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Chapter

A Study of Nonlinear Boundary
Value Problem
Noureddine Bouteraa and Habib Djourdem

Abstract

In this chapter, firstly we apply the iterative method to establish the existence of
the positive solution for a type of nonlinear singular higher-order fractional differ-
ential equation with fractional multi-point boundary conditions. Explicit iterative
sequences are given to approximate the solutions and the error estimations are also
given. Secondly, we cover the multi-valued case of our problem. We investigate it
for nonconvex compact valued multifunctions via a fixed point theorem for
multivalued maps due to Covitz and Nadler. Two illustrative examples are
presented at the end to illustrate the validity of our results.

Keywords: Positive solution, Uniqueness, Iterative sequence, Green’s function,
Fractional differential equation and inclusion, Existence, Nonlocal boundary value
problem, Fixed point theorem

1. Introduction

In this chapter, we are interested in the existence of solutions for the nonlinear
fractional boundary value problem (BVP)

Dα
0þu tð Þ þ f t, u tð Þð Þ ¼ 0, t∈ 0, 1ð Þ,

u ið Þ 0ð Þ ¼ 0, i∈ 0, 1, 2, … , n� 2f g, Dβ

0þu 1ð Þ ¼
P

p

j¼1
a jD

β

0þu η j

� �

:

8

>

<

>

:

(1)

We also cover the multi-valued case of problem

�Dα
0þu tð Þ∈F t, u tð Þð Þ, t∈ 0, 1ð Þ,

u ið Þ 0ð Þ ¼ 0, i∈ 0, 1, 2, … , n� 2f g, Dβ

0þu 1ð Þ ¼
P

p

j¼1
a jD

β

0þu η j

� �

,

8

>

<

>

:

(2)

whereDα
0þ , Dβ

0þ are the standard Riemann-Liouville fractional derivative of order

α∈ n� 1, nð �, β∈ 1, n� 2½ � for n∈
∗ and n≥ 3,

where Dα
0þ, Dβ

0þ are the stantard Riemann-Liouville fractional derivative of
order α∈ n� 1, nð �, β∈ 1, n� 2½ � for n≥ 3, the function f ∈C 0, 1ð Þ � ,ð Þ, the
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multifunction F : 0, 1½ � �  ! 2 are allowed to be singular at t ¼ 0 and/or t ¼ 1
and a j ∈

þ, j ¼ 1, 2, … , p, 0< η1 < η2 < … < ηp < 1, forp∈
∗ .

The first definition of fractional derivative was introduced at the end of the
nineteenth century by Liouville and Riemann, but the concept of non-integer
derivative and integral, as a generalization of the traditional integer order differen-
tial and integral calculus, was mentioned already in 1695 by Leibniz [1] and
L’Hospital [2]. In fact, fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various materials and processes.
The mathematical modeling of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology,
Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-
analytical chemistry, biology, control theory, fitting of experimental data, involves
derivatives of fractional order. In consequence, the subject of fractional differential
equations is gaining much importance and attention. For more details we refer the
reader to [1–6] and the references cited therein.

Boundary value problems for nonlinear differential equations arise in a
variety of areas of applied mathematics, physics and variational problems of
control theory. A point of central importance in the study of nonlinear
boundary value problems is to understand how the properties of nonlinearity in
a problem influence the nature of the solutions to the boundary value problems.
The multi-point boundary conditions are important in various physical
problems of applied science when the controllers at the end points of the interval
(under consideration) dissipate or add energy according to the sensors located,
at intermediate points, see [7, 8] and the references therein. We quote also that
realistic problems arising from economics, optimal control, stochastic analysis can
be modeled as differential inclusion. The study of fractional differential inclusions
was initiated by El-Sayed and Ibrahim [9]. Also, recently, several qualitative
results for fractional differential inclusion were obtained in [10–13] and the
references therein.

The techniques of nonlinear analysis, as the main method to deal with the
problems of nonlinear differential equations (DEs), nonlinear fractional differential
equations (FDEs), nonlinear partial differential equations (PDEs), nonlinear frac-
tional partial differential equations (FPDEs), nonlinear stochastic fractional partial
differential equations (SFPDEs), plays an essential role in the research of this field,
such as establishing the existence, uniqueness and multiplicity of solutions (or
positive solutions) and mild solutions for nonlinear of different kinds of FPDEs,
FPDEs, SFPDEs, inclusion differential equations and inclusion fractional differen-
tial equations with various boundary conditions, by using different techniques
(approaches). For more details, see [14–37] and the references therein. For exam-
ple, iterative method is an important tool for solving linear and nonlinear Boundary
Value Problems. It has been used in the research areas of mathematics and several
branches of science and other fields. However, Many authors showed the existence
of positive solutions for a class of boundary value problem at resonance case. Some
recent devolopment for resonant case can be found in [38, 39]. Let us cited few
papers. In [40], the authors studied the boundary value problems of the fractional
order differential equation:

Dα
0þu tð Þ ¼ f t, u tð Þð Þ ¼ 0, t∈ 0, 1ð Þ,

u 0ð Þ ¼ 0, Dβ
0þu 1ð Þ ¼ aDβ

0þu ηð Þ,

(

where 1< α≤ 2, 0< η< 1, 0< a, β< 1, f ∈C 0, 1½ � � 
2,

� �

and Dα
0þ, Dβ

0þ are
the stantard Riemann-Liouville fractional derivative of order α. They obtained the
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multiple positive solutions by the Leray-Schauder nonlinear alternative and the
fixed point theorem on cones.

