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Abstract

Vanadium (V), a widely distributed transition metal, has been considered toxic, 
which depends on the valence of the compound. V pentoxide (V2O5) is considered 
the most harmful. Its long-term exposure produces neurotoxicity. Mice exposed to 
inhaled V2O5 displayed less tubulin+ in testicular cells and dendritic spines loss, cell 
death, and CA1 neuropil modifications, considered as the result of V interaction 
with the cytoskeleton, which made us suppose that V2O5 inhalation could initiate 
CA1 cell alterations comparable to what happen in the brains of Alzheimer disease 
(AD) patients. This study intends to demonstrate pyramidal CA1 cytoskeletal 
changes in rats which inhaled V2O5. Twenty rats were exposed to V2O5 0.02 M 
one hour, three times a week for several months. Our findings showed that V2O5-
exposed rats had cell death that reached 56,57% after six months; we also observed 
collapsed strong argyrophilic nuclei and characteristic flame-shaped somas in all 
V2O5-exposed animals hippocampus CA1 compared to controls. We also found 
somatodendritic deformations. Neurite’s cytoskeleton exhibited visible thickening 
and nodosities and prominent dendritic spine loss. Our results demonstrate that 
V2O5 induces AD-like cell death with evident cytoskeletal and synaptic alterations.

Keywords: Vanadium pentoxide, Cell death, Bielschowsky silver stain, inhalation, 
dendritic spines, hippocampus

1. Introduction

Vanadium (V) is a transition metal abundant in nature; its atomic number is 
23. Andres Manuel Del Rio was the first who reported it in 1801. But it was actually 
discovered in 1830 by a Swedish chemist named Nils Sefstrom [1]. V is a bright 
silver-white, soft and malleable metal and the 22nd most abundant element in the 
earth’s crust, and it has become a matter of concern among nutritionists since vari-
ous marine species contain this metal as an trace element [2]. Environmental air V 
acts as the primary source for the general population [3].
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Although V is extensively dispersed in air, its role as human nutrient is not 
yet confirmed. Humans are exposed to V generally through the polluted atmo-
sphere from combustion products of vanadium-bearing fuel oils, fumes, and 
dust. Food contains insignificant V concentrations, frequently below 1 ng/g. 
V enters the organism by inhalation, skin, and gastrointestinal tract and accu-
mulates mainly in the kidney, liver, bones, spleen, lungs and brain, accumulate 
fewer V concentrations [3–5].

Neurotoxic effects of V are not well recognized yet. Still, it is known that acute 
exposure in animals by ingestion or inhalation leads to nervous system alterations, 
paralysis of legs, respiratory failure, convulsions, bloody diarrhea, and death [6]. V 
disrupts the blood–brain barrier [7] and alters some neurotransmitters concentra-
tions such as serotonin, norepinephrine, and dopamine, and an inhibitory effect on 
the uptake and release of norepinephrine were observed in the rat brain during V 
poisoning [8–10].

The V oxidation states of biological importance are vanadate (V5+) and vana-
dyl (V4+) and are considered harmful to mammals depending on their levels. 
Workers occupationally exposed to vanadium pentoxide (V2O5) had presented 
cardiovascular alterations and a variety of symptoms involving the central nervous 
system (CNS), gastrointestinal and respiratory systems [11]. Moreover, it has been 
suggested that raised tissue levels of V may be of etiological importance in manic-
depressive syndrome since V reduces serotonin concentration. Blood V levels in 
depressed patients were greater than non-V-exposed controls [11]. Besides, reduced 
cognitive abilities in humans chronically exposed to this metal were found [12].

2. Vanadium sources

Metallic V is not found in nature. The most common in mining is carnotite and 
vanadinite. V is also found in phosphate rock, iron ores, and some crude oils in 
organic complexes and in small percentages of meteorites [3]. The presence of V is 
related to other minerals; among them is iron, aluminum, uranium, and titanium, 
and is frequently used as alloy steel, in combination with nickel, boron, or manga-
nese. Extraction of V from coal or fossil fuels, such as Vanadium-rich coal tars and 
oil, explains the high V concentrations registered in the atmosphere [11].

