 to a vertex 𝑣 we will denote it as 

𝑢 → 𝑣. The graph 𝐺 is called the underlying graph of a directed graph �⃗� if 𝑉(𝐺) = 𝑉(�⃗�) and between 

any pair of vertices 𝑢 and 𝑣, if the directed graph has an edge 𝑢 → 𝑣 or an edge 𝑣 → 𝑢 , the underlying 

graph includes the edge (𝑢, 𝑣).  

For a tree 𝑇 and a vertex 𝑟 let 𝑇𝑟 be the directed graph whose underlying graph is 𝑇 and in 𝑇𝑟 

each edge is directed in such a way that for all vertices 𝑣 ∈ 𝑇𝑟 there is a path in 𝑇𝑟 from 𝑟 to 𝑣. We 

will say that 𝑇𝑟 is a rooted tree with the root 𝑟. Fig. 3 illustrates the rooted tree 𝑇𝑣1
 with the root 𝑣1. 

 

Fig. 3. A rooted tree 𝑇𝑣1
 with the root 𝑣1.   

A vertex 𝑢 is said to be the parent of the vertex 𝑣, denoted by 𝑝(𝑣) if 𝑢 → 𝑣 and in such a 

case, the vertex 𝑣 is said to be a child of the vertex 𝑢. The children of a vertex 𝑣 ∈ 𝑉(𝑇𝑟) are the set of 

all vertices 𝑊 ⊆ 𝑉(𝑇𝑟) such that 𝑣 → 𝑤 for all 𝑤 ∈ 𝑉(𝑇𝑟). A vertex having no children is said to be a 

leaf vertex. For a vertex 𝑣 let 𝑆𝑇(𝑣) be the subtree induced [1] by all the vertices 𝑤 such that there is a 

path from 𝑣 to 𝑤 in 𝑇𝑟. 

List coloring was first introduced in [3] and [4]. The list-coloring problem is NP-complete for 

general perfect graphs [5], and is also NP-complete for many subclasses of perfect graphs, including 

split graphs [6], interval graphs [7,8], and bipartite graphs [9]. In [6] a polynomial solution was 

provided for partial k-trees with the time complexity of 𝑂(|𝑉(𝐺)|𝑘+2). In [10] different subclasses of 

perfect graphs were considered where the vertex coloring problem has a polynomial solution but the 

list coloring problem is NP-Complete [11, 12]. In [13] the extended version of list coloring was 

considered where the colors are intervals of integers and it was shown that for bipartite and complete 

graphs the problem is NP-Complete. 
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NP-completeness of the list coloring for complete bipartite graphs 

Given a complete bipartite graph 𝐾𝑛,𝑚 with vertices in the first part denoted by 𝑉1 and the 

vertices in the second part denoted by 𝑉2 (𝑉(𝐾𝑛,𝑚) = 𝑉1 ∪ 𝑉2). In 𝐾𝑛,𝑚 for every vertex 𝑢 ∈ 𝑉1 and 

every vertex 𝑣 ∈ 𝑉2 there is an edge connecting them (𝑢, 𝑣) ∈ 𝐸(𝐾𝑛,𝑚). We are going to prove that 

the list coloring of 𝐾𝑛,𝑚  is NP-complete even if the lists have at most 3 colors |𝐿(𝑣)| ≤ 3 for all 𝑣 ∈

𝑉(𝐺). To do that we are going to show that the problem of 3-satisfiability (3-SAT) [12] can be solved 

by finding a list coloring of some 𝐾𝑛,𝑚  and 𝐿. 

Problem 1: Given a complete bipartite graph 𝐾𝑛,𝑚 and lists of colors 𝐿: 𝑉(𝐾𝑛,𝑚) → 2𝐼𝑘 with 

|𝐿(𝑣)| ≤ 3. Find a list coloring 𝛽 for it. 

3-SAT Problem: Given a collection 𝐶 = {𝑐1, … , 𝑐𝑚} of clauses on a set 𝑋 = {𝑥1, … , 𝑥𝑛} of 

Boolean variables such that |𝑐𝑖| = 3 for 𝑖 = 1, … , 𝑚. Is there a true assignment for 𝑋 that satisfies all 

the clauses in 𝐶.  

