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Abstract
The force between permanent magnets implemented in many engineering devices remains an intriguing problem in basic 

physics. The variation of magnetic force with the distance x between a pair of magnets cannot usually be approximated as x–4 be-
cause of the dipole nature and geometry of magnets. In this work, the force between two identical cylindrical magnets is accurately 
described by a closed-form solution. The analytical model assumes that the magnets are uniformly magnetized along their length. 
The calculation, based on the magnetic field exerted by one magnet on the other along the direction of their orientation, shows  
a reduction in the magnetic force with the distance x and a dependence on the size parameters of magnets. To verify the equation, the 
experiment was set up by placing two cylindrical neodymium iron boron type magnets in a vertical tube. The repulsive force between 
the identical upper and lower magnets of 2.5 cm in diameter and 7.5 cm in length was measured from the weight on the top of the 
upper magnet. The resulting separation between the magnets was recorded as x. The forces measured at x = 0.004-0.037 m differ 
from the values calculated using the analytic solution by -0.55 % to -13.60 %. The calculation also gives rise to a practical remnant 
magnetic field of 1.206 T. When x is much larger than the length of magnets, the equation of force is approximated as a simple form 
proportional to 1/x–4. The finding can be directly used in magnetic levitation as well as applied in calculating magnetic fields and 
forces in other systems incorporating permanent magnets.
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1. Introduction
Magnetic fields from permanent magnets are essential for the operation of electrical gene-

rators and motors. The electromotive force in generators and the angular velocity in motors are 
increased with changing magnetic fluxes. Furthermore, the optimized implementation of magnets 
is key to novel wind turbines, flywheels, electric cars, and magnetic refrigerators which are energy- 
efficient and eco-friendly. Since the early experiments on permanent magnets [1], the magnetic 
force has been a topic of fundamental interest. Despite its currently ubiquitous and advanced ap-
plications, equations describing the force exerted from cuboidal and cylindrical magnets remain 
under active investigations [2–8]. The calculations have also been extended to magnets in arrays 
and devices [9, 10]. In addition to analytic solutions, magnetic field distributions have increasingly 
been simulated by the finite element method for permanent magnets of a variety of geometries such 
as cuboid [11] ring [12] and disk [13].

Unlike electric forces between electric charges, the magnetic forces between bars of magnets  
cannot be written in a simple expression because they are forces between dipoles. If the magnets 
are approximated as the point-like magnetic dipole moments of m1 and m2, the force (F1) between 
the magnets with a large separation distance (x) is given as:
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where m0 = 4p⋅10–7 T⋅m/A. However, the magnets in real experiments and devices are quite 
far from point-like objects so that the attempts to fit the experimental result with equation (1)  
are usually failed. The force is increasingly sensitive to geometries of the magnets when x is small 
in comparison to the magnet size. 

In this work, let’s focus on magnetic forces between two cylindrical magnet bars. A closed-
form of magnetic forces is investigated as a function of the distance x and compared to experimen-
tal results. In addition to fundamental physics, the presented equation can be directly implemented 
in the magnetic levitation. The calculation which is more accurate than the approximation in (1) is 
also useful in designing other engineering devices and systems. 

2. Materials and methods
The experiment was set up by placing two magnetic cylinders in a vertical tube. These 

identical rare-earth magnets are neodymium iron boron type of 2.5 cm in diameter and 7.5 cm in 
length. The arrangement of magnets, magnetization directions, and the separation distance bet-
ween magnets is schematically shown in Fig. 1. The bottom of the lower magnet is located on z = 0.  
The magnetization of the lower magnet is M1 with a direction pointing upward while the mag-
netization of the upper magnet is M2 with a downward direction. The M1 and M2 are equal in 
magnitude. The separation distance between two magnets is measured from the top pole-face of 
the lower magnet and the bottom pole-face of the upper magnet. The force exerted between the 
upper and lower magnets was varied by changing the weight on the top of the upper magnet and 
the resulting separation between the magnets was recorded as x. The smallest x of 0.004 m was 
obtained by adding the weight of the water container to 20 kg and the largest x was 0.037 m. The 
repulsive force was then plotted against the distance x. The nonlinear least square fitting method 
in [14] was applied on Mathematica to compare the forces from the equations to the experimental 
results. The percentage difference was determined from the difference between two values divided 
by the average of the two values and then converted into percentage. The forces when x > 0.037 m 
and x < 0.004 m including the contact force (x = 0 m) can be predicted.

