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Chapter

Feature-Oriented Principal
Component Selection (FPCS) for
Delineation of the Geological Units
Using the Integration of SWIR and
TIR ASTER Data
Ronak Jain

Abstract

Geological studies have been performed using the Band Ratios (BR), Relative Band
Depth (RBD), Mineral Indices (MI), Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), lithological and mineral classification techniques
from Short-Wave Infrared (SWIR) and Thermal Infrared (TIR) data. The chapter
aims to delineate various geological units present in the area using the combination of
SWIR and TIR ASTER bands through the Feature-Oriented Principal Component
Selection (FPCS) technique. Different BRs and RBDs were applied to map the min-
erals having Al-OH and Mg-OH compounds with the chemical composition of clay
(kaolinite, smectite), mica (sericite, muscovite, illite), ultramafic (lizardite, antigorite,
chrysotile), talc, and carbonate (dolomite) from SWIR bands. The MI was used to
map quartz-rich, mafic/ultramafic, and carbonate rocks using TIR bands. The BRs,
RBDs, and MIs mapped the geological units but every single greyscale image showed a
variety of features. To compile these features False Color Composite (FCC) was
prepared by the combination of RBDs andMIs in the R:G:B channels which demarked
various geological units to a larger extent present in the region. To overcome the
limitation, the FPCS technique was applied with the integration of all BRs, RBDs, and
MIs. The FPCS technique extracts valuable information from different input bands
and shifts the information in the first few bands. The generated eigenvalues and
eigenvectors represented the retrieved information in the specific band. The loadings
of the eigenvector were used for the selection of the different brands to create the FCC
for the delineation of geological strata. The best discrimination was made by the
selection of FPCS1, FPCS3, and FPCS6which differentiated all the geological units like
ultramafics, dolomites, thin bands of talc, and muscovite and illite (as phyllite and
mica-schist), silica-rich rocks (as quartzite), and granite outcrops.

Keywords: Remote Sensing, Optical data, Feature-Oriented Principal Component
Selection, Data integration, Geological studies

1. Introduction

Water (oceans, rivers, lakes, etc.) and land (rocky mountains, hills, peneplain,
islands, etc.) are the major components of the Earth’s surface out of which only 29%
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are occupied by the land surfaces. This 29% land coverage included the forest,
desert, mountains, islands, etc. so, a very little amount of land is reserved for
geological studies.

Traditional mapping methods are time-consuming and require lots of effort for
the preparation of lithological maps, mineral maps, structural maps, etc. But some-
times manually collected data may have errors due to inaccessibility and recording
of the data which exaggerate in due course. To avoid these errors and corrections
introduced therein an advanced technology came into the picture and is known as
Remote Sensing. This technique helps in the mapping of the different litho-units
and associated structural features with higher accuracy in a short period as
compared to the traditional methods.

Remote Sensing is a tool used for the gathering of the target information without
any physical/direct contact with the earth’s surface [1–6]. It is a widely used science
for the identification and mapping of the various objects/materials present on the
earth’s crust. The electromagnetic wavelength ranges from 0.38 μm to 100 cm i.e.
visible to microwave region [3] is utilized for capturing the information from the
earth’s surface along with different sensors to capture the EM spectrum’s energy
[4, 5, 7]. This technique is useful for the monitoring, protection, and management
of diverse natural resources and land cover [8]. The geological studies include the
demarcation of various lithologies, alteration zones, minerals, and structural
features.

Multispectral Remote Sensing is utilized in the domain of geosciences for litho-
logical mapping [9–16], mineral mapping [17–24], identification of the alteration
zones related to the base metal mineralization [25–42], structural features as a
controlling factor for mineralization [26, 28, 42–46] and mapping for demarcating
favorable zones of mineralization [21, 47, 48]. Spectral characteristic absorption
features of the rocks and minerals are utilized for the identification and mapping of
lithologies and minerals like calcite, dolomite, clay, mica, and ultramafics, etc. The
spectral absorption features of minerals vary with chemical composition and the
resultant spectral curve varies in shape, depth, position, and asymmetry [49].