Theorem 1: The Problem 1 of finding a list coloring of complete bipartite graphs where lists 

can have at most 3 colors is NP-complete.  
Proof. We will reduce the 3-SAT problem to the Problem 1. Assume we have an instance of 3-

SAT with 𝑛 variables 𝑋 and 𝑚 clauses 𝐶. We must construct a complete bipartite graph and provide 

lists of colors on it such that there is a list coloring on that graph if and only if there is a satisfying true 

assignment for 𝑋. Let 𝑥𝜎  be defined the following way:  𝑥𝜎 = 𝑥 when 𝜎 = 1 and 𝑥𝜎 = ¬𝑥 when  

𝜎 = 0. In that case each clause has this form 𝑐𝑖 = (𝑥𝑖1
𝜎𝑖1  ∨  𝑥𝑖2

𝜎𝑖2 ∨ 𝑥𝑖3
𝜎𝑖3) where 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3 ∈ 𝑋 and 

𝜎𝑖1, 𝜎𝑖2, 𝜎𝑖3 ∈ {0,1}. 

We will construct the graph 𝐾𝑛,𝑚 the following way: for each variable 𝑥𝑖 for 𝑖 = 1, … , 𝑛 we 

will construct a vertex 𝑢𝑖 in 𝑉1 (|𝑉1| = 𝑛) and for each clause 𝑐𝑖 for 𝑖 = 1, … , 𝑚 we will construct a 

vertex 𝑣𝑖 ∈ 𝑉2 (|𝑉2| = 𝑚). For every vertex 𝑢𝑖 and a vertex 𝑣𝑗 there is an edge (𝑢𝑖 , 𝑣𝑗) ∈ 𝐾𝑛,𝑚. For 

every variable 𝑥𝑖 we will introduce two colors. The color 𝑖 will represent  𝑥𝑖 and the color 𝑛 + 𝑖 will 

represent ¬𝑥𝑖. Hence 𝑘 = 2 ∗ 𝑛 and we will construct the lists the following way: for every vertex 𝑢𝑖 

the list 𝐿(𝑢𝑖) = {𝑖, 𝑛 + 𝑖}. For every vertex 𝑣𝑖 we will take its clause 𝑐𝑖 = (𝑥𝑖1
𝜎𝑖1  ∨  𝑥𝑖2

𝜎𝑖2 ∨ 𝑥𝑖3
𝜎𝑖3) and 

the colors will be 𝐿(𝑣𝑖) = {𝑖1 + (1 − 𝜎𝑖1) ∗ 𝑛, 𝑖2 + (1 − 𝜎𝑖2) ∗ 𝑛, 𝑖2 + (1 − 𝜎𝑖2) ∗ 𝑛} which means, 

if the variable 𝑥𝑗 appears in the form of 𝑥𝑗 in 𝑐𝑖 then we have the color 𝑗 in 𝐿(𝑣𝑖) and if the variable 𝑥𝑗 

appears in the form of ¬𝑥𝑗 then we have the color 𝑗 + 𝑛 in 𝐿(𝑣𝑖).  

Now let us show that finding a list coloring on this 𝐾𝑛,𝑚, 𝐿 is equivalent to finding a satisfying 

true assignment in 𝐶, 𝑋.  

Let us first show that if 𝑎1, … , 𝑎𝑛 ∈ {𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒} is a satisfying solution for 𝐶, 𝑋 such that 

assigning 𝑎𝑗 to 𝑥𝑗 makes all 𝑐𝑖 = 𝑡𝑟𝑢𝑒 then there is a list coloring 𝛽: 𝑉(𝐾𝑛,𝑚) → {1, … ,2 ∗ 𝑛}.  

For the vertices in 𝑉1 let 𝛽(𝑢𝑗) = 𝑗 if 𝑎𝑗 = 𝑓𝑎𝑙𝑠𝑒 and 𝛽(𝑢𝑗) = 𝑛 + 𝑗 if 𝑎𝑗 = 𝑡𝑟𝑢𝑒. Now for 

each 𝑐𝑖 one of the 𝑎𝑖1
𝜎𝑖1 , 𝑎𝑖2

𝜎𝑖2 , 𝑎𝑖3
𝜎𝑖3 is 𝑡𝑟𝑢𝑒. Suppose  𝑎𝑖1

𝜎𝑖1 = 𝑡𝑟𝑢𝑒. If 𝜎𝑖1 = 1 then 𝑎𝑖1 = 𝑡𝑟𝑢𝑒 and we 

will take 𝛽(𝑣𝑖) = 𝑖1 and if 𝜎𝑖1 = 0 then 𝑎𝑖1 = 𝑓𝑎𝑙𝑠𝑒 and we will take 𝛽(𝑣𝑖) = 𝑖1 + 𝑛. Note that from 

this coloring the only conflict that can happen for the vertex 𝑣𝑖 is the vertex 𝑢𝑖1 because we either 

color it with 𝑖1 or 𝑖1 + 𝑛 and in 𝑉1 only the vertex 𝑢𝑖1 can have these colors. But we color the vertex 

