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Abstract. Although drone appears in different applications, such as environmental inspection, 
agriculture or transportation, some aspects require more studies to clarify the efficient outcomes. 
One of them is to investigate the filtering performance such as Kalman and Complementary filters 
when the autonomous aerial system (AAS) handles its mission. However, it lacks the systematic 
research about these filters to provide the proper evaluation. Therefore, in this paper, the research 
topic related to AAS model to indicate the filtering effects in the agricultural application for 
making an alternative solution is presented. Firstly, the mathematical representation of system 
model is established in order to describe the dynamical performance and motion constraints. Then, 
the theory of filter structure is implemented to estimate the system state. The proposed design is 
validated in both numerical simulation and experiments. The system parameters that are 
monitored, include angular values of roll, pitch and yaw in three axes, motion parameters and its 
trajectories. By utilizing various sensing devices such as gyroscope, accelerometer and compass 
in real-world hardware, the experimental results could evaluate more precise and efficient design. 
The findings of this study are to (1) propose the model of AAS and proper filters, (2) launch the 
verified process and calibration, and (3) demonstrate the competitive performance among filters. 
From these results of our work, it could be clearly seen that the AAS plays an important role in 
daily applications and the related topics are still attractive. 
Keywords: agricultural application, motion control, robotics, adaptive control, aerial vehicle. 

Nomenclature Φ, 𝜃, Ψ Roll, pitch, and yaw angles 𝑅 , 𝑅 , 𝑅  Fastened to earth inertial coordinate, parallel to 𝑅  and tied to the body  𝐴𝑐𝑐 , 𝐴𝑐𝑐 , 𝐴𝑐𝑐  Acceleration on 𝑥, 𝑦 and 𝑧 axis Ω , Ω , Ω  Gyro rate on 𝑥, 𝑦 and 𝑧 axis in 𝑅  coordinate 𝑔, 𝑎  Gravitational acceleration and linear acceleration 𝑈 , 𝐴 Vector control inputs, the state transition matrix applied to each system 
state 𝑋  on the system state 𝑋  𝜔  Process noise terms for each parameter in the state vector 𝑁 𝜔,𝑄  Multivariate normal distribution 𝐻 Transformation matrix 𝑇 , 𝑀  Lifting force and moment of driving motor 𝑖th  𝑅  Rotation matrix from frame 𝐵  To frame 𝐸  𝐸 𝑥 ,𝑦 , 𝑧  Inertial coordinate 
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𝑅  Rotation matrix from frame 𝐸  To frame 𝐵  𝑇 Matrix perform relationship between angular velocity vector 𝑉  in frame 𝐵  and frame 𝐸  𝐹 , b Thrust force in frame 𝐵  and thrust factor 𝑙 Length from 𝑂  to BLDC motor 𝐶 , 𝜌, 𝑆, 𝑣  Drag coefficient, the mass density of the air-fluid, reference area of the 
object, and the object’s speed relative to the air-fluid 𝑈 , 𝑈 , 𝑈 , 𝑈  Control signals 𝑅 (Φ), 𝑅 (𝜃), 𝑅 (Ψ) Rotational matrix on 𝑥, 𝑦 and 𝑧 axis 𝜃 , 𝜃 , 𝜃  Measuring by gyroscope such angular speed, pitch angle and estimated 
angle after high-pass filter 𝜃 , 𝜃  Measuring by accelerometer such pitch angle and estimated angle after 
low-pass filter 𝛾 Tuning coefficient 𝑋 = 𝑥 𝑥  Input system state including angle 𝑥 and angular velocity 𝑥 𝐵 Control input matrix that applied each control input parameter in the 
vector 𝑈  𝑍  An observation at time 𝑘 𝑃(𝜔) Covariance of distribution 𝑉  Observed noise 𝑥, 𝑦, 𝑧 Location of frame in the centroid of quadcopter model 𝑥 , 𝑦 , 𝑧  Location of frame in the coordinate 𝐸  𝐶𝑆 = 𝑥 ,𝑦 , 𝑧  Body coordinate 𝜉 , 𝑉  Position vector in frame 𝐸  and velocity vector in frame 𝐵   𝐹 , 𝐹  Gravitational force in fram e 𝐸  and frame 𝐵  

d Drag element Ω , Ω , Ω , Ω  Angular velocities of motor 1, motor 2, motor 3, and motor 4 𝜏 = 𝜏 𝜏 𝜏  Applied torques 𝐹  Air drag force 

1. Introduction 

The research of quadcopters has become an attractive topic in industrial applications and 
monitoring fields due to their quick development and easy execution [1]. It is stated that this 
system still plays a crucial role for investigators in many years. In [2], inspectors were considered 
to use a quadrotor as one of the important methods to verify the transportation infrastructures such 
as a tunnel or a bridge. This research emphases on innovating the position control without using 
the global positioning system (GPS) and offers a solution for detecting a tethered quadrotor's 
airframe location from the length and tension or force of the tether.  