Wavelength range from 0.38 to 2.5 μm is utilized for the mapping of the various
hydroxyl (Al-OH, Mg-OH), iron oxides (Fe-OH), carbonates (CO3

�2), and sul-
phates (SO4

�2) bearing minerals like clay, mica, ultramafics, hematite, limonite,
dolomite, calcite, etc., due to the presence of characteristic absorption features in
the VNIR and SWIR region of the EM spectrum [5, 42, 50–53]. In the case of
feldspar, silica-rich rocks, and discrimination between ultramafics and dolomites
are possible due to spectral features associated with the TIR region in the wave-
length range of 3 to 50 μm [20, 23, 54–58]. The dissimilarities in the spectrum in the
TIR spectral-domain arise due to variation in chemical composition and molecular
structure.

Geological studies are done with the help of Landsat series, ASTER, Sentinel �2,
SPOT, Worldview series, GeoEye, etc. optical remote sensing satellites. They are
mainly utilized for the perspective of mineral exploration by using the various
methods like band ratio (BR), relative band depth (RBD), Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Minimum Noise Frac-
tion (MNF), unsupervised classification (K-means, isodata, etc.), supervised classi-
fication (Spectral Angle Mapper, Spectral Feature Fitting, Mixture Tuned Matched
Filtering, etc.), machine learning (support vector machine, decision tree, artificial
neural network, etc.). Various BR and RBD have been used for the delineation of the
different rock outcrops like dolomite, calcite, Iron rich-rocks, ultramafics, epidote,
clay and mica minerals, etc. [17, 21–24, 42, 58–60] and mineral prospects by the
demarcation & mapping of the associated alteration zones [20, 22, 27, 28, 37, 45, 61].
Lithological mapping of the exposed outcrops and their associated features are
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demarcated with the help of PCA, ICA, and MNF analyses to govern the mineral
potentiality of the outcrops [9, 17, 40, 42, 44, 62, 63]. Different supervised,
unsupervised, machine learning and prospectivity mapping algorithms were
applied to the optical datasets to prepare the mineralogical and prospective zone
maps of the region and these maps contain the information about the mineral
potential zones which were utilized for the perspective of mineral explorations
[17, 20, 21, 31, 42, 47, 48, 64–71].

2. Objective of the chapter

This chapter explains the use of SWIR and TIR spectral bands for the demarca-
tion of the different minerals and lithologies present in the region. The importance
of integrated datasets from SWIR and TIR-derived outcomes and the utility of the
integrated dataset for the demarcation of the various litho-units has also been
explained.

3. Study area and geological setup

The coverage of the study area extends between latitude 23°51035.45″ to 24°
18034.14″ in the North and longitude 73°28043.95″ to 73°49034.24″ in the East and
occupies the region in Udaipur and Dungarpur districts of Rajasthan, India
(Figure 1).

Figure 1.
Location of the study area in inset maps of India and Rajasthan. Lithological map of the study area. Modified
after Gupta et al. [72]. Red dashed lines are representing the existing faults. Mp: Mando ki Pal; Sr: Sarada
(BGC); Np: Natharia ki Pal; Ss: Sisa Magra; Kt: Kathalia; Mn: Mandli; Bm: Baroi Magra; Bl: Balicha; Zw:
Zawar; Gr: Goran; Sm: Samlaji Formations.
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Geologically the study area falls in the Udaipur sector exposes various litho-
stratigraphic units of the Archean and Palaeoproterozoic age [72–74] (Figure 1,
Table 1). The basement rocks are the Banded Gneissic Complex (BGC) [73, 75] or
the Bhilwara Supergroup (BSG) [72, 74]. They are overlain by the rocks of the
Aravalli Supergroup through an erosional unconformity. The Aravalli Supergroup
has been categorized into Debari, Udaipur, Bari Lake, Jharol, Dovda, Nathdwara,
Lunavada Groups [72]. It has also been subdivided into Lower, Middle, and Upper
Aravalli Groups [73].

Majority of the pristine Archean features of the basement rocks have diminished
due to tectono-thermal reconstruction of the basement [73]. Basement rocks from
Mangalwar Complex are composed of heterogeneous rocks of amphibolite-facies
metamorphites [75] or granite-greenstone belt [74]. Gneisses, metabasics,
migmatites, and schists constitute the basement while greywacke, chert, marble,
dolomite, quartzite, fuchsite quartzite, and mica schist represents the
metasediments within the basement [74, 76]. Biotite schist, garnets, and staurolites
are present in the Sarara ki Pal inlier [73, 77] and the presence of chlorite and
chloritoid represents the retrogression mechanism [78].