V is generally employed in metallurgy in alloy with steel. And, as nonferrous 
metal V is considered fundamental for aircraft’s manufacture, atomic and space 
industries. In the chemical industry, V2O5 and metavanadates are remarkably 
important for plastics and sulfuric acid production. Emissions of V may be high 
near producing steel alloys industries. V is also released into the air: during the re-
smelting of scrap steel and the transformation of titaniferous and vanadic magne-
tite iron ores into steel; from the roasting of V slags; from V2O5 smelting furnaces; 
and from electric furnaces in which ferrovanadium is smelted [11, 13].

2.1 Vanadium in the environment

As a profuse element in the earth’s crust, the V average varies from 159 g/t to 
0.14 mg kg. The standard concentration of 135 mg/kg in soil positions V in 5th 
place, among all transitional metals [11, 13]. V recycling includes its release from 
anthropogenic and natural bases to the water, soil, and air [13–15]. Frequently, the 
places such as fuel plants and refineries showed the highest level of V [16, 17].

V geochemical characteristics depend on the oxidation state and pH. The 
moderately immobile V (III) prevails. Typically, V compounds with high oxida-
tion states are more soluble [14]. The average concentration of V in different soils 
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fluctuates from 10 to 220 mg kg dry mass depending on the soil types and chemical 
characteristics [18, 19]. The soils directly under humans’ use include a much higher 
V concentration [17, 18]. On the other hand, what most pollutes the soil and water 
is the mining V-derived [20]. Vanadium is the most profuse transition metal in the 
aqua sphere, with an average content similar to zinc [21]. Persian Gulf sediments 
have very high V concentrations [22].

It seems that over the last decades, V levels in the biosphere have been signifi-
cantly growing, a fact that will be of concern in the future [23]. The primary sources 
are mining, fossil fuel combustion, atmospheric wet and dry accumulation, etc. 
[24]. V remains in the water, soil, and air for long periods and may react with other 
elements [2, 21]. Recently, it has been shown that atmosphere V levels are increasing 
every day, mainly due to fossil fuel burning [11, 14, 18]. For that reason, more than 
60 thousand tons of V may be released into the big cities air [14, 25].

Apparently, V concentrations in ambient air fluctuate significantly; in rural 
areas, V levels are under 0.001 μg /m3, however, in areas where there is a high degree 
of fossil fuel burning, as in large cities, the average annual concentration goes from 
0.02 μg/m3 to 0.3 μg/m3. It has been determined that near industrial zones, its level 
can reach 1 μg/m3 [26]. Fortoul et al. [26] reported that V has increased over time in 
lung parenchyma from Mexico City inhabitants since it has been demonstrated that 
Mexican petroleum has high V concentrations.

V concentration in plants and food is very low, from less than 0.001 to 0.005 mg 
[14]. Some foods, including oysters, parsley, and spinach, had a relatively higher 
amount of V than all other foods [27].

V occupational exposure. V levels near metallurgical industries usually average 
about 1 mg V/m3, whereas ambient air near industries, which produce V metal or 
compounds, contain a few mg V/m3 [11]. Very high levels of V result from boiler-
cleaning procedures due to the high concentration (approximately 10–25%) of V 
oxides in the dust. During these procedures, 50–100 mg V/m3 are frequent, with 
concentrations ranging from 500 mg V/m3 [3].

The most critical V compounds are ferrovanadium, V2O5, vanadium trioxide, 
V carbide, and salts, such as ammonium and sodium vanadate. The salts and 
oxides are used in powder form. It has been reported that the metallurgical indus-
try includes the production of vapor containing V2O5, which condenses to form 
breathable aerosols. Also, residual fuels combustion with high V content have V2O5 
aerosols [11].