The problem of state estimation becomes one of the popular topics in the aerial vehicle system. 
Commonly, many researchers chose the filtering approach to give a solution for these problems. 
However, various filter technologies have been utilized to estimate the system state of aerial 
vehicle. Several enhanced filters, for example, particle filters, are difficult to be computed and 
have a high cost of labor. It requires a powerful microprocessor to be managed in the control 
board. Reversely, some filters, for instance Kalman filter and Complementary filter, reveal the 
effectiveness and are popular because of their frequency filtering performance in the linearization 
system [3]. Dissimilar studies developed the Kalman filter [4] in the flight control subject. To 
estimate the system state at specific attitude or hovering the air vehicle, authors [5] adjusted the 
typical Kalman filter to enhance the adaptive response. The output values are computed by using 
a multiple extended Kalman filter. The state observer obtains data from different sensors such as 
accelerometers, gyroscopes and GPS. The study in [6] introduced an unscented Kalman filter by 
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using the three-axes attitude identification scheme as the system observer. It operates  
resourcefully, but needs computational capability considerably. Additionally, this approach is also 
useful to trace the motion [7-9]. The desired filtering data is provided from a small 
inertial/magnetic sensor. As well, the extended Kalman filter is proper for an uncertain system 
which contains the nonlinear components. It could be embedded into a pixhawk module that 
satisfies the further optimization operation of the attitude detection [10]. The px4 or pixhawk 
module is also combined with an open-source platform, for example gazebo, to develop the 
hardware-in-the-loop [11]. 

On the other hand, a method of filter techniques is to integrate a Complementary filter [10] 
which has little computational complexity in the aerial vehicle system. Owing to the simple 
framework and high efficiency, many investigators and developers are concerned to research the 
attitude estimation. In [11, 12], researchers indicated that the high-order linear model of 
Complementary filter is globally asymptotically stable. Two kinds of filter, named as direct and 
passive, are completed as the work presented in [3]. Moreover, the proposed design is perfectly 
deterministic while it is based on the linear Complementary filter. This work is considered as the 
deterministic attitude estimation algorithm. 

Kalman filter and Complementary filter are implemented correspondingly in the model of 
quadcopter to achieve the response in this work. The key contribution is to launch the performance 
of each filter in quadrotor to prove in which case it can be valuable. The rest of this article is 
structured as follows. Section 2 briefly reviews the previous works and describes the theoretical 
principles to estimate the orientation and acceleration in the real-world applications [12]. In 
Section 3, the mathematical models of both Kalman filter and Complementary filter are depicted 
basically. Sequentially, the motion analysis of aerial vehicle are demonstrated in Section 4. The 
theoretical results in Section 5 are simulated to visualize the effective design. Then, several 
experiments in Section 6 are established to verify our contributions. In Section 7, the conclusions 
are presented. 

2. Investigation of theoretical principle 

2.1. Problem statement 

In detail, the Kalman filter is commonly known as a solution for state estimation in the 
unmanned aerial vehicle. The nonlinear observer [13], which produces an exogenous signal, 
ensures the globally asymptotical stability. This signal is to generate the linearized model for the 
Kalman filter to accurately estimate a quadcopter's attitude. Unlike many observers, the adaptive 
high-gain extended Kalman filter is validated to converge [14] globally. This is innovated by 
varying the high-gain parameter according to a metric. Although it presents several advantages in 
state estimation and good filtering properties, it still needs to increase the sensitivity to large 
perturbations. With the simpler design but the same structure, the extended Kalman filter model 
using the real sensor measurements to estimate correctly the measurement noise that is established 
[15]. In the complicated platform such as manipulating unmanned aerial vehicles, state estimation 
is a challenge due to inherent couplings, nonlinearities, and uncertainties, so that the extended 
Kalman filter might not be applicable. The other form of this filter that includes two options of 
the unscented Kalman filter, is employed to address the state estimation problem [16]. The 
improvement in estimation accuracy, overall control performance, and algorithm execution time 
compared to the other extended Kalman filters is solidly confirmed. In the other approach [17], a 
magnetic and inertial measurement unit provides raw data consisting of noise, bias, and drift, to 
feed into the motion controller of Quadcopter. The data fusion algorithms from the Madgwick, 
Mahony, and extended Kalman filter are competitive to significantly reduce these errors. Though, 
this research does not reveal the superior performance in real-world applications. Moreover, the 
magnetic measurement from low-cost sensors is inappropriate for precise control in autonomous 
aerial vehicles.  
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For a linear-like model, the Complementary filter is efficient concerning noise and the gyro 
bias estimation. This 𝑛-order direct and passive filter combined with Three Axis Attitude 
Determination (TRIAD) scheme is proposed to launch an attitude estimation solution [18]. In the 
open-source platform [19, 20], this kind of filter becomes the feasible method to determine the 
whole system's dynamics. Owing to the efficient characteristics, the built-in filter could be very 
easy to tune so the accurate measurement would be considerably cheap. For advanced 
applications, a novel attitude representation consisting of four-dimensional parameters is 
recommended for an intuitive interpretation [21]. Particularly, a complementary filter based on 
the new representation is rather natural than the filter that has magnetic separation property where 
pitch and roll angles are not affected by the magnetic disturbances. In summary, most of the 
previous works in this field are totally mentioned in Table 1.  