𝑣𝑖 with 𝑖1 when 𝑎𝑖1 = 𝑡𝑟𝑢𝑒 in which case the color of the vertex 𝑢𝑖1 is 𝑖1 + 𝑛, and we color the vertex 

𝑣𝑖 with 𝑖1 + 𝑛 when 𝑎𝑖1 = 𝑓𝑎𝑙𝑠𝑒 in which case the color of the vertex 𝑢𝑖1 is 𝑖1. In other words, we 

color the vertices of 𝑉2 with the colors for which they become true in the assignment and we color the 

vertices of 𝑉1 with the opposite colors. This means that any satisfying assignment in 𝐶, 𝑋 is also 

producing a list coloring in 𝐾𝑛,𝑚, 𝐿. 

Now suppose we have a list coloring 𝛽 in 𝐾𝑛,𝑚, 𝐿, let us show that there is a satisfying 

solution for 𝐶, 𝑋. For each vertex in 𝑢𝑖 we either have 𝛽(𝑢𝑖) = 𝑖 or 𝛽(𝑢𝑖) = 𝑛 + 𝑖. Let us construct 

the assignment 𝑎1, … , 𝑎𝑛 the following way: 𝑎𝑖 = 𝑡𝑟𝑢𝑒 if 𝛽(𝑢𝑖) = 𝑛 + 𝑖 and 𝑎𝑖 = 𝑓𝑎𝑙𝑠𝑒 if 𝛽(𝑢𝑖) = 𝑖. 
We now want to show that taking 𝑥𝑗 = 𝑎𝑗 is a satisfying solution for every 𝑐𝑖 clause. 𝑐𝑖 = (𝑥𝑖1

𝜎𝑖1  ∨

 𝑥𝑖2
𝜎𝑖2 ∨ 𝑥𝑖3

𝜎𝑖3)  and we need to show that one of the 𝑎𝑖1
𝜎𝑖1 , 𝑎𝑖2

𝜎𝑖2 , 𝑎𝑖3
𝜎𝑖3 is 𝑡𝑟𝑢𝑒. Without loose of generality 

assume the color of the vertex 𝑣𝑖 is 𝑖1 + (1 − 𝜎𝑖1) ∗ 𝑛. If 𝜎𝑖1 = 1 it means 𝛽(𝑣𝑖) = 𝑖1 which means 

𝛽(𝑢𝑖1) = 𝑖1 + 𝑛 (because the colors should be different), which means 𝑎𝑖1 = 𝑡𝑟𝑢𝑒 resulting 𝑎𝑖1
𝜎𝑖1 =

𝑡𝑟𝑢𝑒 and hence 𝑐𝑖 = 𝑡𝑟𝑢𝑒. If 𝜎𝑖1 = 0 it means 𝛽(𝑣𝑖) = 𝑖1 + 𝑛 which means 𝛽(𝑢𝑖1) = 𝑖1, which 
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means 𝑎𝑖1 = 𝑓𝑎𝑙𝑠𝑒 resulting 𝑎𝑖1
𝜎𝑖1 = 𝑡𝑟𝑢𝑒 and hence 𝑐𝑖 = 𝑡𝑟𝑢𝑒. This means that any list coloring in 

𝐾𝑛,𝑚, 𝐿 is also producing a satisfying assignment in 𝐶, 𝑋 proving that the two problems are equivalent, 

which means the Problem 1 is NP-complete. 

A polynomial algorithm for the list coloring of block graphs. 

For a given block graph 𝐺 let 𝑁 = |𝑉(𝐺)| and there are restrictions 𝐿 on the vertices such that 

for each vertex 𝑣 the restriction 𝐿(𝑣) is a set of colors that is allowed to use for the vertex 𝑣 and 

𝐿(𝑣) ⊆ 𝐼𝑘 (for a given 𝑘). We need to find a vertex coloring 𝛽 such that for each vertex the restriction 

is met 𝛽(𝑣) ∈ 𝐿(𝑣). 