2.2 Vanadium absorption, distribution and excretion

It appears that only 10% of ingested V is absorbed from the gastrointestinal tract 
[28]. This report suggests that most of the ingested V is transformed into the cat-
ionic vanadyl form in the stomach before being absorbed in the duodenum through 
an unknown mechanism [29]. In its anionic vanadate form, V is absorbed in much 
higher quantities (about five times more than vanadyl form) through an anionic 
transport system [29]. Multivalent existence of V in nature and living systems put 
forth the chemical complexity of this element. This multifaceted chemical char-
acter of V, in turn, echoes in its biological and biochemical properties, especially 
in metabolism and absorption. Again vanadate, after reaching the bloodstream, is 
converted into vanadyl ion, although the vanadate form also exists. Thus, vanadate 
(by transferrin) and vanadyl (by albumin and transferrin) are rapidly transported 
by blood proteins to various tissues [30]. Blood parameters showed little or no 
reflection of toxicity after a long-term supplementation of V compounds [31], 
which might be due to the transport of V from blood to the tissues. Upon supple-
mentation, V is incorporated in various organs and tissues, including the liver, 
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kidney, brain, heart, muscles, and bone. The kidney, spleen, bone, and liver tissues 
of rats have been shown to accumulate distinctly high amounts of V in chronically 
treated animals through oral administration [32].

The effects of V persist even after it has been withdrawn for several days 
[33]. Unabsorbed V is excreted in feces. When V was administrated through the 
parenteral route, 10% of the V was found in the feces of humans and rats [3]. V 
is excreted through bile and urine [34]. It is, thus, the bile route through which a 
significant amount of V may be eliminated through feces. Moreover, it may be sug-
gested that V content in feces does not reflect V absorbed or unabsorbed (1).

The toxicity of V depends on various factors, including the administration route 
and the V compound toxicity. In general, the toxicity of V is low, and its toxicity is 
least following ingestion and greatest following parenteral administration. Inhalation 
is a route of exposure that produces intermediate toxicity [3, 11]. The toxicity of V 
increases with higher valences, and the pentavalent compounds (as V pentoxide) are 
usually the most toxic [3].

2.3 Vanadium effects in the nervous system

V crosses the blood–brain barrier [7], and its compounds can induce neurologic 
alterations through different routes of administration [3, 11]. It has been reported 
that V-exposed lactating rat pups developed neurological deficits [35]; other authors 
described neurological alterations and increased brain V concentration after sodium 
metavanadate intraperitoneal administration [36–38]. Also, our group [7, 8] reported 
neuroinflammation in the brain of mice that inhale V2O5. We found a seven-fold 
peak increase in V brain concentration after one week of inhalation and remained 
constant (0.10–0.12 mg/g dry weight tissue) during eight weeks of V2O5 inhalation. 
The inhalation route seems to induce neurotoxicity [6], which is epidemiologically 
relevant since this is the main route to the brain during occupational and environ-
mental exposure.

One of the first studies on the V neurological effects was made by Done [39], 
who found that humans exposed to V displayed tremor and depression. Other 
researchers demonstrated that occupationally exposed people present alterations in 
cognitive ability tasks [40]. Despite the route, duration, and compound, V exposure 
has affected nerve cells and glia. In a study of chronic intraperitoneal exposure 
at 3 mg/kg in mice, Folarin et al. [36] reported that the brain accumulates large 
amounts of V, mainly in the brain stem, cerebellum, and olfactory bulb. This study 
described disruption of the layering pattern in the prefrontal cortex with nuclear 
pyknosis, loss of pyramidal neurons and reduced apical dendrites in the hippocam-
pal CA1, and loss of cerebellar Purkinje cells. These morphological alterations were 
accompanied by astrogliosis and microgliosis.