Table 1. The state-of-art researches of related topic 
Category Author(s) Application(s) Advantage(s) Disadvantage(s) 

Complementary 
filter (CF) 

Mark E. et 
al [22] 

Attitude estimation 
on fixed-wing 

Unmanned Aerial 
Vehicle (UAV) 

It indicates significant 
potential as a simple 
and robust attitude 

filter for small-scale 
UAV 

The accuracy 
estimation is still 

limited 

Jin W. et 
al [23] 

Magnetic-based 
fusion for fast 

attitude estimation 

This approach is 
superior in calculation 
complexity and better 

precision 

The gain should be 
adapted with 

different 
circumstances 

Tae S. Y. 
et al [24] 

Using MEMS 
sensors to schedule 

the gains for 
attitude and 

heading reference 
system 

The noise corruption 
from accelerometer and 

drift error from gyro 
could be overcome 

The innovative 
computation should 

be employed if 
required fast filtering 

response 

Sebastian 
O. H. et al 

[25] 

An extended 
complementary 
filter for whole 
body estimation 

The results specify the 
novel compensation 

scheme efficiently and 
robust 

The power 
assumption must be 

evaluated 

Kalman filter 
(KF) 

Welch, G., 
& Bishop, 

G. [26] 

An introduction to 
Kalman filter: 

discrete KF and 
extended KF 

The popular KF is to 
estimate the discrete-

time control by a linear 
stochastic method 
while extended KF 
could evaluate the 

uncertain process by a 
nonlinear stochastic 

equations 

In the complex 
environment, the 
gain-scheduling 

should be mentioned 
for better estimation 

Thomas 
M. and 

Daniel S. 
[27] 

An extended KF 
for mobile robot in 

the Robot 
Operating System 

(ROS) environment 

It supports an unlimited 
number of inputs from 
various sensor types 

More state estimation 
nodes, linear 

acceleration support 
and covariance 

override are essential 
to implement 

Ivan P. et 
al [28] 

Gain-varying for 
dynamic 

positioning in 
marine vessel 

The update rules for 
covariance matrices 

assist to achieve 
significant 

improvement in state 
estimation 

The practical tests 
are required to 

validate the real-time 
performance 

It is necessary to emphasize that the gyroscope provides inaccurate and less noisy 
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measurement. Nevertheless, due to the integral factor, the cumulative error occurs, and the result 
tends to be drifted, even when the system locates in the original point. The gyroscope’s results are 
only available in the short term. An accelerometer cannot evaluate the correct yaw angle and is 
sensitive to vibrate when external forces appear. Therefore, the utilization of filters that synthesize 
the signals from both gyroscope and accelerometer is to carry out the proper driving commands. 
In any mission, the attitude estimation is crucial for Quadcopter to maintain the tracking trajectory. 
Nevertheless, there is no research topic to discuss the comparative performance between Kalman 
filter and Complementary filter for such a case. 

2.2. Angular estimation of aerial system 

In order to use the BoosterPack module, it must be calibrated to the center of gravity (CoG) of 
the system. The rotation matrix of the system is described: 𝑅 (Φ,𝜃,𝜓) = 𝑅 (𝜓)𝑅 (𝜃)𝑅 (Φ) (1)      = cos𝜃cosΨ −cosΦsinΨ + sinΦsin𝜃cosΨ sinΦsinΨ + cosΦsin𝜃cosΨcos𝜃sinΨ cosΦcosΨ + sinΦsin𝜃sinΨ −sinΦcosΨ + cosΦsin𝜃sinΨ−sin𝜃 sinΦcos𝜃 cosΦcos𝜃 , (2)

where Φ, 𝜃, Ψ are roll, pitch, and yaw angles, respectively. 
Assume that 𝑅  is fixed to the earth inertial coordinate, 𝑅  is parallel to 𝑅  and located at the 

CoG of system, 𝑅  is tied to the body of system and located at its CoG. 
Due to a small Euler angle, the angular velocity of system in the 𝑅  coordinate is as follows: 

gyroRate = Ω = Ω ,Ω ,Ω , (3)ΩΩΩ ≈ Φ𝜃Ψ . (4)

