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Chapter

Resonant Optical Solitons in

(3 + 1)-Dimensions Dominated by
Kerr Law and Parabolic Law
Nonlinearities

Khalil S. Al-Ghafri

Abstract

This study investigates the optical solitons of of (3+1)-dimensional resonant
nonlinear Schrédinger (3D-RNLS) equation with the two laws of nonlinearity. The
two forms of nonlinearity are represented by Kerr law and parabolic law. Based on
complex transformation, the traveling wave reduction of the governing model is
derived. The projective Riccati equations technique is applied to obtain the exact
solutions of 3D-RNLS equation. Various types of waves that represent different
structures of optical solitons are extracted. These structures include bright, dark,
singular, dark-singular and combined singular solitons. Additionally, the obliquity
effect on resonant solitons is illustrated graphically and is found to cause dramatic
variations in soliton behaviors.

Keywords: Optical solitons, 3D-RNLS equation, Kerr law and parabolic law
nonlinearities, Projective Riccati equations method, Obliquity influence

1. Introduction

Soliton is one of the important nonlinear waves that has been under intensive
investigation in the physical and natural sciences. It has been noticed that solitons
play a significant role on describing the physical phenomena in various branches of
science, such as optical fibers, plasma physics, nonlinear optics, and many other
fields [1-5]. For example, solitons in the field of nonlinear optics are known as
optical solitons and have the capacity to transport information through optical
fibers over transcontinental and transoceanic distances in a matter of a few femto-
seconds [6, 7]. Moreover, it is found that the efficient physical properties of solitons
may support the improvement on photonic and optoelectronic devices [8, 9]. Fur-
ther to this, optical solitons can be exploited widely in optical communication and
optical signal processing systems [10, 11].

The formation of solitons is essentially caused due to a delicate balance between
dispersion and nonlinearity in the medium. Understanding the dynamics of solitons
can be performed through focusing deeply on one model of the nonlinear
Schrédinger family of equations with higher order nonlinear terms [12, 13]. Thus,
various studies in literatures scrutinized the resonant nonlinear Schrédinger equa-
tion which is mainly the governing model that describes soliton propagation and
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The Nonlinear Schrodinger Equation

Madelung fluids in many nonlinear media. Several integration schemes have been
implemented to examine the behavior of solitons such as ansatz method, semi-
inverse variational principle, simplest equation approach, first integral method,
functional variable method, sine-cosine function method, (G'/G)-expansion
method, trial solution approach, generalized extended tanh method, modified sim-
ple equation method, and improved extended tanh-equation method. For more
details, readers are referred to references [14-25].

The present study concentrates on the investigation of resonant optical solitons
in (3 + 1)-dimensions with two types of nonlinear influences, namely, Kerr law and
parabolic law nonlinearities. In particular, we shed light on the model of (3 + 1)-
dimensional resonant nonlinear Schrédinger (3D-RNLS) equation given in the form

i, +1v2Q + oF )| +s5( Mg —0, i—va, vio L oo
A ’/I o |Q| - b - b) - axz @/2 azz)

(1)

where the dependent variable Q (x, 9, 2,¢) is a complex-valued wave profile and
the independent variables x, y and z stand for spatial coordinates while ¢ indicates
temporal coordinate. The non-zero constants 7, ¢, and § account for the coefficients
of the group velocity, non-Kerr nonlinearity, and resonant nonlinearity, respec-
tively. The parameter s plays an important role on manipulating the physical prop-
erties of distinct media and consequently affecting the behaviors of constructed
solitons, see [26].

Here, we will consider two specific cases for the function F(s) that represent the
effect of nonlinearity in the media. These two nonlinear influences include the Kerr
law and parabolic law nonlinearities. Hence, Eq. (1) with the two laws of
nonlinearity has the following forms

2
iQ + v2Q + o|Q|2Q+6(V|C'§')Q _o, @)
and
2
Q.+ + (alQP +slal)a +(~ 1 H )@ o )

The first model given in Eq. (2) is the 3D-RNLS equation dominated by the Kerr
law nonlinearity and is found to have applications in the optical fiber and water
waves when the refractive index of the light is proportional to the intensity. The
second model presented in Eq. (3) is the 3D-RNLS equation with the parabolic law
nonlinearity which arises in the context of nonlinear fiber optics.