The base of the Aravalli Supergroup is having thin bands of quartzites and
pebbly oligomictic conglomerate. The continuity of quartzite is interrupted by the
ESE-WNW, NE–SW, and ENE-WSW faults. In the majority of the study area
phyllites and mica-schists are exposed. Graded bedded greywacke occurs within the
phyllite [79]. Poddar & Mathur [80] mentioned the characteristic repetition of
graded bedded and slaty phyllite. Different varieties of dolomites are exposed in the
Zawar region with gradational contact with greywacke. They are pure to siliceous
and massive to gritty nature. Lead-zinc mineralization is confined in the siliceous
dolomites [72–75, 77, 81–86]. The lithological and chemical control of the
metallogenesis in the region is supporting the concept of the syngenetic origin of
lead-zinc sulphides [72]. The Rakhabdev-Dungarpur area consists of ultramafic
rocks as linear belts which are serpentinized and are metasomatically altered

Era Supergroup Group Formation

Paleoproterozoic Aravalli Synorogenic Granite and Gneiss (intrusion)

Rakhabdev Ultramafic Suite (intrusion)

Jharol Samlaji

Goran

Udaipur Tiri

Sub-group

Zawar

Balicha/ Baroi Magra

Mandli

Debari Kathalia

Sisa Magra

——Unconformity——

Natharia ki Pal

Gurali/ Basal

——————————————Unconformity——————————————

Archean Banded

Gneissic

Complex

Mangalwar Complex Mando ki Pal

Sarada

Table 1.
Stratigraphic succession of the Aravalli Supergroup from the study area. Modified after Gupta et al. [72].
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[73, 87–90]. The ultramafic rocks occur along a prominent lineament named
Rakhabdev lineament which passes through the Aravalli fold belt [77, 89]. Thicker
ultramafic outcrops are more massive and fractures are developed in an irregular
manner [91].

4. Image processing techniques used in this investigation

4.1 Dataset

The present study uses the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer Level-1 Precision Terrain Corrected Registered At-Sensor Radiance
(ASTER L1T) dataset. ASTER sensor carries the VNIR, SWIR, and TIR scanners which
have 3 (1–3), 6 (4–9), and 5 (10–14) bands respectively, and its technical specifica-
tions mentioned in Table 2. The ASTER L1T imagery is already geometrically
corrected, georeferenced (WGS-1984) and UTM projected (UTM zone 43 N) [92].

4.2 Methodology

The overall methodology flowchart for the delineation of the various litho-units
is depicted in Figure 2. The different litho-units were traced out with the help of the
Feature-Oriented Principal Component Selection (FPCS) method which uses the
various derived outcomes of band ratios, relative band depths, and mineral indices
from SWIR and TIR datasets through an integrated approach.

Vegetation and water bodies are present in the region which creates a hindrance
in geological mapping therefore, these land features were masked from the derived
outcome. Vegetation coverage was calculated using the Normalized Difference
Vegetation Index (NDVI) and the values ranging greater than 0.2 were used for the

Granule

ID

Sensor-

scanner

Band

number

Spectral

width (μm)

Spatial

resolution

(mtr)

Radiometric

resolution

Valid

range

AST_L1T_

003042220

03055021_

201504280

31510_405

83

ASTER-VNIR 0.520–0.60 15 8-bits 0–255

2 0.630–0.690 15 8-bits 0–255

3 0.760–0.860 15 8-bits 0–255

ASTER-SWIR 4 1.600–1.700 30 8-bits 0–255

5 2.145–2.185 30 8-bits 0–255

6 2.185–2.225 30 8-bits 0–255

7 2.235–2.285 30 8-bits 0–255

8 2.295–2.365 30 8-bits 0–255

9 2.360–2.430 30 8-bits 0–255

ASTER-TIR 10 8.125–8.475 90 12-bits 0–65535

11 8.475–8.825 90 12-bits 0–65535

12 8.925–9.275 90 12-bits 0–65535

13 10.25–10.95 90 12-bits 0–65535

14 10.95–11.65 90 12-bits 0–65535

Table 2.
Technical specifications of the ASTER L1T dataset. Source: [92].

5

Feature-Oriented Principal Component Selection (FPCS) for Delineation of the Geological…
DOI: http://dx.doi.org/10.5772/intechopen.99046



preparation of the vegetation mask. Water bodies were masked using band 1. The
DN values ranging from 0 to 100 were selected to prepare the water mask. Both of
the masks were applied on the derived outcomes to eliminate the vegetative lands
and water bodies from the mineral and lithological map of the region.

