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1. Introduction
1. 1. The object of research
The object of research of presented work is to develop a loudspeaker identification scheme 

using genetic algorithm and compare obtained result with widely used added mass method. Fur-
thermore, to show genetic algorithm flexibility and demonstrate how it can be adapted to identify 
more complicated loudspeaker models.

1. 2. Problem description
Genetic algorithm is an optimization method that belongs to a group of evolutionary algo-

rithms – meta-heuristic optimization based on competition of individuals within the population for 
several epochs. These algorithms are based on the principles of evolution that were borrowed from 
nature. That is why many terms used in genetic and evolutionary algorithms have been borrowed 
from biology (i.e. individual, population, recombination, mutation, etc.). Usually, these algorithms 
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Research object: the adaptation and application of the genetic algorithm for electrodynamic 
transducer model parameters identification. 
Investigated problem: to formulate loudspeaker identification task as an optimization prob-
lem, adapt it to the genetic algorithm framework and compare obtained results with classical 
identification method using added mass.
Main scientific results: the complete genetic algorithm loudspeaker identification proce-
dure is presented, including: 
– data acquisition scheme, where the directly measured values for the algorithm application 
are: voltage at loudspeaker terminals, current through the voice coil and displacement of the 
moving part 
– selection of an appropriate set of genes of an individual
– derivation of the fitness function for assessing the quality of the identified parameters, 
which can also be used to identify other types of electroacoustic transducers
Also, the advantages of this method in comparison with the classical method of identification 
using added mass are considered, that are its versatility and ability to quickly configure and 
adapt for research and experimentation with different loudspeaker models and different types 
of transducers used in acoustics.
Area of practical use of the research results: the proposed genetic loudspeaker model iden-
tification scheme can be directly applied on practice to speed up research and development 
tasks in electroacoustics and other related fields that require frequent experimentation with 
different types of transducer models. 
Innovative technological product: genetic algorithm based loudspeaker identification 
scheme that can be applied to identify various model of electrodynamic transducers. 
Scope of application of the innovative technological product: electroacoustics, loudspeak-
er design, audio systems.
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are used for problems where the classical optimization methods are not applicable: large amounts 
of data, data is noisy, loss function cannot be described analytically or it is very complex, loss func-
tion is not differentiable, simultaneous optimization of large parameter number, logic problems and 
others [1].

The first attempts to simulate natural evolution were made in the 1950s by the scientists 
Nils Baricelli and Alex Fraser [2, 3]. Their works contained the foundations of modern genetic 
algorithms. In the 1960s, the ideas of Barrichelli and Fraser became widely known and attracted 
attention of many scientists and researchers. During these years, genetic algorithms were first used 
to solve real practical engineering problems that could not be solved by other methods. In the early 
1970s, genetic algorithms became especially popular due to the works of American scientist John 
Henry Holland, who is now known as the “father” of genetic algorithms. In his book “Adaptation 
in natural and artificial systems” [4], he introduced a formalized mathematical apparatus that has 
extended the application of genetic algorithms and is widely used by modern scientists. However, 
the research in the field of genetic algorithms remained more theoretical until the mid-1980s, as a 
large number of calculations took a long time and required powerful computers. Beginning in the 
1990s, along with the growth of computational power, genetic algorithms began to be actively used 
in practice to solve a variety of problems, from the identification of physical systems to artificial 
intelligence. 

The problem of loudspeaker model parameter identification can be represented as an op-
timization problem. With this formulation, the optimal model parameters are those that provide 
simulated loudspeaker responses as close as possible to measured ones. The classical loudspeaker 
identification method is the method of added mass [5] which is simple and easy to use on practice. 
But its significant disadvantage is that it allows to identify parameters of only a simple model of an 
electrodynamic transducer, the accuracy of which is often not enough for research and development 
purposes. The other group of methods requires an additional measurement of one of the mechanical 
states of a loudspeaker, such as membrane velocity, displacement or acceleration [6]. These meth-
ods are usually more robust and can be applied to small and fragile loudspeakers, where the addi-
tion of extra mass to the membrane is not possible. Genetic algorithm based identification method 
also requires to measure a loudspeaker mechanical state. In our case, it is membrane displacement 
that was measured with a laser.