In literatures, there are some studies that dealt with the 3D-RNLS equation to
find exact solutions. For example, Ferdous et al. [27] investigated the conformable
time fractional 3D-RNLS equation with Kerr and parabolic law nonlinearities. Dif-
ferent structures of oblique resonant optical solitons have been obtained by using
the generalized exp (—®(¢))-expansion method. Furthermore, Sedeeg et al. [28]
studied the two models of 3D-RNLS equation given in (2) and (3) by applying the
modified extended tanh method. Optical soliton solutions including dark, singular
and combo solitons are extracted in addition to periodic solutions. Moreover, the
exact solutions of the 3D-RNLS equation with Kerr law nonlinearity given in (2) has
been examined by Hosseini et al. [29] by exploiting the new expansion methods
based on the Jacobi elliptic equation. Recently, Hosseini et al. [30] studied the
optical solitons and modulation instability of the models given in (2) and (3).
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Various forms of optical solitons are derived with the aid of the exp , and hyper-
bolic function techniques.

The aim of current work is to derive the optical solitons of 3D-RNLS equation
presented in (2) and (3). The mathematical technique applied to solve the models is
based on a finite series expressed in terms of the solution of projective Riccati
equations. The paper is organized as follows. In Section 2, we analyze the idea of
implementing the proposed method. In Section 3, the traveling wave reduction of
(2) and (3) is extracted. Then, Section 4 displays the derivation of resonant optical
solitons in (3 + 1)-dimensions. In Section 5, the main outlook of results and remarks
are presented. Finally, the conclusion of work is given in Section 6.

2. Elucidation of solution method

Consider a nonlinear partial differential equation (NLPDE) for Q (x, y,2,¢) in the
form

P(Q, Qs Qs Qs Qs Quas Qs Qs ) = 0, (4)

where P is a polynomial in its arguments.
Since we seek for exact traveling wave solutions, we introduce the wave vari-

ables
Q(x,t) =q(&), & =xcosa+ycosf+zcosy+ct. (5)

Inserting (5) into Eq. (4), one can find the following ordinary differential equa-
tion (ODE)

H(q.49".4", .. ) =0, (6)

where prime denotes the derivative with respect to £. Then, integrate Eq. (6), if
possible, to reduce the order of differentiation.

Now, assume that the solution of Eq. (6) can be expressed in the finite series of
the form

UGE) = a0+ > (arf (&) + @), 7)
=1
where ag,a;,b;, (I = 1,2, ...,m) are constants to be identified. The parameter m,

which is a positive integer, can be determined by balancing the highest order
derivative term with the highest order nonlinear term in Eq. (6).
The variables f(£),g(¢) satisfy the equations

fO=cAf(®), g = ~Af(O)(&) ~ F5OR ~ BF(&),
®)
£ = e[z R— B9 - 40|,

where A and B are arbitrary constants and ¢ = +1. The third equation in the
system (8) represents the first integral which gives the relation between the
functions f(£) and g(¢).
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The set of Egs. (8) is found to admit the following solutions

_ Rtanh (R¢) _ Rsech(R¢)
F8) = A + Btanh (R¢)’ 2:(6) = A + Btanh (R¢)’ ©)
demands ¢ = 1.
_ Rcoth(R¢) _ Rcsch(Rg)
f8) =7 + Beoth(R¢)’ &) =7 + Beoth(R¢E)’ (10)
implies ¢ = —1.
A —e(A2 — B?
f5(6) £3(8) (11)

T AC+ (AT-BY)E T ACH (AT-BY)E

provided R = 0, where C is an arbitrary constant.
The substitution of (7) along with (8) into Eq. (6) generates a polynomial in

f i(cf)gf (¢). Equating each coefficient of f' (£)g7 (€) in this polynomial to zero, yields a
set of algebraic equations for a;, b ;. Solving this system of equations, we can obtain
many exact solutions of Eq. (4) according to (9)-(11).