2.3. Accelerating estimation of aerial system 

Consider that the system has a linear acceleration 𝑎  and is put in gravitational acceleration. 
Assume that linear acceleration is very small (𝑎 ≈ 0), and BoosterPack has placed its 𝑧-axis along 
with gravitational acceleration direction. The rotation matrix is called as 𝑅: 

𝐴𝑐𝑐 = 𝐴𝑐𝑐𝐴𝑐𝑐𝐴𝑐𝑐 = 𝑅(𝑔 − 𝑎 ) = 𝑅 × 𝑔. (5)

Hence, Euler angles can be evaluated from roll, pitch and yaw sensor readings: 

𝑅 (Φ) = 1 0 00 cosΦ sinΦ0 −sinΦ cosΦ , (6)

𝑅 (𝜃) = cos𝜃 0 −sin𝜃0 1 0sin𝜃 0 cos𝜃 , (7)

𝑅 (Ψ) = cosΨ sinΨ 0−sinΨ cosΨ 00 0 1 . (8)

As a result, the rotation matrix is written as follows: 
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𝑅 × 001 = 𝑅 (Φ) × 𝑅 (𝜃) × 𝑅 (Ψ) × 001  (9)

     = −sin𝜃cos𝜃sinΦcos𝜃cosΦ . (10)

The values of roll and pitch angle can be estimated as follows: 

Φ = arctan 𝐴𝑐𝑐𝐴𝑐𝑐 , (11)𝜃 = arctan −𝐴𝑐𝑐𝐴𝑐𝑐 + 𝐴𝑐𝑐 . (12)

3. Mathematical model of filters 

3.1. Complementary filter design 

To overcome the drifted problem in the gyroscope and to lessen high-frequency noise from an 
accelerometer, a Complementary filter is recommended to evaluate angles 𝜃  based on the 
variation of speed 𝜃  from a gyroscope. Later, it is added with angles 𝜃  from the 
accelerometer as Fig. 1(a). It is considered to have small values, and the estimation of roll value Φ and pitch value 𝜃 are known, respectively: 𝜃(𝑛) = 𝛾𝜃 (𝑛) + (1 − 𝛾)𝜃 (𝑛),     0.5 𝛾 1. (13)
 

 
a) 

 
b) 

Fig. 1. Structure of a) Complementary Filter and b) Kalman Filter 

The superiority of the Complementary filter mainly concentrates on the parameter 𝛾. In this 
filter, a delay time happens in the output signal (regularly because of the low-pass filter of 
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accelerometer and high-pass filter from gyroscope). The more 𝛾 value is near to 1, the better 
quality this filter has. However, the estimation of the sensor readings, which are varied fastly, 
takes a longer convergent time. It requires to take much effort to estimate the yaw angle directly 
from an accelerometer, so presently, we still apply values inferred from a gyroscope and accept 
the drifted phenomenon. By using more magnetic sensors, this problem will be solved. 

3.2. Kalman filter design 

The Kalman filter's basic block diagram, which is based on the Complementary filtering 
principle, is given in Fig. 1b. Vector 𝑋 = 𝑥 𝑥  is in the input state, including angle (𝑥) and 
angular velocity (𝑥). The system state is described below: 𝑋 = 𝐴𝑋 + 𝐵𝑈 + 𝜔 , (14)

where 𝑈  is the vector control inputs. 𝐴 is the state transition matrix applied to each system state 𝑋  on the system state 𝑋 . 𝐵 is the control input matrix that applied each control input parameter 
in the vector 𝑈 . 𝜔  is the process noise terms for each parameter in the state vector. Furthermore, 𝑠 and �̂� are the sensor output and its estimation. 𝐾 is the Kalman gain matrix. The process noise 
is assumed to be drawn from a zero-mean multivariate normal distribution 𝑁 with covariance 
given by 𝑃(𝜔)~𝑁(0,𝑄𝑘). 

By several measured approaches, at time 𝑘, an observation 𝑍  of the true state 𝑋  is made 
according to the below formula: 𝑍 = 𝐻𝑋 + 𝑉 , (15)

where 𝐻 is the transformation matrix that maps the state vector parameters into the measurement 
domain. 𝑉  is the observed noise assumed to be zero-mean Gaussian white noise with covariance 
given by 𝑃(𝑉)~𝑁(0,𝑅 ). 

4. Motion analysis for aerial vehicle 

It is considered that Quadcopter is a solid object to be abided by forces such as the total force 
of motors and moments. In Fig. 2, a model of a quadrotor is analyzed. Each motor produces a 
force 𝑇  to lift up and a moment 𝑀  to turn the Quadcopter. The gravitational force is usually 
located at the origin and is directed towards the center of the earth. 