Problem: Given an arbitrary block graph 𝐺 with 𝑁 = |𝑉(𝐺)| vertices and given arbitrary 

restrictions 𝐿 for every vertex 𝑣 with 𝐿(𝑣) ⊆ 𝐼𝑘. Determine whether it is possible to have a vertex 

coloring 𝛽: 𝑉(𝐺) → 𝐼𝑘 such that 𝛽(𝑣) ∈ 𝐿(𝑣) for every vertex 𝑣. 

For the block graph 𝐺 let us construct its respective block-cut tree and denote it as 𝑇. Each 

vertex in 𝑇 is either a cut vertex or a block of the graph 𝐺. Fig 4 illustrate a block graph and its 

respective block-cut tree. Vertices 2, 8, 13, 14, 15 in the graph 𝐺 are respectively the vertices 

𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 in the block-cut tree 𝑇. In the block-cut tree 𝑇 if the vertex is a cut vertex in the graph 

𝐺 we will call it a cut vertex in 𝑇 and if the vertex is a block of the graph 𝐺 we will call it a block 

vertex in the tree 𝑇. We will draw cut vertices with circles and block vertices with squares. If the 

vertex 𝑣 is a block vertex in the tree 𝑇 then let 𝐵(𝑣) be the block of the graph 𝐺 associated with that 

block vertex. Since 𝐺 is a block graph 𝐵(𝑣) will be a clique. For a cut vertex 𝑣 in the tree 𝑇 let 𝐶(𝑣) 

be the cut vertex in the graph 𝐺. 

 

 

Fig 4. Block graph on the left and its respective block cut tree on the right. 

All the leaf vertices in 𝑇 (𝑑𝑇(𝑣) = 1) are block vertices since a cut vertex is always connected 

to at least 2 different block vertices in the tree (because removing a cut vertex of the graph 𝐺 will 

make the graph disconnected).  

If the block graph does not contain a cut vertex, then it is a complete graph. Let us first see 

how we can solve the list coloring problem in the case of complete graphs. For every vertex from 

𝑣1, … , 𝑣𝑁 we need to select a color from 1, … , 𝑘 that meets the restriction 𝛽(𝑣𝑖) ∈ 𝐿(𝑣𝑖). We will 

construct a bipartite graph the following way: the first partition 𝑉1 will be {𝑣1, … , 𝑣𝑁} and the second 

partition 𝑉2 will be {𝑢1, … , 𝑢𝑘}. In this bipartite graph we will construct an edge (𝑣𝑖 , 𝑢𝑗) if the color 

𝑗 ∈ 𝐿(𝑣𝑖). In that case finding a list coloring is equivalent to finding a matching of size 𝑁 in this 

bipartite graph because we need to assign a color to each vertex in a way that all the colors are 

different and the restrictions are met. Fig 5 illustrates that bipartite graph. 
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Fig 5. The bipartite graph constructed from the complete graph with provided list of colors. 

Moving forward we will assume that there is at least one cut vertex in the graph 𝐺.  Let 𝑟 be 

an arbitrary cut vertex in 𝑇 which will also be a cut vertex in the graph 𝐺. We are interested in the 

rooted tree 𝑇𝑟 . In that case 𝑇𝑟 would look like the tree shown in Fig. 6. Since 𝑟 is a cut vertex the 

children of the vertex 𝑟 are block vertices.  

 

Fig 6. The rooted block-cut tree 𝑇𝑟 

For each vertex 𝑣 in the tree 𝑇𝑟 let 𝑈(𝑣) be the subtree 𝑆𝑇(𝑣) if the vertex 𝑣 is a cut vertex 

and the subtree induced by the subset 𝑉(𝑆𝑇(𝑣)) ∪ {𝑝(𝑣)} of the vertices in 𝑇𝑟 if the vertex 𝑣 is a block 

vertex. Fig. 7 illustrates the subtree 𝑈(𝑣3) and the subtree 𝑈(𝑣4) in 𝑇𝑣1
.  