1. 3. Suggested solution to the problem
Despite most loudspeaker models can be expressed analytically and allow to use classical 

identification methods, the genetic algorithms application for these purposes is of great scientific 
interest. First, modern electrodynamic transducer models require complex identification technics, 
which development require significant amount of time separately from the model development 
itself. Second, genetic algorithm application allows to develop a single universal identification 
scheme that will be mostly model-independent and will allow to quickly experiment with different 
models without spending additional time developing specialized identification algorithms. 

The aim of research described below is to formulate loudspeaker identification task as an 
optimization problem, adapt it to the genetic algorithm framework and compare obtained results 
with classical identification method using added mass.

2. Materials and Methods
2. 1. Genetic algorithm description
Genetic algorithm is used to solve optimization and modeling problems by sequential selec-

tion, combination and variation of the desired parameters using mechanisms that resemble biolog-
ical evolution. A main feature of the genetic algorithm is the emphasis on the “crossover” operator 
usage, which performs the operation of recombination of candidate solutions, similar to the indi-
vidual crossover in nature. The common genetic algorithm block diagram is presented in the Fig. 1.

The problem is encoded in such a way, that solution can be represented as an array of chro-
mosome-like information. The element of such array is often simply called “chromosome”. Some 
finite number of single chromosomes forms a candidate solution, called “individual”, and a finite 
number of individuals form a “population”. Each individual in a population is evaluated using a 
fitness function (similar to the cost function). As a result, each individual is assigned a certain fit-



50

No. 4 (75), 2021ScienceRise  ISSN 2313-8416

ness value, which determines the probability for this individual to pass its chromosomes to the next 
generation. After that, using obtained fitness values, several individuals are chosen to proceed to 
crossover and mutation operations and form new generation. Next generation individuals are also 
evaluated using same fitness function and selection and mutation genetic operations are performed. 
This simulates an evolutionary process that lasts several life cycles (“generations”) until the stop-
ping criterion for the algorithm is reached. This criterion can be:

– convergence to the optimal solution;
– reaching a predetermined number of generations;
– reaching a time limit for the algorithm to run.

Fig. 1. Genetic algorithm implementation block diagram

2. 2. Algorithm adaptation
The main steps of the genetic algorithm remain mostly unchanged regardless of the task. Al-

gorithm implementation to the real problem is performed through the assignment of chromosomes 
to real physical quantities and parameters of the model, and through the fitness function design.

In our case, we are searching for the model parameters of a typical two-inch electrodynamic 
transducer, shown in Fig. 2.

The data required to run the algorithm and identify the model was obtained using a measur-
ing setup according to the scheme in Fig. 3.

The measured values are: x(t) – displacement of the moving part, e(t) – voltage (equivalent 
to the voltage at loudspeaker terminals), and i(t) – current (equivalent to the current through loud-
speaker voice coil).

The first step in adapting the genetic algorithm to our task is to choose the transducer model 
whose parameters need to be identified. To begin with, a simple linear model shown in Fig. 4 was 
chosen.
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Fig 2. 2-inch electrodynamic transducer under study

x(t) e(t) i(t) 

Fig. 3. Measurement setup

Fig. 4. Electro-mechanical model of an electrodynamic transducer: E( f ) – voltage at the loudspeaker 
terminals (V); I( f ) – current through the voice coil (A); Bl – force factor (T*m); F( f ) – force, acting on 

the moving part (N); V( f ) – velocity of the moving part (m/s); U( f ) – back electromotive force (V)

Impedances Zel( f ) and Zmec( f ) are respectively: electrical impedance of the voice coil and 
mechanical impedance of the moving part, which can be written as:

	                                            ( ) 2 ,= + ⋅ π ⋅ ⋅el e eZ f R j f L 		   (1)

			    ( ) 2 ,
2

= + ⋅ π ⋅ ⋅ +
⋅ π ⋅

ms
mec ms ms

K
Z f R j f M

j f
		 (2)

where f – frequency of an input signal (Hz);
Re – voice coil DC resistance (Ohm);
Le – voice coil inductance (Hn);
Rms – mechanical resistance (kg/s);
Mms – moving mass (kg);
Kms – suspension stiffness (N/m);
j – complex one.
At the second step, it is necessary to determine which parameters will act as chromosomes. 