In 2020 Li et al. [41] consider the existence of a positive solution for the
following BVP of nonlinear fractional differential equation with integral boundary
conditions:

CD
q
0þu

� �

tð Þ þ f t, u tð Þð Þ ¼ 0, t∈ 0, 1½ �,
u00 0ð Þ ¼ 0,

αu 0ð Þ � βu0 0ð Þ ¼
Ð 1
0h1 sð Þu sð Þds,

γu 1ð Þ þ δ CDσ
0þu

� �

1ð Þ ¼
Ð 1
0h2 sð Þds,

8

>

>

>

>

<

>

>

>

>

:

where 2< q≤ 3, 0< σ ≤ 1, α, γ, δ≥0, and β>0 satisfying 0< ρ αþ βð Þγ þ
αδ

Γ 2�σð Þ < β γ þ δΓ qð Þ
Γ q�σð Þ

h i

, f : 0, 1½ � � 0,þ∞½ Þ ! 0,þ∞½ Þ and hi i ¼ 1, 2ð Þ : 0, 1½ � !
0,þ∞½ Þ are continuous. To obtain the existence results, the authors used the
well-known GuoKrasnoselskiis fixed point theorem.

In 2017, Rezapour et al. [42] investigated a Caputo fractional inclusion with
integral boundary condition for the following problem

cDαu tð Þ∈F t, u tð Þ, cDβu tð Þ, u0 tð Þ
� �

,

u 0ð Þ þ u0 0ð ÞþcDβu 0ð Þ¼η
0u sð Þds,

u 1ð Þ þ u0 1ð ÞþcDβu 1ð Þ¼ν
0u sð Þds,

8

>

>

<

>

>

:

where 1< α≤ 2, η, ν, β∈ 0, 1ð Þ, F : 0, 1½ � � � �  ! 2 is a compact valued
multifunction and cDα denotes the Caputo fractional derivative of order α.

In 2018, Bouteraa and Benaicha [10] studied the existence of solutions for the
Caputo fractional differential inclusion

cDαu tð Þ∈F t, u tð Þ, u0 tð Þð Þ, t∈ J ¼ 0, 1½ �,

subject to three-point boundary conditions

βu 0ð Þ þ γu 1ð Þ ¼ u ηð Þ,
u 0ð Þ¼η

0u sð Þds,
βcDpu 0ð Þ þ γcDpu 1ð Þ¼cDpu ηð Þ,

8

>

>

<

>

>

:

where 2< α≤ 3, 1< p≤ 2, 0< η< 1, β, γ ∈
þ, F : 0, 1½ � � �  ! 2 is a com-

pact valuedmultifunction and cDα denotes the Caputo fractional derivative of order α.
In 2019, Ahmad et al. [43] investigated the existence of solutions for the bound-

ary value problem of coupled Caputo (Liouville-Caputo) type fractional differential
inclusions:

CDαx tð Þ∈F t, x tð Þ, y tð Þð Þ, t∈ 0,T½ �, 1< α≤ 2,
CDβy tð Þ∈F t, x tð Þ, y tð Þð Þ, t∈ 0,T½ �, 1< β≤ 2,

(

subject to the coupled boundary conditions:

x 0ð Þ ¼ ν1y Tð Þ, x0 0ð Þ ¼ ν2y
0 Tð Þ,

y 0ð Þ ¼ μ1x Tð Þ, y0 0ð Þ ¼ μ2x
0 Tð Þ,

3
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where CDα, CDβ denote the Caputo fractional derivatives of order α and β

respectively, F,G : 0,T½ � � �  are given multivalued maps, P ð Þ is the family of
all nonempty subsets of , and νi, μi, i ¼ 1, 2 are real constants with νiμi 6¼ 1, i ¼ 1, 2.

Inspired andmotivated by theworksmentioned above, we focus on the uniqueness
of positive solutions for the nonlocal boundary value problem (1) with the iterative
method and properties of f t, uð Þ, explicit iterative sequences are given to approximate
the solutions and the error estimations are also given. We also cover the multi-valued
case of problem (2) when the right-hand side is nonconvex compact valued multi-
functions via a fixed point theorem for multivalued maps due to Covitz and Nadler.

The chapter is organized as follows. In Section 2, we present some notations and
lemmas that will be used to prove our main results of problem (1) and we discuss
the uniqueness of problem (1). Finally, we give an example to illustrate our result.
In Section 3, we introduce some definitions and preliminary results about essential
properties of multifunction that will be used in the remainder of the chapter and we
present existence results for the problem (2) when the right-hand side is a non-
convex compact multifunction. We shall use the fixed point theorem for contrac-
tion multivalued maps due to Covitz and Nadler [44] to prove the uniqueness of
solution of problem (2). Finally, we give an example to ascertain the main result.

2. Existence and uniqueness results for problem (2)

2.1 Preliminaries

In this section, we recall some definitions and facts which will be used in the
later analysis. These details can be found in the recent literature; see [2, 4, 6, 45–47]
and the references therein.

Let ACi 0, 1½ �,ð Þ denote the space of i� times differentiable functions u :

0, 1½ � !  whose i� th derivative u ið Þ is absolutely continuous and α½ � donotes the
integer part of number α.

Definition 2.1. Let α>0, n� 1< α< n, n ¼ α½ � þ 1 and u∈ACn 0,∞½ Þ,ð Þ.
The Caputo derivative of fractional order α for the function u : 0,þ∞½ Þ !  is

defined by

cDαu tð Þ ¼ 1

Γ n� αð Þ

ð

t

0

t� sð Þn�α�1u nð Þ sð Þds:

The Riemann-Liouville fractional derivative order α for the function u :

0,þ∞½ Þ !  is defined by

Dα
0þu tð Þ ¼ 1

Γ n� αð Þ
dn

dtn

ð

t

0

t� sð Þn�α�1u sð Þds, t>0,

provided that the right hand side is pointwise defined in 0,∞ð Þ and the function
Γ : 0,∞ð Þ ! , defined by

Γ uð Þ ¼
ð

∞

0

tu�1e�tdt,

is called Euler’s gamma function.