 

Fig 7. The subtree 𝑈(𝑣3) on the left and the subtree 𝑈(𝑣4) on the right in the tree 𝑇𝑣1
. 
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For a subtree 𝑈(𝑣) let 𝑟𝑜𝑜𝑡(𝑈(𝑣)) be the vertex 𝑣 if it is a cut vertex, and the vertex 𝑝(𝑣) if it 

is a block vertex. For a block vertex 𝑣 the vertex 𝑝(𝑣) is a cut vertex and 𝐶(𝑝(𝑣)) is included in the 

block 𝐵(𝑣), 𝐶(𝑝(𝑣)) ∈ 𝐵(𝑣). For a non-root cut vertex 𝑣 in 𝑇𝑟 the vertex 𝑝(𝑣) is a block vertex and 

𝐶(𝑣) ∈ 𝐵(𝑝(𝑣)). For every 𝑣 the vertex 𝑟𝑜𝑜𝑡(𝑈(𝑣)) is a cut vertex that is connected to some child 

block vertices.  

For every vertex 𝑣 ∈ 𝑇𝑟 let 𝑆𝐺(𝑣) be the subgraph of the block graph 𝐺 induced by all the 

vertices that are included in any of the block vertices of 𝑈(𝑣) in 𝑇𝑟, i.e. if 𝑢 is a block vertex in 𝑇𝑟 and 

𝑢 ∈ 𝑉(𝑈(𝑣)) then 𝑉(𝐵(𝑢)) ⊆ 𝑉(𝑆𝐺(𝑣)). Let 𝑑𝑝[𝑣][𝑐] = 1 if it is possible to have a list coloring in 

the subgraph 𝑆𝐺(𝑣) in a way that the vertex 𝐶(𝑟𝑜𝑜𝑡(𝑈(𝑣)) has the color 𝑐. Since the vertex 

𝑟𝑜𝑜𝑡(𝑈(𝑣)) is a cut vertex we want to color it with the color 𝑐 and have a vertex coloring in 𝑆𝐺(𝑣). If 

it is impossible to have such list coloring then 𝑑𝑝[𝑣][𝑐] = 0. Here 𝑐 goes from 1 to 𝑘.  

In order to calculate the values of 𝑑𝑝[𝑣][𝑐] we will need to calculate these values for the 

children 𝑢1, … , 𝑢𝑚 of the vertex 𝑣 in 𝑇𝑟. Suppose we already calculated the values for the child 

vertices, how can we use those values to calculate 𝑑𝑝[𝑣][𝑐]? We will consider two cases: the vertex 𝑣 

is a cut vertex and the vertex 𝑣 is a block vertex.  

If the vertex 𝑣 is a cut vertex, then the vertices 𝑢1, … , 𝑢𝑚 are block vertices and for subtrees 

𝑈(𝑢𝑖) we have 𝑟𝑜𝑜𝑡(𝑈(𝑢𝑖)) = 𝑣. Which means they all have the common vertex 𝑣. In this case 

𝑟𝑜𝑜𝑡(𝑈(𝑣)) = 𝑣 too, so we essentially want to know for which colors 𝑐 if it is possible to have a list 

coloring of the subgraph 𝑆𝐺(𝑣). In this case 𝑑𝑝[𝑣][𝑐] = 1 if and only if 𝑑𝑝[𝑢𝑖][𝑐] = 1 for all 𝑖 =
1, … , 𝑚 since 𝑟𝑜𝑜𝑡(𝑈(𝑢𝑖)) = 𝑣 and hence the color of the 𝑟𝑜𝑜𝑡(𝑈(𝑢𝑖)) should be the same color 𝑐.  

Fig 8 illustrates this case. 

 

Fig 8. The subtree 𝑈(𝑣) when the vertex 𝑣 is a cut vertex. 

If the vertex 𝑣 is a block vertex it means that the child vertices 𝑢1, … , 𝑢𝑚 are cut vertices and 

the vertex 𝑟𝑜𝑜𝑡(𝑈(𝑣)) = 𝑝(𝑣) is also a cut vertex. In other words, the vertices 

𝐶(𝑝(𝑣)), 𝐶(𝑢1), … , 𝐶(𝑢𝑚) ∈ 𝐵(𝑣). Fig 9 illustrates this case. 