Demyelination has also been reported after drinking milk from mothers 
exposed to sodium metavanadate [41]. Our group also described that in male CD-1 
mice exposed by inhalation to 0.02 M V2O5 2 h twice a week for four weeks, Golgi 
staining revealed a severe loss in dendritic spines in the striatum compared to the 
controls, showing that the inhalation of V2O5 causes severe neuronal damage in this 
nucleus [8]. We observed fewer dendritic spines in the olfactory bulb granule cells 
after three months of exposure using the same inhalation protocol, and electron 
microcopy alterations consisted in swelled mitochondria and endoplasmic reticu-
lum, and neuronal death that can be correlated with the olfactory dysfunction 
[42]. In the hippocampus, we found a decrease in dendritic spines and necrosis of 
the pyramidal CA1 neurons, modifications that could be associated with spatial 
memory impairment [43].
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2.4 Mechanisms of vanadium neurotoxicity

It has been reported that V induces reactive oxygen species (ROS) production, 
which several authors have proposed as a reasonable basis for its neurotoxicity  
[6, 44, 45]. V, as other catalytic transition metals, participate in the Fenton reac-
tion [46]. V in body fluids exists mainly in the 5+ oxidation state as V pentoxide 
(V2O5) [47]. V enters the cell as vanadate via anion channels while as vanadyl ions 
by passive diffusion and endocytosis bound to transferrin [48]. When entering the 
cell, vanadate is reduced by intracellular antioxidants to vanadyl, with subsequent 
production of ROS [49]. H2O2 then oxidizes vanadyl into vanadate in a Fenton-like 
reaction with the consequent hydroxyl radical production [50]. With higher V lev-
els, these reactions result in oxidative stress and toxic effects on lipids, proteins, and 
nucleic acids. With its high lipid content, the brain is vulnerable to oxidant-induced 
lipid peroxidation [51], and as such, V neurotoxicity is related to myelin deficits 
[45]. Moreover, as we mentioned above, earlier results from our group revealed 
substantia nigra tyrosine hydroxylase cell loss, and therefore, dendritic spine loss 
in the striatum medium-size spiny neurons [8], blood–brain barrier disruption [7], 
and hippocampal cells alterations [43].

Besides oxidative stress, it has been demonstrated that the cytoskeleton is an 
important target of V toxicity because of its ability to compete with phosphatases; 
due to this, V inhibits actin polymerization through the tyrosine phosphatases 
inhibition [52, 53], which, in consequence, by decreasing gamma-tubulin disturbs 
microtubules function and formation [54]. It is also well known that actin polym-
erization establishes the morphology of dendrites and dendritic spines [55]. These 
facts make us consider the possibility that V2O5 inhalation might induce hippocam-
pus cell death similar to that seen in Alzheimer disease (AD).

2.5 Alzheimer disease

Today, aging human populations worldwide face an epidemic of AD, with an 
increasing number of cases to nearly 106 million by 2050 [56]. Several factors have 
been described to participate in the AD etiology including, aging, genetics [57], 
head injury [58], and exposure to certain chemicals and compounds [59].

AD is a neurodegenerative disease that represents the most common cause of 
dementia. Symptoms associated with dementia vary from difficulties with orienta-
tion, language, and problem-solving to memory alterations and other cognitive skill 
deficits that affect a person’s ability to perform daily life activities [60]. The most 
noticeable symptoms at the beginning of the disease are disorientation and episodic 
and spatial memory loss [61]. The medial temporal lobe region, consisting of the 
hippocampal formation and related cortices, are essential for the adequate func-
tioning of spatial and declarative memory systems [62, 63] and are the first areas 
affected in the progression of the disease [64].

Synaptic failure has been suggested as the leading cause of AD pathology [65]. 
The principal neuropathological hallmarks of the disease are the neurofibrillary 
tangles (NFTs) associated with abnormal phosphorylated tau protein and the accu-
mulation of aberrant amyloid-β, features also found in the brains of old patients 
without cognitive impairments or AD [66]. Nonetheless, directly or indirectly, 
these proteins induce synapsis alterations by changing dendritic spines morphology 
or causing their loss and neuronal degeneration [67, 68].

The development of intraneuronal lesions at selectively vulnerable brain struc-
tures is central to the pathological process in AD [69–71]. The lesions consist mainly 
of hyperphosphorylated tau protein. They include tangle material, NFTs in cell 
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bodies, neuropil threads (NTs) in neuronal processes, and material in dystrophic 
nerve cell processes of neuritic plaques (NPs) [72–74].