In our case, to begin with, let’s take all the unknown parameters of the model from the equations 
(1) and (2) and the force factor Bl as the individual chromosomes:
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			                 [ ], , , , , .= e e ms ms msI R L Bl R M K  			   (3)

Lastly, it is necessary to derive a fitness function that will objectively determine how much 
one individual is better than another. To do this, let’s first compose the equations that describe the 
model behavior in frequency domain (will use circular frequency ω=2πf ):

			         ( ) ( ) ( ) ( ) ,ω = ω + ω ω + ωe eE R I j L I BlV 			    (4)

		               ( ) ( ) ( ) ( ).⋅ ω = ω ω + ω + ω
ω
ms

ms ms
K

Bl I j M V V R V
j

		   (5)

Equation (4) describes transducer behavior in electrical subsystem and equation (5) – in 
mechanical subsystem. From these equations, it is possible to express the total input electrical im-
pedance Ztot(ω) and mechanical impedances Zmec(ω) as follows:

		    	     ( ) ( )
( )

( )
( ) ,

ω ω
ω = = + ω +

ω ωtot e e

E V
Z R j L Bl

I I
		  (6)

			     ( ) ( )
( ) .
ω

ω = = ω + +
ω ω

ms
mec ms ms

I K
Z Bl j M R

V j
 		  (7)

Now, in equations (6) and (7) let’s separate the values that can be directly measured from 
the model parameters:

			     
( )
( )

2
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ω

= + ω +
ω ω + +

ω

e e
ms
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		 (8)
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=
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j

			   (9)

Now in equations (8) and (9) all measured values are on the left side and model parameters 
are on the right side, so it is possible to compare these sides to calculate modeling error and use this 
value as a fitness function for the genetic algorithm:

                ( )
( )

2

1 ,ω

 
 ω
 = − − ω −

ω ω + + ω 

e e
ms

ms ms

E BlE MSE R j L KI j M R
j

		   (10)

                       ( )
( )2 ,ω

 
 ω
 = −

ω ω + + ω 
ms

ms ms

V BlE MSE KI j M R
j

		  (11)

				              1 2 ,= +totE E E  		  (12)

where MSEω – mean squared error over frequency 
In this way, the E1 value in equation (10) corresponds to the modeling error of the total input 

electrical impedance, and E2 value in equation (11) – the modeling error of mechanical impedance. 
Total error Etot from equation (12) will be used as the fitness function in the genetic algorithm.

Thus, the smaller the Etot value, the better a particular individual fit the model and more 
likely that this individual will pass its chromosomes to the next generation. The algorithm will be 
repeated until the smallest possible modelling error is reached.
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3. Results
Genetic algorithm described above was implemented on Python using the DEAP library [7] 

which contains the basic operators necessary for the genetic algorithm operation.
As it can be seen in Fig. 5, the minimum individual error and the average error over the 

whole population are rapidly decreasing and after several generations remain almost unchanged. 
Also, it is possible to see that the average error in the population is very close to the error of the 
best individual. This demonstrates that after a few generations, all individuals in the population are 
close to the optimal value. This rapid convergence of the algorithm indicates that the application 
of the genetic algorithm for our problem is possible, and that the chosen fitness function (equa-
tions (10)–(12)) is appropriate.

Minimal and mean error 

Fig. 5. Minimal and average error by generations

Fig. 6 shows the total input electrical impedance model using parameters found by the ge-
netic algorithm. Also, the measured and added mass method based total input electrical impedanc-
es are presented for comparison.

Input electrical impedance (Magnitude) Input electrical impedance (Phase) 

   

Input electrical impedance (Magnitude) Input electrical impedance (Phase) 

			   a			   		            b

Fig. 6. Total input electrical impedance: a – modulus; b – phase

As it can be seen in the Fig. 6, the genetic algorithm has indeed found some parameters 
that bring the model response closer to the actual measured one. However, at frequencies below 
the resonance, the modeling error is quite significant, and simple added mass method shows much 
better approximation results than the genetic algorithm. To fix this, it was decided to exclude the 
voice coil DC resistance Re from the individual chromosomes (and, hence, from the optimization), 
and use manually measured value with an ohmmeter: Re=3.54 Ohms. The fitness function remains 
unchanged. Now our individual has one chromosome less:

			                  [ ], , , , .= e ms ms msI L Bl R M K  		  (13)
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Fig. 7 shows the total input electrical impedance behavior after the above described changes 
were applied.