4
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Definition 2.2. The Riemann-Liouville fractional integral of order α>0 of a
function u : 0,∞ð Þ !  is given by

Iαu tð Þ ¼ 1

Γ αð Þ

ð

t

0

t� sð Þα�1u sð Þds, t>0,

provided that the right hand side is pointwise defined in 0,∞ð Þ.
We recall in the following lemma some properties involving Riemann-Liouville

fractional integral and Riemann-Liouville fractional derivative or Caputo fractional
derivative which are need in Lemma 2.4.

Lemma 2.1. (([45], Prop.4.3), [46]) Let α, β≥0 and u∈L1 0, 1ð Þ. Then the next
formulas hold.

i. DβIαu
� �

tð Þ ¼ Iα�βu tð Þ,

ii. DαIαuð Þ tð Þ ¼ u tð Þ,

iii. Iα0þI
β

0þu tð Þ ¼ Iαþβ

0þ u tð Þ.

iv. If β> α>0, then Dαtβ�1 ¼ Γ βð Þtβ�α�1

Γ β�αð Þ . where D
α and Dβ represents Riemann-

Liouville’s or Caputo’s fractional derivative of order α and β respectively.

Lemma 2.2 [47]. Let α>0 and y∈L1 0, 1ð Þ. Then, the general solution of the
fractional differential equation Dα

0þu tð Þ þ y tð Þ ¼ 0, 0< t< 1 is given by

u tð Þ ¼ � 1

Γ αð Þ

ð

t

0

t� sð Þα�1y sð Þdsþ c1t
α�1 þ c2t

α�2 þ⋯þ cnt
α�n, 0< t< 1,

where c0, c1, … , cn�1 are real constants and n ¼ α½ � þ 1.
Based on the previous Lemma 2:2, we will define the integral solution of our

problem 1ð Þ.

Lemma 2.3. Let
P

p

j¼1
a jη

α�β�1
j ∈ 0, 1½ Þ, α∈ n� 1, nð �, β∈ 1, n� 2½ �, n≥ 3 and

y �ð Þ∈C 0, 1½ �. Then the solution of the fractional boundary value problem

Dα
0þu tð Þ þ y tð Þ ¼ 0,

u ið Þ 0ð Þ ¼ 0, i∈ 0, 1, 2, … , n� 2f g,

Dβ
0þu 1ð Þ ¼ P

p

j¼1
a jD

β
0þu η j

� �

,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(3)

is given by

u tð Þ ¼
ð

1

0

G t, sð Þy sð Þds, (4)
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where

G t, sð Þ ¼ g t, sð Þ þ tα�1

d

X

p

j¼1

a jh η j, s
� �

, (5)

g t, sð Þ ¼ 1

Γ αð Þ

tα�1 1� sð Þα�β�1 � t� sð Þα�1, 0≤ s≤ t≤ 1,

tα�1 1� sð Þα�β�1, 0≤ t≤ s≤ 1,

8

>

<

>

:

(6)

h t, sð Þ ¼ 1

Γ αð Þ

tα�β�1 1� sð Þα�β�1 � t� sð Þα�β�1, 0≤ s≤ t≤ 1,

tα�β�1 1� sð Þα�β�1, 0≤ t≤ s≤ 1,

8

>

<

>

:

(7)

where d ¼ 1�
Pp

j¼1a jη
α�β�1
j .

Proof. By using Lemma 2:2, the solution of the equation Dα
0þu tð Þ þ y tð Þ ¼ 0 is

u tð Þ ¼ � 1

Γ αð Þ

ð

t

0

t� sð Þα�1y sð Þdsþ c1t
α�1 þ c2t

α�2 þ⋯þ cnt
α�n,

where c1, c2 … , cn are arbitrary real constants.
From the boundary condition in (1), one can c2 ¼ c3 … ¼ cn�2 ¼ cn�1 ¼ cn ¼ 0.

Hence

u tð Þ ¼ � 1

Γ αð Þ

ð

t

0

t� sð Þα�1y sð Þdsþ c1t
α�1

:

By the last above equation and Lemma 2:1 ið Þ, we get

Dβ
0þu tð Þ ¼ 1

Γ α� βð Þ c1Γ αð Þtα�β�1 �
ð

t

0

t� sð Þα�β�1y sð Þds

2

4

3

5,

this and by Dβ
0þu 1ð Þ ¼

Pp
j¼1a jD

β
0þu η j

� �

, we have

c1 ¼
1

dΓ αð Þ

ð

1

0

1� sð Þα�β�1y sð Þds�
X

p

j¼1

a j

ð

η j

0

η j � s
� �α�β�1

y sð Þds

2

4

3

5

:

Then, the unique solution of the problem (1) is given by

6
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u tð Þ ¼ tα�1

dΓ αð Þ

ð

1

0

1� sð Þα�β�1y sð Þds�
X

p

j¼1

a j

ð

η j

0

η j � s
� �α�β�1

y sð Þds

2

4

3

5� 1

Γ αð Þ

ð

t

0

t� sð Þα�1y sð Þds,

¼ 1

Γ αð Þ

ð

t

0

tα�1 1� sð Þα�β�1 � t� sð Þα�1
h i

y sð Þdsþ
ð

1

t

tα�1 1� sð Þα�β�1y sð Þds

2

4

þ 1� d

d

ð

1

0

tα�1 1� sð Þα�β�1y sð Þds� tα�1

d

X

p

j¼1

a j

ð

η j

0

η j � s
� �α�β�1

y sð Þds

3

5

¼
ð

1

0

g t, sð Þy sð Þdsþ tα�1

d

X

p

j¼1

a j

ð

1

η j

η
α�β�1
j 1� sð Þα�β�1y sð Þds

2

6

4

þ
ð

η j

0

η
α�β�1
j 1� sð Þα�β�1 � η j � s

� �α�β�1
� �

y sð Þds

3

5

¼
ð

1

0

g t, sð Þy sð Þdsþ tα�1

d

X

p

j¼1

a j
1
0
h η j, s
� �

y sð Þds

¼
ð

1

0

G t, sð Þy sð Þds:

The proof is completed. □

Lemma 2.4. Let
Pp

j¼1a jη
α�β�1
j ∈ 0, 1½ Þ, α∈ n� 1, nð �, β∈ 1, n� 2½ �, n≥ 3. Then, the

functions g t, sð Þ and h t, sð Þ defined by (6) and (7) have the following properties:

i. The functions g t, sð Þ and h t, sð Þ are continuous on 0, 1½ � � 0, 1½ � and for all
t, s∈ 0, 1ð Þ

g t, sð Þ>0, h t, sð Þ>0:

ii. g t, sð Þ≤ tα�1

Γ αð Þ for all t, s∈ 0, 1½ �.

iii. g t, sð Þ≥ tα�1g 1, sð Þ for all t, s∈ 0, 1½ �, where

g 1, sð Þ ¼ 1

Γ αð Þ 1� sð Þα�β�1 � 1� sð Þα�1
h i

:

From the above properties, we deduce the following properties:

iv. The function G t, sð Þ≥0 is continuous on 0, 1½ � � 0, 1½ � and G t, sð Þ>0 for all
t, s∈ 0, 1ð Þ.

v. max
t∈ 0, 1½ �

G t, sð Þ ¼ G 1, sð Þ, for all s∈ 0, 1½ �, where

7
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G 1, sð Þ ¼ g 1, sð Þ þ 1

d

X

p

j¼1

a jh η j, s
� �

≤
1� sð Þα�β�1

dΓ αð Þ :

Proof. It is easy to chek that ið Þ, vð Þ, við Þ holds. So we prove that iið Þ is true. Note

that (6) and 0≤ 1� sð Þα�β�1 ≤ 1. It follows that g t, sð Þ≤ tα�1

Γ αð Þ for all t, s∈ 0, 1½ �. It
remains to prove iiið Þ. We divide the proof into two cases and by (1), we have.

Case1. When 0≤ s≤ t≤ 1, we have

g t, sð Þ ¼ 1

Γ αð Þ t
α�1 1� sð Þα�β�1 � 1� s

t

� �α�1
� �

≥ tα�1g 1, sð Þ:

Case2. When 0≤ t≤ s≤ 1, we have

g t, sð Þ ¼ 1

Γ αð Þ t
α�1 1� sð Þα�β�1 ≥ tα�1g 1, sð Þ:

Hence g t, sð Þ≥ tα�1g 1, sð Þ for all t, s∈ 0, 1½ �. □

2.2 Existence results

First, for the uniqueness results of problem (1), we need the following assumptions.
A1ð Þ f t, u1ð Þ≤ f t, u2ð Þ for any 0< t< 1, 0≤ u1 ≤ u2.
A2ð Þ For any r∈ 0, 1ð Þ, there exists a constant q∈ 0, 1ð Þ such that

f t, ruð Þ≥ rqf t, uð Þ, t, uð Þ∈ 0, 1ð Þ � 0,∞½ Þ: (8)

A3ð Þ 0< 1
0f s, sα�1ð Þds<∞.

We shall consider the Banach space E ¼ C 0, 1½ � equipped with the norm
uk k ¼ max

0≤ t≤ 1
u tð Þj j and let

D ¼ u∈Cþ 0, 1½ � : ∃Mu ≥mu ≥0, nmut
α�1 ≤ u tð Þ≤Mut

α�1, fort∈ 0, 1½ �
� 	

, (9)

where

Cþ 0, 1½ � ¼ u∈E : u tð Þ≥0, t∈ 0, 1½ �f g:

In view of Lemma 2:3, we define an operator T as

Tuð Þ tð Þ ¼
ð

1

0

G t, sð Þy sð Þds, (10)

where G t, sð Þ is given by (5).
By A1ð Þ it is easy to see that the operator T : D ! Cþ 0, 1½ � is increasing. Observe

that the BVP (1) has a solution if and only if the operator T has a fixed point.
Obviously, from A1ð Þ we obtain

f t, ruð Þ≤ rqf t, uð Þ, ∀r> 1, q∈ 0, 1ð Þ, t, uð Þ∈ 0, 1ð Þ � 0,∞½ Þ:

In what follows, we first prove T : D ! D. In fact, for any u∈D, there exist a
positive constants 0<mu < 1<Mu such that

8
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mus
α�1 ≤ u sð Þ≤Mus

α�1, s∈ 0, 1½ �:

Then, from A1ð Þ, f t, uð Þ non-decreasing respect to u and A2ð Þ, we can imply that
for s∈ 0, 1ð Þ, q∈ 0, 1ð Þ

muð Þqf s, sα�1
� �

≤ f s, u sð Þð Þ≤ Muð Þqf s, sα�1
� �

, s∈ 0, 1ð Þ: (11)

From (11) and Lemma 2:4, we obtain

Tu tð Þ ¼
ð

1

0

g t, sð Þf s, u sð Þð Þdsþ tα�1

d

X

p

j¼1

a j

ð

1

0

h η j, s
� �

f s, u sð Þð Þds,

≤ tα�1 1

Γ αð Þ

ð

1

0

f s, u sð Þð Þdsþ 1

d

X

p

j¼1

a j

ð

1

0

h η j, s
� �

f s, u sð Þð Þds

2

4

3

5,

≤ tα�1 Muð Þq
Γ αð Þ

ð

1

0

f s, sα�1
� �

dsþ Muð Þq
d

X

p

j¼1

a j

ð

1

0

h η j, s
� �

f s, sα�1
� �

ds

2

4

3

5, t∈ 0, 1½ �,

(12)

and

Tu tð Þ ¼
ð

1

0

g t, sð Þf s, u sð Þð Þdsþ tα�1

d

X

p

j¼1

a j

ð

1

0

h η j, s
� �

f s, u sð Þð Þds,

≥ tα�1 1

Γ αð Þ

ð

1

0

g 1, sð Þf s, u sð Þð Þdsþ 1

d

X

p

j¼1

a j

ð

1

0

h η j, s
� �

f s, u sð Þð Þds

2

4

3

5,

≥ tα�1 muð Þq
Γ αð Þ

ð

1

0

g 1, sð Þf s, sα�1
� �

dsþ muð Þq
d

X

p

j¼1

a j

ð

1

0

h η j, s
� �

f s, sα�1
� �

ds

2

4

3

5, t∈ 0, 1½ �:

(13)

Eqs. (12) and (13) and assumption A3ð Þ imply that T : D ! D.
Now, we are in the position to give the first main result of this chapter.
Theorem 1.1 Suppose A1ð Þ � A3ð Þ hold. Then problem (1) has a unique,

nondecreasing solution u ∗ ∈D, moreover, constructing successively the sequence
of functions

hn tð Þ ¼
ð

1

0

G t, sð Þf s, hn�1 sð Þð Þds, t∈ 0, 1½ �, n ¼ 1, 2, … , (14)

for any initial function h0 tð Þ∈D, then hn tð Þf g must converge to u ∗ tð Þ uniformly
on 0, 1½ � and the rate of convergence is

max
t∈ 0, 1½ �

hn tð Þ � u ∗ tð Þj j ¼ O 1� θq
n� �

, (15)

where 0< θ< 1, which depends on the initial function h0 tð Þ.
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Proof. For any h0 ∈D, we let

lh0 ¼ sup l>0 : lh0 tð Þ≤ Th0ð Þ tð Þ, t∈ 0, 1½ �f g, (16)

Lh0 ¼ inf L>0 : Lh0 tð Þ≥ Th0ð Þ tð Þ, t∈ 0, 1½ �f g, (17)

m ¼ min 1, lh0ð Þ 1
1�q

n o

, M ¼ max 1, Lh0ð Þ 1
1�q

n o

, (18)

and

u0 tð Þ ¼ mh0 tð Þ, v0 tð Þ ¼ Mh0 tð Þ, (19)

un tð Þ ¼ Tun�1 tð Þ, vn tð Þ ¼ Tvn�1 tð Þ, n ¼ 0, 1, … , : (20)

Since the operator T is increasing, A1ð Þ, A2ð Þ and (16)–(20) imply that there
exist iterative sequences unf g, vnf g satisfying

u0 tð Þ≤ u1 tð Þ≤ … ≤ un tð Þ≤ … ≤ vn tð Þ≤ … ≤ v1 tð Þ≤ v0 tð Þ, t∈ 0, 1½ �: (21)

In fact, from (19) and (20), we have

u0 tð Þ≤ v0 tð Þ, (22)

u1 tð Þ ¼ Tu0 tð Þ ¼
ð

1

0

G1 t, sð Þf s,mh0 sð Þð Þdsþ tα�1

d

X

n

i¼1

a j

ð

1

0

G2 η j, s
� �

f s,mh0 sð Þð Þds,

≥mq

ð

1

0

G1 t, sð Þf s, h0 sð Þð Þdsþ tα�1

d

X

n

i¼1

a j

ð

1

0

G2 η j, s
� �

f s, h0 sð Þð Þds

2

4

3

5,

≥mqTh0 tð Þ≥mh0 tð Þ ¼ u0 tð Þ,
(23)

and

v1 tð Þ ¼ Tv0 tð Þ ¼
ð

1

0

G1 t, sð Þf s,Mh0 sð Þð Þdsþ tα�1

d

X

n

i¼1

a j

ð

1

0

G2 η j, s
� �

f s,Mh0 sð Þð Þds,

≤Mq

ð

1

0

G1 t, sð Þf s, h0 sð Þð Þdsþ tα�1

d

X

n

i¼1

a j

ð

1

0

G2 η j, s
� �

f s, h0 sð Þð Þds

2

4

3

5

≤MqTh0 tð Þ≤Mh0 tð Þ ¼ v0 tð Þ:
(24)

Then, by (22)–(24) and induction, the iterative sequences unf g, vnf g satisfy

u0 tð Þ≤ u1 tð Þ≤ … ≤ un tð Þ≤ … ≤ vn tð Þ≤ … ≤ v1 tð Þ≤ v0 tð Þ, ∀t∈ 0, 1½ �:

Note that u0 tð Þ ¼ m
M v0 tð Þ, from A1ð Þ, (10), (19) and (20), it can obtained by

induction that

un tð Þ≥ θq
n

vn tð Þ, t∈ 0, 1½ �, n ¼ 0, 1, 2, … , (25)

where θ ¼ m
M.
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From (21) and (25) we know that

0≤ unþp tð Þ � un tð Þ≤ vn tð Þ � un tð Þ≤ 1� θq
n� �

Mh0 tð Þ, ∀n, p∈, (26)

and since 1� θq
n� �

Mh0 tð Þ ! 0, as n ! ∞,this yields that there exists u ∗ ∈D

such that

un tð Þ ! u ∗ tð Þ, uniformlyon 0, 1½ �ð Þ:

Moreover, from (26) and

0≤ vn tð Þ � u ∗ tð Þ ¼ vn tð Þ � un tð Þ þ un tð Þ � u ∗ tð Þ,

≤ 1� θq
n� �

Mh0 tð Þ ! 0, as n ! ∞,

we have

vn tð Þ ! u ∗ tð Þ, uniformlyon 0, 1½ �ð Þ,

so,

un tð Þ ! u ∗ tð Þ, vn tð Þ ! u ∗ tð Þ, uniformlyon 0, 1½ �ð Þ: (27)

Therefore

un tð Þ≤ u ∗ tð Þ≤ vn tð Þ, t∈ 0, 1½ �, n ¼ 0, 1, 2, … , , (28)

From A1ð Þ, (19) and (20), we have

unþ1 tð Þ ¼ Tun tð Þ≤Tu ∗ tð Þ≤Tvn tð Þ ¼ vnþ1 tð Þ, n ¼ 0, 1, 2, … , :

This together with (27) and uniqueness of limit imply that u ∗ satisfy u ∗ ¼ Tu ∗ ,
that is u ∗ ∈D is a solution of BVP (1) and (2).