 
Fig. 2. Modeling analysis for aerial vehicle 𝐸 = 𝑥 ,𝑦 , 𝑧 , 𝐵 = 𝑥 ,𝑦 , 𝑧  and 𝐶𝑆 = 𝑥 ,𝑦 , 𝑧 are the inertial coordinate, body 

coordinate, and vehicle coordinate, respectively. 𝑥,𝑦, 𝑧 which are frames in the centroid of 
quadcopter model, correspond 𝑥 ,𝑦 , 𝑧  axes in the frame system 𝐸  and 𝑥 ,𝑦 , 𝑧  axes in the 
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frame system 𝐵 . 
Matrix 𝑅 : is the rotation matrix from frame 𝐵  to frame 𝐸 : 

𝑅 ( , , ) = cos𝜃cos𝜓 sinΦsin𝜃cos𝜓 − cosΦsin𝜓 cosΦsin𝜃cos𝜓 + sinΦsin𝜓cos𝜃sin𝜓 sinΦsin𝜃sin𝜓 + cosΦcos𝜓 cosΦsin𝜃cos𝜓 − sinΦcos𝜓−sin𝜃 sinΦcos𝜃 cosΦcos𝜃 . (16)

Matrix 𝑅 : is the rotation matrix from frame 𝐸  to frame 𝐵 : 𝑅 (Φ,𝜃,𝜓) = 𝑅 (Φ,𝜃,𝜓) . (17)

Position vector 𝜉  in frame 𝐸  and linear velocity vector 𝑉 in frame 𝐵  are related as 
follows: 

𝑉 = 𝜉 = 𝑥𝑦𝑧 = 𝑅 𝑉 . (18)

Matrix 𝑇 is defined to perform the relationship between the angular velocity vector 𝑣  in frame 𝐵  and frame 𝐸 : Φ𝜃Ψ = 1 sinΦtan𝜃 cosΦtan𝜃0 cosΦ −sinΦ0 sinΦcos𝜃 cosΦcos𝜃
𝑝𝑞𝑟 = 𝑇 × 𝑝𝑞𝑟 . (19)

Using the Newton’s 2nd rule to the translational motion, the dynamic equation of system is 
analyzed [19]: 𝑚 × 𝑅 × 𝑉 + 𝑅 × 𝜔 × 𝑉 = 𝑅 × 𝐹 , (20)𝑉 = −𝜔 × 𝑉 + 𝐹𝑚 = 𝑟𝑣 − 𝑞𝑣𝑝𝑤 − 𝑟𝑢𝑞𝑢 − 𝑝𝑣 + 1𝑚 𝑓𝑓𝑓 = 𝑢𝑣𝑤 , (21)

where 𝑉 = (𝑢, 𝑣,𝑤) , 𝜔 = (𝑝, 𝑞, 𝑟)  and applied torque 𝜏 = 𝜏 𝜏 𝜏 . 
From the Newton’s 2nd rule to rotational motion, the following can be gotten: 

𝜏 = 𝐽𝜔 + 𝜔 × 𝐽𝜔 ⇒ 𝜔 = 𝜏𝐽 − 𝜔 × 𝐽𝜔𝐽 . (22)

Assume that aerial vehicle has symmetric architecture and axes in 𝐵  coordinate are the same 
with inertial axes of Quadcopter: 

𝐽 = 𝐼 0 00 𝐼 00 0 𝐼 ⇒ 𝑝𝑞𝑟 =
⎝⎜
⎜⎜⎛
𝑞𝑟 𝐼 − 𝐼𝐼𝑝𝑟 𝐼 − 𝐼𝐼𝑝𝑞 𝐼 − 𝐼𝐼 ⎠⎟

⎟⎟⎞ +
⎝⎜
⎜⎛
𝜏𝐼𝜏𝐼𝜏𝐼 ⎠⎟
⎟⎞ (23)

𝜔 × (𝐽𝜔 ) = 𝑞𝑟 𝐼 − 𝐼𝐼 ,𝑝𝑟 𝐼 − 𝐼𝐼 ,𝑝𝑞 𝐼 − 𝐼𝐼 . (24)
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Generally, the gravitational force 𝐹  is determined as 𝐹 = 𝑚 0 0 𝑔 . Similarly, we can 
have gravitational force 𝐹 in frame 𝐵  as 𝐹 = 𝑅 ,  𝐹 = 𝑚𝑔 −sin𝜃 sin𝜙cos𝜃 cos𝜙cos𝜃 .  

The quadrotor suffers forces 𝑓  from 4 Brushless DC (BLDC) motor to form total upward thrust 
force 𝐹  in frame 𝐵  as 𝐹 = 0 0 −𝑓  with 𝑏 as the thrust factor: 

𝑓 = 𝑓 = 𝑏(Ω + Ω + Ω + Ω ). (25)

Therefore, the total force that acts on Quadcopter is summarized: 𝐹 = 𝐹 + 𝐹 = −𝑚𝑔sin𝜃 𝑚𝑔sin𝜙cos𝜃 𝑚𝑔cos𝜙cos𝜃 − 𝑓 . (26)

Then, torque value is achieved by applying the Newton’s 2nd rule to rotational motion: 

𝜏 = 𝑑𝐿𝑑𝑡 + 𝜔 × 𝐿 , (27)

where 𝐿 = 𝐽𝜔  is the angular moment. The Coriolis equation is applied to evaluate the time 
derivative of the angular moment in the body coordinate. 