3. Traveling wave reduction for Eqgs. (2) and (3)
In order to tackle the complex models of 3D-RNLS equation with Kerr law and

parabolic law nonlinearities given in (2) and (3), we embark on analyzing their
structures by using the wave transformation of the form

Q(x,1) = q()e”, (12)
where

E=xcosa+ycosf+zcosy+ut, p =k(xcosa+ycosf+zcosy)+wt. (13)

3.1 Traveling wave reduction for Eq. (2)

Applying transformation (12), the 3D-RNLS equation with Kerr law nonlinearity
given in (2) is broken down into real and imaginary parts as

(cos’a+ cos?f + cos’y)(n + 8)q" — (@ + nx*(cos’a + cos’p + cos’y))q + oq°

-0,
(14)
and
(v + 2k (cos®a + cos?f + cos’y))q = 0. (15)
From Eq. (15), we obtain
v = 2k, (16)
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where A = cos?a + cos?f + cos?y. Hence, Eq. (14) reduces to the form
An+8)q" — (0 + nk*)q + oq® = 0. (17)
3.2 Traveling wave reduction for Eq. (3)

Similarly, we utilize the wave transformation (12) to the 3D-RNLS equation with
parabolic law nonlinearity given in (3) which is decomposed to real and imaginary
parts as

An+0)q" — (o + nx*)q + oq® + pg® = 0, (18)
and
(v+ 2anx)q’ = 0. (19)

From Eq. (19), we come by the expression given in (16). To seek a closed form
solution, the structure of Eq. (18) has to be rearranged. Thus, we multiply Eq. (18)
by ¢’ and integrate with respect to ¢ to arrive at

P

L0 w=0, (20)

A+ 8)q” — (@ + ) g? + %q4 +

where y is the integration constant. For convenience, we make use of the
variable transformation given as

7 =V, (21)

which leads to g’* = V'*/4V. Thus, Eq. (20), after manipulating, becomes

4
A+ 8V + 8uV — 4(w + P V2 + 26V + gpv4 = 0. (22)

4. Optical soliton solutions of 3D-RNLS equation with Kerr law and
parabolic law nonlinearities

Now, we aim to employ the projective Riccati equations method given in Section
2 to extract the exact resonant optical soliton solutions with Kerr law and parabolic
law nonlinearities for 3D-RNLS equations given in (2) and (3). Basically, the pro-
posed technique will be implemented to Egs. (17) and (20) and then their obtained
solutions will be inserted into (12) so as to derive the optical solitons of the models
discussed in this work.

4.1 Oblique resonant solitons of 3D-RNLS equation with Kerr law nonlinearity

According to the expansion given in (7) and the balance between the terms g’ !
and 43, the solution of Eq. (17) reads

q(¢) = ao +arf (§) + big (&), (23)

Substituting (23) together with Egs. (8) into Eq. (17) gives rise to an equation
having different powers of f’g/. Collecting all the terms with the same power of f’g/
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together and equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations simultaneously leads to the following results.
Set L. If ¢ = 1, then the following cases of solutions are retrieved.
2 2

o

Casell.ag=a1=0,b1 =+

Q(x,7,2,1) — 4R 2A(n + 6) (A2 — Bz) sech(R[x cosa + y cos f + z cosy — 2Ankt])
o A + Btanh (R[x cosa + y cos f +z cosy — 2Ankt])

(24)

ip

3

where Ao( + 8)(A> — B*) >0 and ¢ = k(x cosa + y cos f +z cosy) +
A([n + 8R? — ).
CaseI2.ag = + B8R /20ty L ATB [ 2000) ) — g,

w=—A(2[n+ SR> + I1K2).

Qx,y,5,) = 77—1—6 ) B+ Atanh( R[xcosa—i—ycosﬁ+zcosy—2/1;11<t])eiq,’
A + Btanh (R[x cosa + y cos f + z cosy — 2Ankt])

(25)

where 16(n + ) <0 and ¢ = k(x cosa +y cos f + z cosy) — A(2[n + SR> + nk?)t.

2 2
CaseI3.q9 = +88,/— ”*‘S yap = +458 [ ’g‘s,b -4 (’”5)5: B>,

R2
® = —/1<[71+5]7+71K2).