From (19)–(21) and A1ð Þ, we obtain

un tð Þ≤ hn tð Þ≤ vn tð Þ, n ¼ 0, 1, 2, … , : (29)

It follows from (26)–(29) that

hn tð Þ � u ∗ tð Þj j≤ hn tð Þ � un tð Þj j þ un tð Þ � u ∗ tð Þj j,

≤ hn tð Þ � un tð Þj j þ u ∗ tð Þ � un tð Þj j,

≤ 2 vn tð Þ � un tð Þj j,

≤ 2M 1� θq
n� �

h0 tð Þj j:

Therefore

max
t∈ 0, 1½ �

hn tð Þ � u ∗ tð Þj j≤ 2M 1� θq
n� �

max
t∈ 0, 1½ �

h0 tð Þj j:

Hence, (15) holds. Since h0 tð Þ is arbitrary in D we know that u ∗ tð Þ is the unique
solution of the boundary value problem (1) in D. □
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We construct an example to illustrate the applicability of the result presented.
Example 2.1. Consider the following boundary value problem

D
5
2

0þu tð Þ þ uð Þ23�1
6 cos tð Þ
ffiffi

t
p ¼ 0, t∈ 0, 1ð Þ,

u 0ð Þ ¼ u0 0ð Þ ¼ 0, u0 1ð Þ ¼
ffiffiffi

2
p

2
u0

1

2

� �

,

8

>

>

>

>

<

>

>

>

>

:

(30)

where α ¼ 5
2 , β ¼ 1, a1 ¼

ffiffi

2
p

2 , η1 ¼ 1
2 and f t, uð Þ ¼ uð Þ

2
3
�1
6
cos tð Þ
ffiffi

t
p is increasing function with

respect to u for all t∈ 0, 1ð Þ, so, assumption A1ð Þ satisfied.
By simple calculation we have d ¼ 1�

ffiffi

2
p

2

ffiffi

1
2

q� �

¼ 1
2.

For any r∈ 0, 1ð Þ, there exists q ¼ 1
2 ∈ 0, 1ð Þ such that

f t, ruð Þ ¼ ruð Þ23�1
6 cos tð Þ
ffiffi

t
p ≥ r

1
2
uð Þ23�1

6 cos tð Þ
ffiffi

t
p ¼ r

1
2f t, uð Þ,

thus, f t, uð Þ satisfies A2ð Þ and is singular at t ¼ 0.
On the other hand,

ð

1

0

f t, t2,5�1
� �

dt≤

ð

1

0

t
1
4dt ¼ 4

5
<∞,

so, assumption A3ð Þ is satisfied.
Hence, all the assumptions of Theorem 1:1 are satisfied. Which implies that the

boundary value 30ð Þ has an unique, nondecreasing solution u ∗ ∈D.

3. Existence result for inclusion problem (2)

We provide another result about the existence of solutions for the problem (2) by
using the assumption of nonconvex compact values for multifunction. Our strategy to
deal with this problem is based on the Covitz-Nadler theorem for the contraction
multivalued maps [44] for lower semi-continuous maps with decomposable values.

First, we will present notations, definitions and preliminary facts from
multivalued analysis which are used throughout this chapter. For more details on
the multivalued maps, see the book of Aubin and Cellina [48], Demling [49],
Gorniewicz [50] and Hu and Papageorgiou [51], see also [44, 48, 49, 52–54].

Here C 0, 1½ �,ð Þ denotes the Banach space of all continuous functions from 0, 1½ �
into  with the norm uk k ¼ sup u tð Þj j : forall t∈ 0, 1½ �f g, L1 0, 1½ �,ð Þ, the Banach
space of measurable functions u : 0, 1½ � ! which are Lebesgue integrable, normed
by uk kL1¼1

0 u tð Þj jdt.
Let X, dð Þ be a metric space induced from the normed space X, �k kð Þ. We denote

P0 Xð Þ ¼ A∈P Xð Þ : A 6¼ ϕf g,
Pb Xð Þ ¼ A∈P0 Xð Þ : Ais boundedf g,
Pcl Xð Þ ¼ A∈P0 Xð Þ : Ais closedf g,
Pcp Xð Þ ¼ A∈P0 Xð Þ : Ais compactf g,
Pb,cl Xð Þ ¼ A∈P0 Xð Þ : Ais closed and boundedf g,
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where P Xð Þ is the family of all subsets of X.
Definition 3.1. A multivalued map G : X ! P Xð Þ.

1.G uð Þ is convex (closed) valued if G uð Þ is convex (closed) for all u∈X,

2. is bounded on bounded sets if G Bð Þ ¼ ⋃
u∈B

G uð Þ is bounded in X for all

B∈Pb Xð Þ i.e., sup
u∈B

sup vj j, v∈G uð Þf gf g<∞,

3.has a fixed point if there is u∈X such that u∈G uð Þ. The fixed point set of the
multivalued operator G will be denote by Fix G.

Definition 3.2. A multivalued map G : 0, 1½ � ! Pcl ð Þ is said to be measurable if
for every y∈ the function

t↦ d y,G tð Þð Þ ¼ inf y� zk k : z∈G tð Þf g,

is measurable.
Definition 3.3. Let Y be a nonempty closed subset of a Banach space E and G :

Y ! Pcl Eð Þ be a multivalued operator with nonempty closed values.

i. G is said to be lower semi-continuous (l.s.c) if the set x∈X : G xð Þ∩U 6¼ ϕf g
is open for any open set U in E.

ii. G has a fixed point if there is x∈Y such that x∈G xð Þ.