4.2.1 Preprocessing of SWIR and TIR datasets

The ASTER SWIR dataset has the spillover of the energy from band 4 to band 5
and band 9 which is known as crosstalk effects [17, 41, 45, 47, 93, 94]. Crosstalk
correction was applied for the removal of effects from the dataset and to enhances
the spectral signatures of the minerals/rocks. A semi-empirical atmospheric correc-
tion, QUick Atmospheric Correction (QUAC), was applied to retrieve the surface
reflection from the sensor radiance [95–100].

The ASTER TIR datasets were converted into the calibrated radiance from the
digital number using Eq. (1) [46, 55, 58, 101, 102].

Li
sen ¼ cof i ∗ DNi � 1

� �

(1)

where:

cof10 cof11 cof12 cof13 cof14

0.006882 0.006780 0.006590 0.005693 0.005224

Figure 2.
Overall methodology for the derivation of the lithological map.
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4.2.2 Image processing

Band Ratio (BR) is a method in which one band is divided by another band
(Eq. (2)) to get the better delineation of the rocks/minerals instead of using a single
band and combined with enhancement of spectral properties.

BR ¼ B1=B2 (2)

where: BR = Output Band Ratio image; B1 and B2 = Brightness value of selected
bands.

Relative Band Depth (RBD) is another technique for mineral mapping in which
the position and depth of the mineral spectrum were considered for calculation
[103]. The RBD governs better discrimination of minerals than BR because it con-
siders the characteristic absorption features and normalizes the effects generated
due to topography and albedo [32, 37, 104]. The bands acquired the shoulder
position on absorption spectrum are summed up as (S1 and S2) and divided by the
band having minimal absorption value (T; Eq. (3); Figure 3).

RBD ¼ S1þ S2ð Þ=T (3)

Mineral Indices (MI) is also a mathematical expression derived for mapping of
the minerals by using the band math operators with different logics in the TIR
wavelength region. The TIR part of the EM spectrum is utilized for the mapping of
the feldspars, silicates, carbonates, and ultramafic minerals.

BR and RBD were applied on the atmospherically corrected SWIR datasets and
MI was applied on the calibrated radiance TIR datasets (Table 3). Al-OH consisting
of minerals like mica and clay minerals were delineated with the help of different
BRs and RBD6 (Table 3). Spectral absorption minima were recorded at band 6 of
ASTER at 2.205 μmwhich highly suitable for the mapping of clay and mica minerals
[12, 34, 37, 42, 105]. Similarly, Mg-OH and CO3

�2 containing minerals showed the
absorption minima at band 8 of ASTER at 2.336 μmwhich was used in the RBD8 for
mapping of carbonates and ultramafics [34, 37, 106, 107]. The SiO2 containing
minerals/rocks showed the emissivity minima at the band 12 of ASTER at 9.075 μm
due to vibrational energy along the Si-O bond. The CO3

�2 bearing minerals showed
the emissivity minima at 11.318 μm which is represented by the band 14. The Mg-
OH bearing minerals of ultramafics recorded the emissivity minima at band 13 at
10.657 μm.

Figure 3.
Artistic sketch for interpretation of the RBD for any mineral.
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Principal Component Analysis (PCA) is widely used for the identification and
delineation of the litho-units and hydrothermal alteration minerals using the spec-
tral bands generated from different sensors [9, 17, 28, 45, 48, 108]. The PCA uses
the statistical mechanism for the transformation of the variables into several linear
variables which are not having a correlation with each other, known as Principal
Components (PCs). It is implemented on the symmetric matrix which is based on
the either correlation matrix or covariance matrix (Eq. (4)). The PCs have the
information related to the specific mineral which can be retrieved with the help of
loadings of eigenvector (Eq. (5)). The strong eigenvector loadings of the PCs were
utilized for the demarcation of the various mineral/groups through its PC indicative
bands (Eq. (6)) which showed bright and dark pixels for the specific minerals in the
PC image [108]. The present work uses the Feature-Oriented Principal Component
Selection (FPCS) on the integrated data derived from BR, RBD, and MI from the
ASTER SWIR and TIR data for mapping of the lithological units present in the
region. The FPCS was used to achieve the desired goal by the combination of SWIR
and TIR-derived outcomes. The phyllite and mica-schist can be marked with the
help of BRs and RBD6, carbonates and ultramafics gave a similar tone by the use of
RBD8 of SWIR region while MI has the capabilities to distinguish these two min-
erals/groups. Quartzites were not mapped in the SWIR EM region due to lack of the
characteristic absorption band while TIR EM regions have these capabilities. Min-
eral/rock identification was not possible through the single kind of dataset like only
by SWIR only by TIR so, integrated approach was required to delineate all litholog-
ical units existed in the study area. Therefore, FPCS was implemented on the basis
of covariance matrix of the integrated outcomes of ASTER SWIR and TIR. The
derived eigenvector matrix is tabulated in Table 4.