Input electrical impedance (Magnitude) Input electrical impedance (Phase) 

   

Input electrical impedance (Magnitude) Input electrical impedance (Phase) 

			   a			   		         b

Fig. 7. Total input electrical impedance (experiment 2): a – modulus; b – phase

As it can be seen in the Fig. 7, after the voice coil resistance Re was excluded from the opti-
mization and manually measured value was applied, the model behavior at frequencies below the 
resonance was significantly improved, and its performance appear to be very close to the model 
identified by the added mass method. Table 1 shows the comparison of the model parameters iden-
tified by the added mass method and using genetic algorithm.

Table 1
Comparison of identified model parameters 

Parameter Added mass method Genetic algorithm
fres, Hz 137.2 138

Re, Ohm 3.54 3.54
Le, H 1.39e-4 1.31e-4

Bl, T*m 2.43 2.43
Mms, kg 2.7e-3 1.2e-3

Kms, N/m 2.04e3 9.09e2
Rms, kg/s 0.62 0.63

Table 1 shows that genetic algorithm has found the model parameters that are very close to 
those identified by the added mass method. Except for the moving mass Mms and stiffness Kms. these 
parameters randomly changed their values for each algorithm realization, although the error values 
remained equally low and the resulting graph of the modulus and phase of the total input electrical 
impedance was identical to the graph in Fig. 7. After further investigations, it was concluded that 
Mms and Kms parameters compensate each other, i.e. a larger Mms value corresponds to a smaller Kms 
value and vice versa. This leads to the fact that genetic algorithm cannot unambiguously identify 
these parameters, because with their mutual compensation, the resulting error will always remain 
low. To fix this problem, it was decided to exclude one of these parameters (Mms or Kms) from the in-
dividual chromosomes (hence, from the optimization) and instead express it using the other param-
eter and transducer resonance frequency, that can be found as the frequency at which the modulus 
of total input electrical impedance reaches maximum.

				            max ,=res f totf Z 			    (14)

				       ( )22 .= ⋅ π ⋅ms ms resK M f 				    (15)
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So now the individual has four chromosomes left:

				       [ ], , , .= e ms msI L Bl R M 				     (16)

As expected, after the changes described above were implemented, the algorithm conver-
gence and resulting error remained equivalent to the previous attempts, but the Mms and Kms values 
did not change randomly from one iteration to another and they became close to the parameters 
identified by the added mass method. Table 2 shows the comparison of the model parameters 
identified by the added mass method and using genetic algorithm after the above describe changes 
were applied.

Table 2
Comparison of identified model parameters (second attempt)

Parameter Added mass method Genetic algorithm
fres, Hz 137.2 138

Re, Ohm 3.54 3.54
Le, H 1.39e-4 1.31e-4

Bl, T*m 2.43 2.43
Mms, kg 2.7e-3 2.8e-3

Kms, N/m 2.04e3 2.1e3
Rms, kg/s 0.62 0.63

Thus, it was shown that genetic algorithm is able to identify parameters of the electrody-
namic transducer model shown in Fig. 3 and described by equations (1) and (2). Although, the 
model parameters were found correctly, Fig. 7 shows that at frequencies above the resonance, sim-
ulated total input electrical impedance phase and modulus do not completely follow the measured 
response. The same applies to the added mass method. This indicates a lack of accuracy of the used 
model and does not relate to the identification method.

In order to improve the model behavior at higher frequencies, it was decided to use a little 
more complicated model of the loudspeaker electrical subsystem and introduce additional parame-
ters: parallel resistance R2 and parallel inductance L2 [8] as shown in Fig. 8.