For each u∈ C 0, 1½ �,ð Þ, define the set of selection of F by

SF,u ¼ v∈AC 0, 1½ �,ð Þ : v∈ F t, u tð Þð Þ, for almost all t∈ 0, 1½ �f g:

For P Xð Þ ¼ 2X, consider the Pompeiu-Hausdorff metric (see [55]).

Hd : 2X � 2X ! 0,∞½ Þ given by

Hd A,Bð Þ ¼ max sup
a∈A

d a,Bð Þ, sup
b∈B

d b,Að Þ
( )

,

where d a,Bð Þ ¼ inf
b∈B

d a, bð Þ and d b,Að Þ ¼ inf
a∈A

d a, bð Þ. Then Pb,cl Xð Þ,Hdð Þ is a
metric space and Pcl Xð Þ,Hdð Þ is a generalized metric space see [8].

Definition 3.4. Let A be a subset of 0, 1½ � � . A is L⊗Bmeasurable if A belongs
to the σ�algebra generated by all sets of the J �D, where J is Lebesgue measurable
in 0, 1½ � and D is Borel measurable in .

Definition 3.5. A subset A of L1 0, 1½ �,ð Þ is decomposable if all u, v∈A and
measurable J ⊂ 0, 1½ � ¼ j, the function uχJ þ vχ jnJ ∈A, where χJ stands for the

caracteristic function of J.

Definition 3.6. Let Y be a separable metric space and N : Y ! P L1 0, 1½ �,ð Þ
� �

be

a multivalued operator. We say N has property (BC) if N is lower semi-continuous
(l.s.c) and has nonempty closed and decomposable values.

Let F : 0, 1½ � �  ! P ð Þ be a multivalued map with nonempty compact values.
Define a multivalued operator

Φ : C 0, 1½ �,ð Þ ! P L1 0, 1½ �,ð Þ
� �

,
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by letting

Φ uð Þ ¼ w∈L1 0, 1½ �,ð Þ : w tð Þ∈ F t, u tð Þð Þ fora:e:t∈ 0, 1½ �
� 	

:

Definition 3.7. The operator Φ is called the Niemytzki operator associated with F

. We say F is of the lower semi-continuous type (l.s.c type) if its associated

Niemytzki operator Φ has (BC) property.
Definition 3.8. A multivalued operator N : X ! Pcl Xð Þ is called.

i. ρ�Lipschitz if and only if there exists ρ>0 such that
Hd N uð Þ,N vð Þð Þ≤ ρd u, vð Þ for each u, v∈X,

ii. a contraction if and only if it is ρ�Lipschitz with ρ< 1.

Lemma 3.1. ([44] Covitz-Nadler). Let X, dð Þ be a complete metric space. If N : X !
Pcl Xð Þ is a contraction, then FixN 6¼ ϕ, where FixN is the fixed point of the operator N.

Definition 3.9. A measurable multivalued function F : 0, 1½ � ! P Xð Þ is said to be

integrably bounded if there exists a function g∈L1 0, 1½ �,Xð Þ such that, for all
v∈F tð Þ, vk k≤ g tð Þ for a.e. t∈ 0, 1½ �.

Let us introduce the following hypotheses.
A4ð Þ F : 0, 1½ � �  ! Pcp ð Þ be a multivalued map verifying.

i. t, uð Þ↦F t, uð Þ is L⊗B measurable.

ii. u↦F t, uð Þ is lower semi-continuous for a:e: t∈ 0, 1½ �.

A5ð Þ F is integrably bounded, that is, there exists a function m∈L1 0, 1½ �,þð Þ
such that F t, uð Þk k ¼ sup vj j : v∈F t, uð Þf g≤m tð Þ for almost all t∈ 0, 1½ �.

Lemma 3.2. [56] Let F : 0, 1½ � �  ! Pcp ð Þ be a multivalued map. Assume A4ð Þ
and A5ð Þ hold. Then F is of the l:s:c: type.

Definition 3.10. A function u∈AC2 0, 1½ �,ð Þ is called a solution to the boundary
value problem (2) if u satisfies the differential inclusion in (2) a:e: on 0, 1½ � and the
conditions in (2).

Finally, we state and prove the second main result of this Chapter. We prove the
existence of solutions for the inclusion problem (2) with a nonconvex valued right
hand side by applying a fixed point theorem for multivalued maps due to Covitz
and Nadler. For investigation of the problem (2) we shall provide an application of
the Lemma 3:4 and the following Lemma.

Lemma 3.3. ([13]) A multifunction F : X ! C Xð Þ is called a contraction whenever
there exists γ ∈ 0, 1ð Þ such that Hd N uð Þ,N vð Þð Þ≤ γd u, vð Þ for all u, v∈X.

Now, we present second main result of this section.
Theorem 1.2 Assume that the following hypothyses hold.
H1ð Þ F : J �  ! Pcp ð Þ is an integrable bounded multifunction such that the

map t↦F t, uð Þ is measurable,
H2ð Þ Hd F t, u1ð Þ, F t, u2ð Þð Þ≤m tð Þ u1 � u2j j for almost all t∈ J and u1, u2 ∈ with

m∈L1 J,ð Þ and d 0, F t, 0ð Þð Þ≤m tð Þ for almost all t∈ J. Then the problem (2) has a
solution provided that

l ¼
ð

1

0

G 1, sð Þm sð Þds< 1:
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Proof. We transform problem (2) into a fixed point problem. Consider the
operator N : C 0, 1½ � ! P C 0, 1½ �,ð Þ defined by

N uð Þ ¼ h∈X,∃y∈ SF,unh tð Þ ¼
ð

1

0

G t, sð Þy sð Þds, t∈ J

8

<

:

9

=

;

, (31)

where G t, sð Þ defined by (5). It is clear that fixed points of N are solution of (2).
We shall prove that N fulfills the assumptions of Covitz-Nadler contraction

principle.
Note that, the multivalued map t↦F t, u tð Þð Þ is measurable and closed for all

u∈AC1 0,∞½ Þð Þ (e.g., [52] Theorem III.6). Hence, it has a measurable selection and
so the set SF,u is nonempty, so, N uð Þ is nonempty for any u∈C 0,∞½ Þð Þ.