cov X,Yð Þ ¼
1

n� 1

X

n

i¼1

Xi� xð Þ Yi� yð Þ (4)

S. no. Mineral

composition

Indicator minerals Formula Absorption band:

wavelength (μm)

References

SWIR bands Band Ratio (BR)

1. Al-OH Sericite, smectite,

muscovite, and illite

B7/B6 6: 2.205 [106]

2. B4/B6 [8]

3. Alunite and kaolinite B7/B5 5: 2.167 [106]

Relative Band Depth (RBD)

4. Al-OH (RBD6) Sericite, smectite,

and illite

(B5 + B8) /B6 6: 2.205 [12, 42]

5. Mg-OH and

CO3
�2 (RBD8)

Carbonates and

ultramafics

(B6 + B9) /B8 8: 2.336 [37, 106]

TIR bands Mineral Indices (MI)

6. Mg-OH Ultramafics (B12/B13) �

(B14/B13)

13: 10.657 [23]

7. SiO2 Silica-rich (B11/

(B10 + B12)) �

(B13/B12)

12: 9.075 [56]

8. CO3�2 Carbonates B13/B14 14: 11.318 [54, 101]

Table 3.
BR, RBD, and MI used for the derivation of the mineral maps from ASTER SWIR and TIR bands.
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Eigenvectors MI CO3
�2 MI SiO2 MI Mg-OH BR 7/5 RBD6 RBD8 BR 4/6 BR 7/6

Band 1 0.006692 �0.02224 0.056749 �0.18058 �0.50483 0.772556 �0.11678 �0.31352

Band 2 �0.02898 �0.01231 �0.04299 �0.08242 �0.4053 �0.48972 �0.72584 �0.24381

Band 3 �0.69819 �0.33987 �0.62711 �0.0019 0.001132 0.049081 0.036474 0.002323

Band 4 �0.006 �0.01368 0.020563 �0.26053 �0.48361 �0.39945 0.669243 �0.30025

Band 5 0.015369 0.017849 �0.02398 0.807885 �0.49943 �0.00099 0.088098 0.298333

Band 6 �0.0354 �0.00343 0.042673 �0.48543 �0.31084 0.003489 �0.04809 0.813837

Band 7 0.216406 0.736543 �0.6363 �0.05878 �0.02868 0.036048 0.014719 0.000581

Band 8 0.680651 �0.58381 �0.44041 �0.03078 �0.01117 0.007118 0.004385 0.027843

Table 4.
Eigenvector matrix generated from the integrated derived mineral maps for FPCS.
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Av
!
¼ λv

!
or v

!
A� λIð Þ ¼ 0 (5)

y ¼ W 0 � x (6)

where:
cov(X, Y) = Covariance matrix; X and Y = Variables;

Av
!
= eigenvector of matrix A; λ = eigenvalue (scaler value); I = Identity matrix.

y = Final outcome; W0 = transpose of scaler data; x = Feature vector.

5. Results

5.1 Band ratios (BRs) and relative band depths (RBDs)

5.1.1 Distribution of Al-OH consisting minerals

Clay (kaolinite, illite, montmorillonite) and mica (sericite and muscovite) min-
erals consist of the Al-OH in their chemical composition. These minerals especially
illite, montmorillonite, muscovite, and sericite exhibited characteristic spectral
absorption features at a wavelength of 2.205 μm which is detectable with band 6
(2.185–2.225 μm) of the ASTER sensor. Kaolinite mineral also showed minor
absorption at 2.165 μm for that band 5 (2.145–2.185 μm). The Al-OH consisting of
minerals were mapped in the quartzites south of Rakhabdev and near the granitic
outcrop of Kherwara inlier [89]. Phyllite and mica-schist also depicted higher values
for Al-OH containing minerals by using BR 7/6 (Figure 4A). The granitoids of the
basement, granites, and quartzites have high values for Al-OH by using BR 4/6
(Figure 4B). On applying BR 7/5, almost the entire region depicted higher values
for kaolinite (Al-OH) which is indicative of a poor interpretation (Figure 4C). The
RBD (5 + 8)/6 gave a similar kind of result like BR 7/6. It depicted higher values of
the Al-OH consisting of rocks/minerals for the quartzites, phyllites, mica-schists,
conglomerate, and arkose litho-units (Figure 4D). Ultramafics and carbonates
(dolomite) have very low values from BRs 7/6, 4/5, and RBD6 due to the absence of
Al-OH minerals.