2.6 Alzheimer’s disease experimental models

Experimental models are crucial in understanding AD pathogenesis for 
implementing novel therapeutics. So far, AD experimental models consist almost 
exclusively of transgenic mammals that express the human genes that result in 
the formation of amyloid plaques (by expression of human APP alone or in com-
bination with human PSEN1) and NFTs (by the expression of human MAPT) 
[75–78]. Other experimental models have used invertebrates such as C. elegans 
and Drosophila melanogaster and vertebrates such as zebrafish; nevertheless, these 
models are very different from human physiology and less extensively used [79]. 
Nevertheless, some issues have been raised about this model’s validity, mainly 
because the efficacy in clinical trials has been very low [80, 81]. Facts that make 
us wonder if the animals in the experimental models actually have AD, consider-
ing only the specific pathological features. Most animal models develop only the 
amyloid accumulation that defines AD. This often gives rise to specific memory-
associated cognitive alterations. However, these models normally preset the absence 
of the main AD pathological features, including cell death and, most importantly, 
NFTs development [79]. The lack of NFTs could partly explain the failure between 
pre-clinical and clinical trials [80].

Therefore, in this chapter, we intend to demonstrate that the inhalation of V2O5 
produces cellular alterations like those observed in AD, with synaptic alterations 
(shown by the loss of dendritic spines) and by the presence of NFTs, due to V 
directly interacts with the cytoskeletal components, and is a potent inhibitor of 
tyrosine phosphatases.

3. Experimental procedures

The experiments were accomplished in 24 male Wistar rats weighing 180–200 g 
at the beginning of the study. The rats were individually placed in plastic cages with 
controlled light conditions (12 h light/12 h dark) and fed with Purina Rat Chow and 
water ad libitum. Body weight was recorded daily. The experimental protocol was 
carried out following the Animal Act of 1986 for Scientific Procedures and the Rules 
for Research in Health Matters (Mexico). We made efforts to minimize the number 
of animals used and their suffering.

3.1 Vanadium pentoxide inhalation

V2O5 inhalations were performed as described by our group [8]. As part of our 
experiment with V, a pilot study was implemented with 0.005 and 0.01 M V2O5, and 
we found no changes using light microscopy in lung tissue; therefore, a higher dose 
was utilized, 0.02 M, realizing that V half-life about 48 h [11] we designed a three 
times a week exposure protocol.

Twelve rats were placed in an acrylic chamber inhaling 0.02 M V2O5 (Sigma, St. 
Louis, MO, USA) (Sigma Aldrich, Co. Mexico) 1 h three times a week for two and 
six months. Twelve control rats inhaled only the vehicle—deionized water—for 
the same time. Inhalations were performed in closed acrylic boxes (40 cm wide x 
70 cm long and 25 cm high) attached to an ultra-nebulizer (Shinmed, Taiwan), 
with 10 l/min continuous flux. The ultra-nebulizer is designed to produce droplets 
in a 0.5–5 μm range. A trap for the vapor was located on the opposite side with a 
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solution of sodium bicarbonate to precipitate the remaining metal. During the 
inhalation, animals were constantly monitored for respiration rate, depth, and 
regularity. The exposure system was monitored for temperature, oxygen level, and 
V concentration.

After two or six months, rats were sacrificed under sodium pentobarbital anes-
thesia (lethal dose) and perfused via the aorta with a saline solution followed by the 
fixative containing 10% formaldehyde in 0.2 M-phosphate buffer. The brains were 
removed and placed in the fixative solution for one hour.