From Eq. (23), the torque that demonstrates a model of the quadrotor is specified as follows: 𝜏 = 𝑏. 𝑙(−Ω − Ω + Ω + Ω ),𝜏 = 𝑏. 𝑙(−Ω − Ω + Ω + Ω ),𝜏 = 𝑑. 𝑙(Ω − Ω + Ω − Ω ).  (28)

The length from 𝑂  to BLDC motor, d is a drag element, and Ω ,Ω ,Ω ,Ω  are angular 
velocities of motor 1, motor 2, motor 3, and motor 4, respectively. 

To unify, the total force is applied to frame 𝐸  as follows: 𝐹 = 𝐹 + 𝐹 = 𝐹 + 𝑅 𝐹 . (29)

Later, from Eq. (21), the linear and angular accelerations are formed: 

⎩⎪⎨
⎪⎧𝑥 = −𝑈𝑚 (cos𝜙sin𝜃cosΨ + sin𝜙sinΨ),𝑦 = −𝑈𝑚 (cos𝜙sin𝜃cosΨ− sin𝜙cosΨ)𝑧 = −𝑈𝑚 (cos𝜙cos𝜃) + 𝑔, , (30)

𝜙 = 𝜃𝜓 𝐼 − 𝐼𝐼 + 𝑙𝐼 𝑈 ,      𝜃 = 𝜙𝜓 𝐼 − 𝐼𝐼 + 𝑙𝐼 𝑈 ,        𝜓 = 𝜙𝜃 𝐼 − 𝐼𝐼 + 𝑙𝐼 𝑈 , (31)

where 𝑈 ,𝑈 ,𝑈 ,𝑈  are control signals: 𝑈 = 𝑓 = 𝑏(Ω + Ω + Ω + Ω ),𝑈 = 𝜏 = 𝜏 = 𝑏. 𝑙(−Ω − Ω + Ω + Ω ), (32)𝑈 = 𝜏 = 𝜏 = 𝑏. 𝑙(Ω − Ω − Ω + Ω ),𝑈 = 𝜏 = 𝜏 = 𝑑. 𝑙(Ω − Ω + Ω − Ω ). (33)
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There is air resistance, which affects the quadrotor in the outside environment. Thus, the air 
drag force can be counted as: 𝐹 = 𝐶 .𝜌. 𝑆. 𝑣 , (34)

where 𝐶 , 𝜌, 𝑆 and 𝑣 are drag coefficient, the mass density of the air flow, reference area of the 
object, and the object’s speed relative to the air flow correspondingly. In reality, the actual speed 
endures the limited barriers that cannot be overcome as follows: 

𝑎 = 𝐹 − 𝐹𝑀 = 0. (35)

5. Results of numerical simulation 

In this section, all simulations are verified with parameters as in Table 2. In the Complementary 
filter, 𝛾 varies from 0.96 to 0.98. Also, 𝑅 is 0.6~0.8 for Kalman filter. The motion of the 
Quadcopter in the z-axis is illustrated as follows: 

𝑧 = −𝑈𝑚 (cosΦcos𝜃) + 𝑔 ± 𝐶 𝜌𝑆(𝑧 )𝑀 . (36)

To track the motion on the 𝑧-axis, the roll angle and pitch angle must equalize to zero. The 
force which is provided by each motor is computed as 𝐹 = 3, 2.9, 81/4 = 7,848 N. Hence, 
a force to lift up must be larger than 𝐹 . In this case, 𝐹 = 4.8 = 32 N is chosen. This force 
should be smaller than 𝐹 = 50 N in each motor. The simulation result in the 𝑧-axis is shown 
in Fig. 3(a). 

Table 2. Modeling parameters of aerial vehicle 
Parameters Symbol Value Unit 

Total weight M 3.5 kg 
Moment of inertia (x-axis) I  0.0156 Kg.m2 
Moment of inertia (y-axis) I  0.0127 Kg.m2 
Moment of inertia (z-axis) I  0.0384 Kg.m2 
Gravitational acceleration G 9.81 m/s2 
Distance from O  to motor L 0.315 m 

If pitch angle and yaw angle are zero, roll angle is approximately 5 degrees; then Quadcopter 
moves along the 𝑦-axis. The motion of the quadrotor in Fig. 3(b) and Fig. 4(a) is demonstrated 
below. From the results, settling time is 1,73 s approximately, and overshoot is 32,6 % which must 
be less than ±3o): 