5.1.2 Distribution of Mg-OH and CO3�2 consisting minerals

Ultramafics are having the Mg-OH while dolomites are having both Mg-OH and
CO3�2 constituents in their composition. These minerals have the characteristic
absorption feature at 2.33 μm, which occurs at band 8 (2.295–2.365 μm). The RBD
(6 + 9)/8 was applied for mapping of the Mg-OH and CO3�2 consisting of minerals.
Ultramafics depicted extremely high values while dolomites have moderate values
(Figure 5A). The regions of Zawarmala and Hati Magra are dominated by dolomite
exposures but a poor carbonate map as an outcome may be due to the presence of
extreme vegetation on the hills.

A lithological map has also been prepared from RBD6, RBD8, and BR4/6 in RGB
channels respectively (Figure 5B). Basement rocks are depicted as pinkish-blue,
phyllite, and mica-schist as reddish color. Dolomite is depicted as dark green while
ultramafics are as green color. Quartzites are light pink in color. The resultant map
discriminates the various lithologies present in the area and is comparable with the
published geological maps.
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5.2 Mineral indices (MI)

5.2.1 Distribution of mafics/ultramafics

The ultramafic map was developed using the mafic index defined by Guha &
Vinod Kumar [23]. The derived map of the mafic index mapped the outcrops of the
ultramafics with very higher values near the Rakhabdev region and along other thin

Figure 4.
Results from the SWIR data for Al-OH bearing minerals using the techniques of BRs and RBDs. (A) BR 7/6 for
mica and clay minerals. (B) BR 4/6 for clay minerals. (C) BR 7/5 for kaolinite. (D) RBD6 (5 + 8)/6 for clay
and mica minerals.
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belts of the ultramafic outcrops south of Rakhabdev and on the west of Kherwara
(Figure 6A). The dolomites were suppressed and showed their uniqueness to
distinguish by ultramafics.

5.2.2 Distribution of SiO2 consisting minerals

Silica-rich rocks were marked by using the silica index of Rockwell & Hofstra
[56] (Figure 6B). Quartzites present on the outer periphery of basement rocks
were precisely demarcated through the silica index. Silica index also mapped the
quartzites present adjacent to the dolomites in the Zawar region. The derived
mineral map showed very low values for the ultramafics and dolomites.

5.2.3 Distribution of CO3�2 consisting minerals

Ninomiya et al. [54] defined the mathematical expression for the mapping of
carbonate rocks and the derived mineral map showed dense noise, consequently,
identification of the carbonate outcrops was not precisely obtained (Figure 6C).
The presence of stripping noise and poor signal at band 14 hinders the demarcation
of carbonate outcrops [20, 109, 110]. The ultramafics and quartzitic outcrops were
depicting very low values in the carbonate map.

A lithological map was prepared using the silica, mafic, and carbonate indices
in RGB channels respectively (Figure 6D). Dolomites of the region were marked
by bluish-green color but the majority of the region was marked as bluish-green
color which is a poor identification for dolomites, quartzites are depicting the
maroon color and ultramafics as bright green color. The yellow color at the
tips of ultramafics and within the massive outcrops of ultramafics are identified
as talc.