3.2 Bielschowsky silver impregnation

After the routine paraffin processing, serial coronal brain sections were cut at 
8 μm thickness in a sliding microtome (Leica SM2010 R, Germany). Brain sections 
were deparaffinized in xylene and alcohol before being disposed into 20% silver 
nitrate solution for 20 min at 37°C. After washing with distilled water, slides were 
submerged in 20% silver nitrate solution titrated with fresh sodium hydroxide and 
evaporated ammonia. After 15 min, slides were washed with ammonia before being 
individually revealed with 100 ml of a developer (20 ml of formaldehyde, 100 ml 
distilled water, 20 μl concentrated nitric acid, and 0.5 g citric acid) and then added 
to 50 ml of titrated silver nitrate solution. Slides were then rinsed in tap water, fixed 
in 5% sodium thiosulfate, and dehydrated through alcohols and xylene [82]. The 
hippocampus CA1 pyramidal cells were evaluated under a light Optiphot 2 micro-
scope (Nikon, Japan).

3.3 Golgi stain

Brain tissue from the hippocampus CA1 was cut into 90 mm- thick sections and 
processed for the rapid Golgi method [83]. The histological analysis consisted in 
counting the number of dendritic spines in a 10 mm-long area from five secondary 
dendrites from 20 CA1 pyramidal neurons from each rat [8, 84].

Means from each group were compared for statistical differences by one-way 
ANOVA test (p < 0.05) followed by posthoc comparisons with Tukey test. The 
statistical analyses were conducted with GraphPad Prism 9 for Mac Software.

4. Results

The animals that inhaled V2O5 did not show changes in their weight or clinical 
alterations compared to the control group.

4.1 Dendritic spines

Brain sections were treated with the Golgi stain to determine if V2O5 inhalation 
induces synaptic alterations in the hippocampus CA1. The synaptic damage resulted 
in significant CA1 pyramidal neurons dendritic spine loss of exposed rats compared 
to controls (Figures 1 and 2B, C). As it is shown in Figure 1, spine loss was more 
evident with longer inhalation time.

4.2 Hippocampus CA1 neuronal alterations

With the Bielschowsky method, we found that rats exposed to V2O5 after two 
months have substantial CA1 pyramidal cell death (25%) (Figures 3 and 5), and 
after six months, the cell death reached 56.57%, being statistically different vs. 
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two months and control groups (Figures 3 and 4); we observed that in all V2O5-
exposed rats the pyramidal hippocampus CA1 cells displayed strong argyrophilic 
and collapsed somas compared to control rats, the somas also revealed the typical 
flame-shaped (Figures 4–6). Also, somatodendritic deformations were identified. 
Axons and dendrites exhibited thick dark bands resembling thickening nodosi-
ties and fibrillary cytoskeleton proteins linear traces. The neurofibrils were fused, 
disordered, thickened, and crowded together into broadband, and the neurites were 
deeply stained; we also noticed curly fibers. Some neurites displayed neurofibril-
lary-type tangles (Figure 6).

Figure 1. 
The number of pyramidal CA1 neurons dendritic spines, contrasting control and exposed rats after two and six 
months of V2O5 inhalation. One way ANOVA, *p < 0.05 vs. control group.

Figure 2. 
Dendritic spine density. Representative Golgi-stained pyramidal CA1 neurons of the control group (A), two 
months (B), and six months of V2O5 inhalation (C). Both exposure times provoked a significant decrease in the 
total number of spines, mainly after six months. (magnification 40X).



9

Alzheimer-Like Cell Alterations after Vanadium Pentoxide Inhalation
DOI: http://dx.doi.org/10.5772/intechopen.100468

5. Discussion

Our results show significant alterations in the cytoskeleton and synaptic 
activity, demonstrated by the loss of dendritic spines and Alzheimer-like fibrillary 
tangles.

It is essential to stand out that V concentrations in the environment vary sub-
stantially; in rural areas, V concentrations are below 0.001 μg/m3, in big cities, 
where there are high levels of fossil fuel burning, the average V concentration range 
from 0.02 μg/m3 to 0.3 μg/m3. It has been shown that near industrial zones, its con-
centrations can reach 1 μg/m3. In this experiment, V concentrations in the inhala-
tion chamber was 1436 μg/m3 [54], exceeding the highest concentration reported in 
ambient air (1 μg/m3). In this regard, we know that the concentrations used here are 
higher than those subjects with occupational exposure, but animal models permit 
amplifying the impact that V has on the nervous system.