Fig. 8. Voice coil model using parameters R2 and L2

From the genetic algorithm point of view, these new model parameters will become new 
chromosomes of the individuals:

			                   [ ]2 2, , , , , .= e ms msI L Bl R M R L 		   (17)

Also, the fitness function will change slightly to take into account the new parameters:

	           ( )
( )

2
2 2

1
2 2

.ω

 
 ω ⋅ ω = − − ω − −

ω + ω ω + + ω 

e e
ms

ms ms

E R j L BlE MSE R j L KI R j L j M R
j

	  (18)

These changes and complications of the model do not affect the convergence or speed of the 
genetic algorithm, but can significantly reduce the approximation error as shown in Fig. 9.
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Input electrical impedance (Magnitude) Input electrical impedance (Phase) 

    

Input electrical impedance (Magnitude) Input electrical impedance (Phase) 

			   a			   	  	         b

Fig. 9. Total input electrical impedance including L2 and R2 parameters: a – modulus; b – phase

As it can be seen in Fig. 9, more complicated model better corresponds to the measured 
response in the entire measured frequency range and is therefore more accurate. This example 
demonstrates the convenience of genetic algorithm usage when moving from identifying one model 
with specific parameters to another. The only things that should be changed in the entire algo-
rithm are individual chromosomes that correspond to the model parameters and fitness function. 
In perspective, it is possible to identify more complex and accurate models (described in [8]) with 
more parameters without spending additional time for developing a specific identification methods. 
Table 3 shows the comparison of the model parameters identified by the added mass method and 
using genetic algorithm after more complicated voice coil model was used.

Table 3
Comparison of identified model parameters (including R2 and L2)

Parameter Added mass method Genetic algorithm
fres, Hz 137.2 138

Re, Ohm 3.54 3.54
Le, H 1.39e-4 0.41e-4

Bl, T*m 2.43 2.43
Mms, kg 2.7e-3 2.8e-3

Kms, N/m 2.04e3 2.1e3
Rms, kg/s 0.62 0.63
R2, Ohm – 1.65

L2, H – 2.24e-4

4. Discussion
This paper described the full process of genetic algorithm adaptation and implementation 

for loudspeaker model identification. As it can be seen in the Fig.7 and in the Table 2 the model 
parameters (shown in the Fig. 4) identified using genetic algorithm and the added mass method 
(described in [5]) are very close to each other. This demonstrates that presented loudspeaker identi-
fication scheme using genetic algorithm is capable of finding correct model parameters. 

Despite, the added mass method is commonly applied on practice, genetic algorithm appli-
cation gives researchers a lot more flexibility for quick adaptation and model identification. This 
flexibility is demonstrated when more complicated voice-coil model (Fig. 8) was used. The algo-
rithm adaptation for the new model identification is done in just few steps (equations (17), (18)) and 
much better model performance was achieved (Fig. 9). 

On practice, presented scheme can be only directly applied to electrodynamic transducer 
model identification. However, it can be extended to identify models of other types of electroacous-
tic transducers used in the industry, such as piezoelectric hydrophones, for example. 
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In perspective, the versatility of genetic algorithm application allows to create a universal 
loudspeaker identification framework where most of the models can be identified using genetic 
algorithm, without spending time on developing a specialized identification procedure. The further 
research will be aimed on the development of such framework including various linear and also 
nonlinear models. 

5. Conclusions
This paper presents the ready to use scheme for model identification of an electrodynamic 

transducer using genetic algorithm. Several conclusions that should be noted: the proposed fitness 
function is appropriate because the algorithm converges very quickly and finds the optimal values 
after a few generations. This proves that genetic algorithms can be successfully applied to identify 
models of electrodynamic and other types of acoustic transducers. However, the Re parameter, 
which is the voice-coil DC resistance, should be excluded from the optimization, as it can be mea-
sured directly by an ohmmeter. Also, for the other types of acoustic transducers, it is possible to 
assume that parameters that can be measured directly and without much effort should be excluded 
from the optimization.

Another important conclusion is that moving mass Mms and suspension stiffness Kms can-
not be unambiguously determined with simultaneous optimization because they compensate each 
other (at least when using the presented fitness function). To solve this problem, it was proposed 
to exclude the Kms parameter from the optimization and determine it using moving mass Mms and 
resonance frequency (equation 15).

Also, the possibility of rapid adaptation of the genetic algorithm to more complex models 
with larger number of identified parameters without any loss of performance and convergence 
was shown. This demonstrates the genetic algorithm versatility and possibility of its use for more 
complex model identification that are difficult to identify with classical methods, including models 
with partial derivatives [9] and nonlinear models [10].
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