Figure 5.
Results from the SWIR data. (A) RBD8 (6 + 9)/8 for the mapping of ultramafics and carbonates.
(B) Lithological map using the RBD6, RBD8, and BR4/6 in the RGB channels.
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5.3 Feature-oriented principal component selection (FPCS)

The FPCS technique was implemented to the integrated derived outcomes from
BRs, RBDs, and MIs of the ASTER SWIR and TIR bands for discrimination of the
different litho-units present in the study area. The generated eigenvector matrix
from the FPCS from the integrated derived mineral maps is shown in Table 4. The
PC1 shows the extreme values for the ultramafics and moderate values for the
dolomites. Quartzites showed very low values and represented dark pixels
(Figure 7). The PC1 shows the combined outcome from the RBD8 and MI Mg-OH
because RBD8 highlighted ultramafics and dolomites of the region while MI Mg-OH
mapped the ultramafics and suppressed the quartzites of the region. The PC2
showed extremely high values for phyllite and mica-schists and dark pixels for the
quartzites of the region. The ultramafics & dolomites of the region are depicting the
low values (Figure 7). The PC2 showed the combination of BR 4/6, BR 7/5, and
RBD6 in which BR 4/6 highlighted the silica-rich rocks. The Al-OH consisting
minerals are suppressed in the PC2 while RBD6 highlighted the phyllite and mica-

Figure 6.
Results derived from the TIR data. (A) Ultramafic map derived using the Guha and Vinod Kumar index [23].
(B) Silica-rich rocks were demarcated by using the Rockwell and Hofstra index [56]. (C) Carbonate map
derived using Ninomiya et al. index [54]. (D) Lithological map prepared using the silica-rich, ultramafics, and
carbonate maps in RGB channels.
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schists as Al-OH consisting rocks and BR 7/5 also highlighted the Al-OH consisting
minerals. The PC3 depicted very high values for quartzites i.e. silica-rich rocks as by
MI SiO2 but on the south of Rakhabdev the distribution of silica-rich rocks is not
showing the vague distribution like MI SiO2, and a clear delineation of quartzites are
obtained (Figure 7). The PC4 depicted a similar kind of pattern as BR 4/6 but the
extremity of the pixel values gets lower down and appearance gets noisy (Figure 7).
The PC6 depicted higher values for the ultramafics and silica enriched rocks of the
granitoids & migmatites from the basement, quartzites, and phyllite, and mica-
schist while carbonates are depicted moderate values (Figure 7). The PC6 is helpful
for the delineation of the litho-units of the region but the band showed an

Figure 7.
FPCS components generated using the PCA technique on integrated BRs, RBDs, and MIs from the SWIR and
TIR bands.
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association of the moderate amount of noise. The PC5, PC7, and PC8 are not useful
for the discrimination of the geological units due to the presence of a high amount
of noise with them (Figure 7).

FCC was been prepared using the combinations of bands PC1, PC3, and PC6
respectively for delineation of different litho-units (Figure 8). Granitoids and
migmatites appeared as greenish-blue colors while quartzites as light green with a
mixture of cyan color. Phyllite and mica-schist appeared as dark blue to greenish-
brown color. Conglomerate and meta-arkose gave shades of green color. Dolomites
appeared as purplish colors and ultramafics as pinkish colors. Light yellow color
on the tips of ultramafics and within the ultramafics which showed the presence
of talc.

Figure 8.
Lithological map of the study area prepared by the combination of FPCS1, FPCS3, and FPCS6 in the RGB
channels respectively.
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5.4 Verification of the derived lithological map

To verify the different litho-units of the region various field reconnaissance was
conducted and for the estimation of the overall accuracy of the generated litholog-
ical map, GPS surveys were carried out. Various traverses were conducted along the
major litho-units of the region and some traverses were conducted for the verifica-
tion of changes observed in the generated lithological map. Field photographs and
rock samples were collected for the determination of accurate locations and associ-
ated lithology/ies if present at the contact zone. Pink colored granites from the
Kherwara Inlier were observed (Figure 9A) and deformed quartzites were present
with the contact of it (Figure 9B). Serpentinites of the Rakhabdev showed the
variation all along the belt-like massive to fibrous nature and open mining pits of
the serpentinites in the massive variants (Figure 9C, D, G and I). In the field,
outcrops of the different dolomites were observed (Figure 9E) associated with the
quartzites, metagraywacke, phyllite, and mica-schist (Figure 9F). Contact between
the phyllite & mica-schist and quartzites was also observed (Figure 9H). Talc was
also observed in the field and it is mainly in the region of deformation (Figure 9G).
The isolated patch of the serpentinite near the Parbeela region shows the contact
with the granites of Kherwara Inlier. Furthermore, the accuracy assessment was
carried out between the generated lithological map and field-collected information

Figure 9.
Field validation of the different litho-units. (A) Granites from the Kherwara inlier. (B) Mullions of quartzites
from Kherwara inlier. (C) Talc mineralization along the serpentinites from southeast of Rakhabdev. (D)
Massive serpentinites from Rakhabdev. (E) Dolomites from the northeast of Rakhabdev. (F) Massive quartzites
from the east of Rakhabdev. (G) Mining activities for talc from the hinges of serpentinites outcrops from south of
Rakhabdev. (H) Contact between the quartzites and phyllites from north of Rakhabdev. (I) Serpetninites and
its alteration products from south of Rakhabdev.
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using the GPS (Table 5). The derived confusion matrix shows the overall accuracy
and kappa coefficient as 85.25% and 0.8164 respectively for the lithological map.