𝑦 = −𝑈𝑚 (cosΦsin𝜃cosΨ− sinΦcosΨ) ± 𝐶 𝜌𝑆𝑦𝑀 . (37)

In this case, the system tries to achieve the predetermined attitude on the 𝑧-axis during the first 
10 s. Therefore, the slope of the position graph on the 𝑦-axis is low. Similarly, the roll angle and 
yaw angle are zero. Pitch angle equals -5 degrees, and then the drone moves along the 𝑥-axis. The 
Trajectory of Quadcopter in Fig. 4(b) and Fig. 3(c) is computed as follows. It is measured that 
settling time is 1,59 s roughly and overshoot is 27,3 %: 

𝑥 = −𝑈𝑚 (cos𝜙sin𝜃cosΨ + sin𝜙sinΨ) ± 𝐶 𝜌𝑆𝑥𝑀 . (38)
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a) 

 
b) 

 
c) 

Fig. 3. Simulation results of system parameters on a) 𝑍-axis, b) 𝑌-axis, and c) 𝑋-axis 

 
a) 

 
b) 

Fig. 4. Simulation results on a) pitch angle and b) roll angle 

With out best knowledge, to achieve the better performance, the tuning process of filter is 
reasonably based on our experiences. For the pitch angle estimation, the component in high 
frequency is from the integrating pitch rate of gyro output while using the sensitivity of 
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accelerometer to gravity direction is for the one in low frequency. The gain 𝛾 is tuned so that the 
estimated angle is wholly compensated in steady state. Similarly, the trial-and-error approach is 
appropriate to adjust the proper values for covariance matrix in Kalman filter. Using the above 
constraints, it is programmed in Matlab environment to mimic the performance of aerial vehicle 
in 3D space as Fig. 5(a). To imitate the real-world circumstance, the Gaussian function that plays 
as noise, is added to the system model. The output responses of velocity, acceleration and compass 
are gained in Fig. 6 in respect to data from gyroscope, accelerometer and compass measured  
sensor. Consequently, it can be understood clearly that these results of proposed design are 
reasonable and feasible. 

 
a) 

 
b) 

Fig. 5. a) Theoretical simulation of tracking trajectory and b) experimental test in practice 

 
a) 

 
b) 

 
c) 

Fig. 6. Simulation results of feedback signals from a) gyroscope, b) accelerometer and c) compass sensor 
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6. Results of experimental validation 

In these experiments, the previous section's design is employed to verify as follows: open-loop 
control scheme in 𝑥, 𝑦, and 𝑧-axis, PID control scheme in roll angle to drive left or right, and PID 
control scheme in pitch angle to drive forward or backward. The gains 𝐾 , 𝐾  and 𝐾  of PID 
controller are 1.3, 0.004 and 18 respectively. To control the exact yaw angle is not a topic in this 
research. BoosterPack module is attached to the drone and is supervised by mobile and host 
through GUI. 𝛾, for Complementary filter, varies from 0.96 to 0.98 and 𝑅, for Kalman filter, is 
0.6~0.8 so that the sensor achieves good performance. As a result, they are selected as the best 
suitable values (𝛾 = 0.9725, 𝑅 = 0.6137). 

 
a) 

 
b) 

 
c) 

Fig. 7. Experimental performance of feedback signals from  
a) gyroscope, b) accelerometer and c) compass sensor 

In the initializing stage, the CPU sets predetermined values for inputs, outputs, and peripheral 
devices when power is on. The main program will run in a loop as order; i.e. (1) Read raw data 
from the attached sensors; (2) Process data via sensor fusion filter (Kalman filter or 
Complementary filter); (3) Read RF signal from a remote controller, combine with handling 
values from the filter, these signals are inputted in the PID scheme to compute pulses for motors; 
(4) After delivering pulses to ESC, CPU transfers feedback data to a ground station. 

In Fig. 7(a) and Fig. 7(b), the Complementary filter gets values of the gyro as major factors 
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and accelerometer values as minor sources. Hence, the fluctuation which is created by both motors 
and propellers, indicates the accelerometer's angles. The evaluated angle from Complementary 
filter is more constant than that of the Kalman filter. Nonetheless, the drift phenomenon of about 
±0,5° still remains. On the other hand, the Kalman filter's performance in Fig. 8(a) and Fig. 8(b) 
obtains the angles from an accelerometer to calculate the practical angle. It mentions the fact that 
this filter carries out more precise values than it was expected. However, the pulse modulation 
signal to each driving motor belongs to the vibration of the system. 

 
a) 

 
b) 

 
c) 

Fig. 8. Experimental performance of errors for a) roll angle, b) pitch angle  
and c) yaw angle when testing on one-axis by complementary filter 