Our results demonstrated that V2O5 inhalation generates a significant loss of 
pyramidal CA1 neurons dendritic spines and notorious cytoskeleton distortions 
resulting in the alteration of the synaptic transmission and, therefore, possibly in 

Figure 3. 
Damaged pyramidal hippocampus CA1 neurons percentage after two or six months of V2O5 inhalation. 
*P < 0.05 vs. two months group.

Figure 4. 
Representative photomicrographs of Hippocampus CA1 control group stained with the Bielschowsky method. 
As can be seen in B (white oval), the pyramidal neurons of the hippocampus CA1 are healthy, in terms of size 
and shape. Figure C depicts the detail of B white oval. A 10X, B 40X and C 100X.
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memory disturbances. It is well known that many neurological conditions lead to a 
decreased number of dendritic spines [85], for instance, epilepsy, alcoholism, and 
others disorders, imply that the decline in the number and availability of axo-
spinous synapses are the consequence of the dendritic spines loss (85). Previously, 
our group informed significant dendritic spine loss after ozone inhalation in the 

Figure 5. 
Representative photomicrographs of Hippocampus CA1 Bielschowsky staining from the experimental group 
after two months of V2O5 inhalation. Neuronal soma deformation is observed (arrows). The axons displayed 
thicker and darker bands (arrowhead); A (10x), B (40x), and C (100x) 

Figure 6. 
Hippocampus CA1 representative photomicrographs of Bielschowsky staining from the experimental group 
after six months of V2O5 inhalation. It can be observed strong argyrophilic nuclei (white oval in a and B; 
arrows in C) typical flame-shaped and intensely stained neurites (white oval in a, B and C), forming similar 
structures to neurofibrillary tangles (arrowhead); A (10x), B (40x), and C (100x).
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hippocampus, correlated with memory alterations [84], also, dendritic spines loss 
in the corpus striatum and cerebral cortex with motor impairments [86] as well as 
olfactory bulb modifications [87]. Furthermore, we found dendritic spine loss in 
the corpus striatum after V2O5 inhalation [8]. Since V interacts with the cytoskel-
eton, this interaction may be the cause of dendritic spine loss since it seems that 
actin is a critical element for dendritic spine architecture preservation. It orches-
trates the spine’s morphology and number [88]. In this context, Pelucchi and cols. 
[88] mention that Rho activation is essential for the dendritic spine functionality, 
cofilin phosphorylation, and, consequently, spine actin stabilization. According to 
Wang et al. [89], cofilin phosphorylation prevents binding to the F- and G-actin 
binding, and only a dephosphorylated cofilin can initiate the actin-binding. 
Consequently, their activity is synchronized by phosphorylation/dephosphoryla-
tion. It is important to mention again that V is practically a structural and electronic 
phosphate analog and a phosphatase inhibitor [90]. In humans, the resemblance 
between phosphate and V explains V and phosphate-dependent enzymes interplay. 
Therefore, V may achieve a regulatory function in phosphate-depending metabolic 
processes [90].

It is well known that V neurotoxic properties have been predominantly 
attributed to its capacity to induce oxidative stress by the generation of ROS, 
which in turn initiates the peroxidative decomposition of the cellular membranes 