6. Discussions

The study area belongs to the Aravalli Orogeny and several deformational histo-
ries were recorded [72–75, 77, 81, 84–86, 89, 111–113]. The remote sensing tech-
nique is widely used for mineral mapping and lithological mapping around the
study area [9, 58, 102, 114]. In the present research, different BR, RBD, & MI and
their combinations were generated using the ASTER SWIR and TIR bands for the
demarcation of the different litho-units present in the region. The BRs and RBDs
were used to derive the Al-OH and Mg-OH & CO3�2 consisting minerals [8, 12,
35, 37, 42, 106] like phyllite & mica-schist, carbonates, and ultramafics. And their
FCC combinations helped to delineate granitoids, granites, phyllite, mica-schist,
quartzites, dolomite, and ultramafics (Figure 5B). The MIs were used to derive
SiO2, Mg-OH, and CO3�2 mineral maps of the region [23, 54–56, 58, 101], and
quartzites, ultramafics, and carbonates were delineated. The FCC also helped a lot
to determine the lithologies of the region but were limited to the quartzites,
ultramafics, and carbonates (Figure 6D).

FPCS technique was utilized for the delineation of litho-units present in the
region on the basis of the combined results derived from the BRs, RBDs, and MIs
from the ASTER SWIR and TIR bands. The PC1, PC3, and PC6 have capabilities to
discriminate the ultramafics, carbonates, quartzites, phyllite, mica-schist, and
granitoids. The prepared FCC using the combinations of these PCs demarcated the
granitoids, granites, phyllite, mica-schist, quartzites, conglomerate, meta-arkose,
dolomites, ultramafics (Figure 8). The integrated approach from the ASTER SWIR
and TIR proved its potentials for lithological mapping. The generated confusion
matrix showed the overall accuracy as 85.25% and kappa coefficient as 0.8164 in
which maximum producer’s accuracy (%) was attained by dolomite while user’s
accuracy (%) by granite. Field validation was performed on the generated litholog-
ical map by observing the various litho-units present on the surficial exposures and
gathered the location information by the use of a GPS survey. Association of
quartzites with dolomites and serpentinites with dolomites was observed in the

Class Dolomite Serpentinite Quartzite Talc Phyllite Granite User’s

Accuracy

Dolomite 34 1 0 2 0 1 89.47%

Serpentinite 2 16 0 1 0 0 84.21%

Quartzite 0 1 10 0 2 0 76.92%

Talc 2 1 0 14 1 0 77.78%

Phyllite 1 0 2 0 17 1 80.95%

Granite 0 0 0 0 0 13 100.00%

Producer’s Accuracy 87.18% 84.21% 83.33% 82.35% 85.00% 86.67%

Overall Accuracy 85.25%

Kappa Coefficient 0.8164

Table 5.
Accuracy assessment of the derived lithological map using the GPS survey collected localities.
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field. Talc is found with the serpentinites and was produced due to the process of
serpentinization and mainly formed at the deformational zones [115].

7. Conclusions

1.Lithological and mineral mapping of the region can be done with the help of
various BR, RBD, & MI and by the combinations of these but discrimination
between every single litho-unit is not possible with it.

2.The data integration (combination of derived mineral maps from ASTER
SWIR and TIR bands) approach played an important role to obtain the desired
research goal.

3.PCA is a statistical technique that is utilized for the demarcation of the various
litho-units using the original bands but, in this research, FPCS was utilized on
the integrated data which shows its capabilities towards discrimination of
every single litho-unit.

4.PC1, PC3, and PC6 from the FPCS were utilized for the discrimination of
various litho-units in which talc is also identified within ultramafics which is
an alteration product of serpentinization.

5.The overall accuracy and kappa coefficient of the generated lithological map
are 85.25% and 0.8164 respectively and calculated with the help of GPS
surveys.
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