 

Fig 9. The subtree 𝑈(𝑣) when the vertex 𝑣 is a block vertex. 
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Consider the block 𝐵(𝑣), since it is a clique, we should make sure that all the vertices in this 

block have different colors. Let 𝑡 = |𝑉(𝐵(𝑣))| − 1 and let the vertices of 𝐵(𝑣) be {𝑔0, … , 𝑔𝑡} such 

that 𝑔0 = 𝐶(𝑝(𝑣)), 𝑔1 = 𝐶(𝑢1), … , 𝑔𝑚 = 𝐶(𝑢𝑚). The vertices 𝑔0, 𝑔1, … , 𝑔𝑚 are cut vertices and the 

vertices 𝑔𝑚+1, … , 𝑔𝑡 are not cut vertices in the block graph 𝐺. In order to find a list coloring of 𝑆𝐺(𝑣) 

we need to find a list coloring for the block 𝐵(𝑣) and also for all the subgraphs 𝑆𝐺(𝑢1), … , 𝑆𝐺(𝑢𝑚). 

This means we need to find distinct colors 𝑐0, … , 𝑐𝑡 such that 𝑐𝑖 ∈ 𝐿(𝑔𝑖) for all 0 ≤ 𝑖 ≤ 𝑡 and 

𝑑𝑝[𝑢𝑗][𝑐𝑗] = 1 for all the child vertices (1 ≤ 𝑗 ≤ 𝑚). If we are calculating the value 𝑑𝑝[𝑣][𝑐] it means 

that 𝑐0 = 𝑐. We will construct a bipartite graph the following way: the left partition will be 𝑉1 and will 

have the vertices {𝑔0, … , 𝑔𝑡} and the right partition will be 𝑉2 with the vertices 𝑢1, … , 𝑢𝑘. To calculate 

the answer for the color 𝑐 ∈ 𝐿(𝑔0) we will construct the edges of the bipartite graph the following 

way: for the vertex 𝑔0 we will only add the edge (𝑔0, 𝑢𝑐), for the vertices 𝑔1, … , 𝑔𝑚 we will add an 

edge (𝑔𝑎 , 𝑢𝑏) if 𝑑𝑝[𝑔𝑎][𝑏] = 1, for the vertices 𝑔𝑚+1, … , 𝑔𝑡 we will add an edge (𝑔𝑎 , 𝑢𝑏) if 𝑏 ∈
𝐿(𝑔𝑎). Finding a maximal matching of size 𝑡 + 1 means assigning different colors to the vertices 

𝑔0, … , 𝑔𝑡 such that the restrictions 𝐿(𝑔𝑗) are satisfied, and it is possible to color the subgraphs 𝑆𝐺(𝑢𝑖) 

for all the child cut vertices. If we find such matching, we assign 𝑑𝑝[𝑣][𝑐] = 1 otherwise we assign 

𝑑𝑝[𝑣][𝑐] = 0. Fig 10 illustrates the bipartite graph for this case.  

 

 

Fig 10. The bipartite graph for a block with vertices 𝑔0, … , 𝑔𝑡. 

We can calculate the values of 𝑑𝑝[𝑣][𝑖] in the tree 𝑇𝑟 from the bottom to the top. If there is a 

color 𝑖 such that 𝑑𝑝[𝑟][𝑖] = 1 it means we were able to find a list coloring for 𝑆𝐺(𝑟) which is the 

entire graph 𝐺. Storing the results of maximal matchings will allow us to later construct the list 

coloring from top to bottom. 

Let us now calculate the complexity of the algorithm. For every block of the graph 𝐺 we 

would need to find a maximal matching. If 𝑁 = |𝑉(𝐺)| and we want to color with the colors from 

1, … , 𝑘 then for a block of size 𝑡 we would need to calculate a matching for a bipartite graph that has 𝑡 

vertices on the left partition and 𝑘 vertices on the right partition which can be done in 𝑂(𝑡 ∗ 𝑡 ∗ 𝑘) for 

every color 𝑖. Since the sum of the number of vertices from all the blocks is 𝑂(𝑁) then it would take 

about 𝑂(𝑁2 ∗ 𝑘2) operations. If 𝑘 = 𝑂(𝑁) then the algorithm will run in 𝑂(𝑁4). Note that we can 

always assume that 𝑘 = | ⋃ 𝐿(𝑣)𝑣∈𝑉(𝐺) |  ≤  ∑ |𝐿(𝑣)|𝑣∈𝑉(𝐺)  since we can remove the redundant colors 

and reindex the colors. This means that 𝑘 is less than the size of the input and hence the algorithm has 

a polynomial time complexity.  
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