Figure 7. 
When vanadium enters the body, it enters as a tetravalent ((vanadyl) or as a pentavalent (V5+) [3]; then, 
it is transported via the blood by albumin and transferrin (1). V with these two valences enters cells through 
anionic channels. These two forms arrive the cells through anionic channels; once in the cell, V5+ reacts with 
some antioxidant enzymes such as superoxide dismutase (SOD)(2) [12], producing H2O2 through Fenton-like 
reaction, where the mitochondrion initiates the cytochrome C pathway inducing the apoptosis route through the 
activation of caspases 3 and 9 (3) [95], then, vanadate generates free radicals (OH+ OH-) by reacting with 
GSH and CAT enzymes (4) [94], stimulating oxidative stress triggering lipids, proteins, and DNA alterations. 
V5+ reduces to vanadyl through NADPH-oxidase (5), which in turn, forms pervanadate, oxidized by H2O2, that 
will permanently inhibit protein tyrosine phosphatases (PTP) [96] (6), which will aggregate the phosphorylated 
protein tyrosine kinase (PTK) activating intracellular signaling pathways (7) [1], triggering the inflammation 
mechanisms through phospholipase-A2 (PLA-A2) and COX-2 formation, activating the gliosis process (8) [97], 
similarly DNA, cell death, demyelination and damage to proteins through lipid peroxidation. Finally, the PTP is 
inactivated by vanadate (9) [98], which results in the activation of intracellular death signaling pathways.
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phospholipids [6, 44, 45] and neuron inflammation [91]. It is also associated with 
hypomyelination correlated with oxidative stress [92] and a decrease in myelin 
essential protein [93]. It has also been reported that V produces DNA cleavage, 
apoptosis and induces iron-mediated oxidative stress in brain cell cultures [94] 
and hippocampus neuronal death [36]. Likewise, it has been reported that V 
inactivates protein-tyrosine-phosphatases (PTP) because it binds to the cysteine 
catalytic residue, which leads to an increase in phosphorylation of PTP, increasing 
the phosphorylation of the MAPK pathways, which probably causes tau protein 
hyperphosphorylation, to generate or induce neurofibrillary tangles (NFTs) [94]. 
Thus, according to our findings and the revised literature, V neurotoxic effects are 
summarized in Figure 7.

Likewise, an increased body of evidence implicates oxidative stress as involved 
in at least the propagation of cellular injury, which leads to neuropathology in vari-
ous conditions, such as AD. Moreover, oxidative stress is intimately linked with an 
integrated series of cellular phenomena, which all seem to contribute to neuronal 
death [51, 99].

The facts mentioned above provide evidence that V2O5 disrupts critical neuronal 
processes and leads to alterations that include ROS generation, producing cell death. 
Further work should be done to answer questions, such as identifying the signaling 
pathways that induced the changes reported here.

Furthermore, as formerly reported, V2O5 modifies cytoskeletal proteins such 
as ץ-tubulin [54], inducing actin alterations [52]. Some studies have demonstrated 
the interaction between V with actin. V has a high affinity for cytoskeletal actin-
binding sites. G- and F- actin interact with oxovanadium (IV), with 4:1 and 1:1 stoi-
chiometries, respectively, and it has been demonstrated that G-actin-V interaction 
might occur close to the actin adenosine triphosphate binding position [100–102]. 
Likewise, decavanadate can modify actin’s structure by oxidizing its cysteines in its 
polymerized form [103].

Remarkably, earlier results demonstrate that V induces Tau hyperphosphoryla-
tion [104, 105], ROS, and neuronal inflammation [106], occasioning AD-like 
damage. Moreover, the substantial hippocampal CA1 cell damage might result from 
the affinity of G-actin for V, and its association with the metal, since neurons have 
a particularly dynamic cytoskeleton, which requires continuous polymerization of 
actin filaments [107].

6. Conclusion

Our results show that vanadium pentoxide, when inhaled, produces important 
synaptic alterations, manifested in this case, by the significant loss of dendritic 
spines of CA1 pyramidal neurons and by the presence of Alzheimer-type fibril-
lar tangles, an aspect considered to be the main neuropathological feature in AD 
[107], related to the evident alterations of the cytoskeleton. Therefore, more 
research is needed to establish the relationship between V2O5 and Tau hyperphos-
phorylation, not only in the hippocampus but also in the amygdala, neocortex, 
and entorhinal, structures involved in AD [108, 109], and whether spatial memory 
is altered.

Moreover, these data must encourage research efforts towards environmental 
health effects, with the final purpose of intervening in decrease metals atmospheric 
pollution such as V. We have to promote viable schemes to safeguard the CNS from 
toxicants, which have redoubled in the atmosphere during the last decades and 
represent an important health challenge since metal pollution has been related to 
neurodegenerative diseases.
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