Fig. 1. Schematic diagram of two cylindrical magnets (the radius, r = 0.0125 m  
and the length, t = 0.075 m) in a vertical alignment. The z-axis passes through  

the center line of both magnets

3. Results
The magnetic force measured from the experiment set-up exhibits the decrease with in-

creasing x from 0.004 to 0.037 m. In Fig. 2, the experimental result can be fitted with elliptic func-
tions of repulsive force F2 in (2). By defining the variables as:
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where K and E are complete elliptic integrals of the first and the second kind respectively. By using 
the remnant magnetic field (B0) as a free parameter, the F2 can be fitted with the experimental 
result with B0 = 1.357 T, and the contact force (in the case x = 0) is predicted as 351.5 N. However,  
the B0 is higher than the remnant magnetic field of common neodymium iron boron magnets. 

Fig. 2. Graph of fitting data points from the magnetic force measurement with F2 from (2)

In [3], Camacho and Sosa suggested an alternative method to predict the magnetic force 
between two cylindrical magnet bars. However, the closed-form solution of magnetic force has not 
been proposed in [3]. By following the method in [3], the equation describing repulsive force F3 
between two identical cylindrical magnets as a function of their separation can be written as:
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where all variables are defined as the same as in (2).
The (3) is derived from the magnetic field on the z-axis of the lower magnet which according 

to [3], can be obtained as:
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The repulsive force between magnets has been defined as the volume integration on the 
upper magnet which can be obtained as:
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From (7), the F3 can be obtained as:
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After the substitution of the upper and lower limits in (9), the expression as shown in (3)  
is obtained. Fig. 3 shows a same variation of the repulsive forces measured from the experiment 
and predicted by (3). In this graph fitting, the B0 = 1.206 T, and the contact force is equal to 277.2 N. 
The practical B0 value of less than 1.3 T indicates the validity of the model. 

Fig. 3. Graph of fitting data points from the magnetic force measurement with F3 from (3)

Fig. 4. Percentage of difference of the calculated forces, F2 using (2) in grey dots and F3 using (3) 
in black dot, from the experimental values measured from x = 0.004-0.037 m
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The percentage of difference between the experimental forces and values from equations 
are shown in Fig. 4. When x is less than 0.009 m, the values from both equations are comparable 
and differ from the experimental values by only -0.55 % to -2.68 %. For (2), the difference is 
6.61 % in the case of x = 0.018 m and substantially rises with further increase in x. By contrast, the 
values obtained from (3) are lower than the experimental results with x = 0.011-0.037 m and the 
difference ranges from -1.92 % to -13.60 %.

4. Discussion of experimental results
The agreement between the closed-form solution in (3) and the experimental measurement 

shown in Fig. 3 and their percentage difference in Fig. 4 suggest that the magnetic force between 
two cylindrical magnets can be calculated by an analytical treatment assuming uniform magneti-
zations along their length. For a small range of distance from 0.004 to 0.037 m, a large magnitude 
of force was verified in this experiment. 

The force in (3) can then be implemented with a better accuracy than a simple form in (1) 
to design structures and systems with small distances between permanent magnets. In the case of 
large distances, (3) is reduced to (1). When t > r and x >> t, 
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where m1 = -m2 = MV, V is volume of the upper magnet. In this regime, the expression in (3) ex-
hibits a smaller variation from the experimental force than those obtained from (2).

The limitation of this study is that only one geometry of one type of permanent magnet was 
experimentally tested. Either change of composition or type (e. g. ferrite, samarium cobalt) of the 
magnets should affect the magnitude of the force measured and remnant field in the fitting but 
unlikely modify the shape of the curve. The different shapes of magnets were previously compared 
in [8]. It is demonstrated that the magnetic dipole-dipole model is accurate in the case of spherical 
magnets. However, the force between pairs of cuboid or cylindrical magnets are better described 
by magnetic charge and magnetizing current models. 

The experimental results can directly be implemented in the levitation by permanent 
magnets. The weights up to 20 kg were lifted in the using small cylindrical neodymium iron  
boron magnets. Further calculations of magnetic field associated with such strong forces can be 
used to design new electrical generators, motors, flywheels, and magnetic refrigerators.

5. Conclusions
The force between two cylindrical neodymium iron boron magnets is measured as a func-

tion of distance and described by a closed-form solution. In the 0.004-0.037 m regime, this pre-
sented analytic solution and the experimental magnetic force exhibit the same trend with the per-
centage difference ranging from -0.55 % to -13.60 %. The contact force can also be estimated. 
By using the remnant magnetic field (B0) as a free parameter, the B0 = 1.206 T from the fitting is 
comparable to a practical value supplied by neodymium iron boron type magnets. If the separation 
distance x between magnets is far enough, the force between magnets in this equation is approxi-
mately proportional to x–4. The equations and findings are useful for optimizing the configuration 
of magnets in engineering devices.
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