First, we show that N uð Þ is a closed subset of X for all u∈AC1 0,∞½ Þ,ð Þ. Let
u∈X and unf gn≥ 1 be a sequence in N uð Þ with un ! u, as n ! ∞ in u∈C 0,∞½ Þð Þ.
For each n, choose yn ∈ SF,u such that

un tð Þ ¼
ð

1

0

G t, sð Þyn sð Þds:

Since F has compact values, we may pass onto a subsequence (if necessary) to

obtain that yn converges to y∈L1 0, 1½ �,ð Þ in L1 0, 1½ �,ð Þ. In particular, y∈ SF,u and
for any t∈ 0, 1½ �, we have

un tð Þ ! u tð Þ ¼
ð

1

0

G t, sð Þy sð Þds,

i.e., u∈N uð Þ and N uð Þ is closed.
Next, we show that N is a contractive multifunction with constant l< 1. Let

u, v∈C 0, 1½ �,ð Þ and h1 ∈N uð Þ. Then there exist y1 ∈ SF,u such that

h1 tð Þ ¼
ð

1

0

G t, sð Þy1 sð Þds, t∈ J:

By H2ð Þ, we have

Hd F t, u tð Þð Þ,F t, v tð Þð Þð Þ≤m tð Þ u tð Þ � v tð Þj jð Þ,

for almost all t∈ J.
So, there exists w∈ SF,v such that

y1 tð Þ �w






≤m tð Þ u tð Þ � v tð Þj jð Þ,

for almost all t∈ J.
Define the multifunction U : J ! P ð Þ by

U tð Þ ¼ w∈ : y1 tð Þ � w






≤m tð Þ u tð Þ � v tð Þj jð Þ for almost all t∈ J
� 	

:

It is easy to chek that the multifunction V �ð Þ ¼ U �ð Þ∩F �, v �ð Þð Þ is measurable
(e.g., [52] Theorem III.4).
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Thus, there exists a function y2 tð Þ which is measurable selection for V. So,
y2 ∈ SF,v and for each t∈ J, we have

y1 tð Þ � y2 tð Þ






≤m tð Þ u tð Þ � v tð Þj jð Þ:

Now, consider h2 ∈N uð Þ which is defined by

h2 tð Þ ¼
ð

1

0

G t, sð Þy2 sð Þds, t∈ J,

and one can obtain

h1 tð Þ � h2 tð Þj j≤
ð

1

0

G t, sð Þ y1 sð Þ � y2 sð Þ






ds

≤

ð

1

G 1, sð Þm sð Þ u sð Þ � v sð Þj jds:

Hence

h1 tð Þ � h2 tð Þk k≤ pk k
∞

u� vk k
ð

1

0

G 1, sð Þm sð Þds

2

4

3

5

:

Analogously, interchanging the roles of u and v, we obtain

Hd N uð Þ,N vð Þð Þ≤ u� vk k
ð

1

0

G 1, sð Þm sð Þds

2

4

3

5

:

Since N is a contraction, it follows by Lemma 3:1 (by using the result of Covitz
and Nadler) that N has a fixed point which is a solution to problem (2). □

We construct an example to illustrate the applicability of the result presented.
Example 3.1. Consider the problem

�Dαu tð Þ∈ F t, u tð Þð Þ, t∈ 0, 1½ �, (32)

subject to the three-point boundary conditions

u ið Þ 0ð Þ ¼ 0, i∈ 0, 1f g, Dβ

0þu 1ð Þ ¼
X

2

j¼1

a jD
β

0þu η j

� �

, (33)

where α ¼ 5
2 , β ¼ 1 a1 ¼ 1

2 , a2 ¼ 3
2 , η1 ¼ 1

16 , η2 ¼ 5
16.and F t, u tð Þð Þ : 0, 1½ � �  ! 2

multivalued map given by

u↦F t, uð Þ ¼ 0,
t uj j

2 1þ uj jð Þ

� �

, u∈,

verifying H1ð Þ.
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Obviously,

sup fj j : f ∈ F t, uð Þf g≤ tþ 1

2
,

we have

Hd F t, uð Þ, F t, vð Þð Þ≤ tþ 1

2

� �

u� vj j, u, v∈, t∈ 0, 1½ �,

which shows that H2ð Þ holds
So, if m tð Þ ¼ tþ1

2 for all t∈ 0, 1½ �, then

Hd F t, uð Þ, F t, vð Þð Þ≤m tð Þ u� vj j:

It can be easily found that d ¼ 1� 1
2

1
16

� �5
2 � 3

2
5
16

� �5
2 ¼ 0, 9176244637.

Finally,

l ¼
ð

1

0

G 1, sð Þm sð Þds ¼ 0, 4636273746< 1:

Hence, all assumptions and conditions of Theorem 1:2 are satisfied. So,Theorem 1:2
implies that the inclusion problem (32) and (33) has at least one solution.

4. Conclusions

This chapter concerns the boundary value problem of a class of fractional dif-
ferential equations involving the Riemann-Liouville fractional derivative with
nonlocal boundary conditions. By using the properties of the Green’s function and
the monotone iteration technique, one shows the existence of positive solutions and
constructs two successively iterative sequences to approximate the solutions. In the
multi-valued case, an existence result is proved by using fixed point theorem for
contraction multivalued maps due to Covitz and Nadler. The results of the present
chapter are significantly contribute to the existing literature on the topic.
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