In order to examine the balancing capability on one axis, the experiment in Fig. 9(a) is 
performed to investigate the hardware of the system. This aerial system is suspended on a stick, 
and the controller tries to keep the fixed angle of 10, 30 and –35 degrees. In Fig. 10, several angular 
values are obtained by testing on one axis. The system testing is started in 1.5 s and the system is 
balanced in 5 s. Later, a stick is turned to the left, the point is balanced during 3 s. The AAS retains 
the predetermined angle within 8 s. 

 
a) 

 
b) 

Fig. 9. Experimental balancing test on a) one-axis and b) six-axes 

In the test scenario of six-axes motion shown in Fig. 9(b), four wings are free, and the body 
frame is hung by a shaft in order to evaluate the balancing ability. In Fig. 11, the experimental 
results of tracking angles are completed by Complementary filter correspondingly whilst Fig. 12 
reveals the errors of angular values. At the sequence of 3 s, the whole system is turned on. After 
a few seconds, the aerial vehicle is elevated from the ground and reached to a stable position. 
Again, in Fig. 13 and Fig. 14, the same test conditions are employed for the Kalman filter. The 
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autonomous aerial vehicle can slightly fluctuate around the equilibrium point with ±3 degrees, 
though it bears the external disturbances in the outdoor surrounding. From the above results, it can 
be understood easily that theComplementary filter is more advantageous than the Kalman filter in 
the view of the simple implementation and easy understanding. However, the filtering results from 
the Kalman filter produce better precision and stable performance. There is a trade-off between 
the Complementary filter and Kalman filter when they are integrated into the autonomous system. 
In Fig. 5(b), quadrotor performs well while the PID controller adapts with excellent tuning 
parameters based on the experiences of operator. 

 
a) 

 
b) 

 
c) 

Fig. 10. Experimental performance of errors for a) roll angle, b) pitch angle  
and c) yaw angle when testing on one-axis by Kalman Filter 

 
a) 

 
b) 
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c) 

Fig. 11. Tracking performance of a) roll angle, b) pitch angle  
and c) yaw angle when tesing on six-axes by complementary filter 

 
a) 

 
b) 

 
c) 

Fig. 12. Experimental performance of errors for a) roll angle, b) pitch angle  
and c) yaw angle when tesing on six-axes by complementary filter 

 
a) 

 
b) 
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c) 

Fig. 13. Tracking performance of a) roll angle, b) pitch angle  
and c) yaw angle when tesing on six-axes by Kalman Filter 

 
a)  

 
b) 

 
c) 

Fig. 14. Experimental performance of errors for a) roll angle, b) pitch angle  
and c) yaw angle when tesing on six-axes by Kalman Filter. 

Table 3. Comparative performance among similar researches 
Author(s) Achievement(s) Benefit(s) Future works 

Qingquan 
Yang and 
Lingling 
Sun [31] 

A novel data fusion based on Fuzzy 
Complementary Kalman filter for 

attitude estimation is presented. The 
system error as state variables of 
Kalman filter to compensate the 

attitude angle, later Complementary 
filter evaluates the attitude. The fuzzy 

scheme is to adopt the updated gains of 
Complementary filter. 

The robustness and 
accuracy of filter are 

ensured 

The rapid response of 
this method should be 

considered due to 
vision data 

Zhao L. et 
al [32] 

Using both data fusion technique and 
Kalman filter to estimate the nonlinear 
state with delayed measurements is the 

aim of this study 

The faults in speed 
and accuracy in the 

nonlinear 
polymerization 

process is 
compensated 

It can not adapt with 
rapid response and 

complex 
high-dimensional 

process 

Our 
approach 

Validation of simulation performance 
as well as experimental outcomes 

between two well-known filters has 
been presented 

The output results 
might be a solid 

evidence for learners 
and practitioners to 
explore the aerial 

system 

It requires more 
investments on 

gain-varying using 
intelligent scheme 
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To summarize the technical specifications, the competitive descriptions among related 
researches have been indicated in Table 3. The outcomes of each approach were noted to 
illuminate the main advantages and the applied fields.  

7. Conclusions 

In this paper, the comparative investigation of Complementary filter and Kalman filter for the 
aerial vehicle control is made. Firstly, a theoretical model is applied to estimate the orientation 
and acceleration. Then, the developmental theory of two filters is launched to realize the 
innovative idea. These works are later employed in the platform of AAS to insist on major factors 
in both filters while the kinematics and dynamics of the quadrotor are analyzed in terms of 
implementation. Based on the numerical simulation and experimental tests, the proper selection 
of effective filters for low-cost, feasibility, and practical applications in the environment, 
automation, and agriculture has been validated. 

Future perspectives shall be mentioned. From these results from both simulation and 
experiment, the data fusion has a potential to be investigated among different sensing instruments 
such as digital camera, inertial sensor and positioning sensor in order to enhance the system 
performance. In the other approach, the advanced control scheme that automatically adjusts the 
tuning gains of filter should be noticed. Moreover, the integrating design of both Kalman and 
Complementary filter into one platform may be more advantageous.  
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