_Aln+6) [B+ Atanh (R[x cosa +y cos f +z cosy — 2Akt])
26 | A+ Btanh (R[xcosa + ycosf +zcosy — 2Ankt])

Q(x,y,2,t) = £R

VB* — A%sech(R[x cosa +y cos f + z cosy — 2Ankt]) iv
€,
A + Btanh (R[x cosa + y cos f +z cosy — 2Ankt])

(26)

where lo(n + 6) <0, A> <B? and ¢ = k(x cosa +y cos f +zcosy) —

A ([17 + 5% SRS )
Set II. If ¢ = —1, then the following cases of solutions are generated.

2 2
Caselll.ay =a,=0,b, = i\/_w

, = A([n + 5|R* — nk?).

Qx,y,2,t) = R}/ — 24(n +9) (Az - Bz) csch(R[x cosa + y cos f +z cosy — 2Ankt]) v
c A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt])

(27)
where Ao(n + 8)(A> — B*) <0 and ¢ = k(x cosa +y cos f +z cosy) +
A([n + 8]R* — ni?)e.
CaseI12.ag = £ B8R/ 2 5, — L AZB [ 20i0) )y —

w = —A(2[n + SR> + nK?).
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B 2/1( +6) B+ Acoth(R[x cosa + y cosff +z cosy — 2lnkt])
A + Bceoth(R[x cosa +y cos f +z cosy — 2Ankt])
(28)

ip
b

Q(x,y,2,t) = £R

where 16(n + ) <0 and ¢ = k(x cosa +y cos f +z cosy) — A(2[n + S|R* + nx?)t.

2 2 (n+6) A2 B2
CaseII3.q9 = +88 /- ”+5 a1 = 48 ’g‘s,b = gy AEATE)

R2
®= —/1([71+5]7+7’]K2).

~ Mn+9) B+ Acoth(R[x cosa +y cos f + z cosy — 2Ankt])
26 | A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt])

Q(x,y,2,t) = £R

VA* — B*csch(R[x cosa +y cos f + z cosy — 2An«t]) 0
A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt]) ’

where Ao (5 + 6) <0, A>>B? and ¢ = k(x cosa +y cos f +zcosy) —

A ([17 + 6% "+ )
Set III. If R = 0, then the following cases of solutions are created.

24(n+6) (A2 B?) 5

Casellll.ag =a1 =0,b; = , W = —AnK”.

CaseIlI2. 4y = 0, a; = iNBH/ ”” b1 =0, 0= —n

2 2
CaseIlI3. a9 = 0, a, = iAz B, [_ '7+5 w, w = —nK*.

Herein, these three cases in the Set III prov1de the solution of the form

_2A(n +9) (A* — B?)
AC + (A2 — Bz)(xcosa+ycosﬁ + 2 cosy — 2Ankt)
(30)

&

Q(x,9,2,t) =+

where Ao (5 + 6) <0 and ¢ = k(x cosa +y cos f +z cosy) — Mk’t.

4.2 Oblique resonant solitons of 3D-RNLS equation with parabolic law
nonlinearity

Based on the expansion given in (7), we consider that the solution to Eq. (22)
takes the form

a(€) = Z(azf( ) +bg (9)). (31)

1=

Inserting (31) together with Eqgs. (8) into Eq. (22) gives rise to an equation
having different powers of f'g/. Collecting all the terms with the same power of f'g/
together and equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations simultaneously leads to the following results.

Set I. If ¢ = 1, then the following cases of solutions are obtained.

Casell.by =a,=b, =0,a¢ = (ﬁﬂé), a; = iAzzquz _ 3%(7)+5),
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_ M(n+0)(A+B)’ay—nPat)  2(y+6)(A-B)(A+BYag 0
- a2 >E T Aa? H =Y.

~ 3A(n+9) { B + Atanh (R[x cosa +ycosff +zcosy — 2/17’]KtD}:| ieiw

R
s > at = |¥F -
QUe.3,2,1) {+2 P A + Btanh (R[x cosa + y cos ff +z cosy — 2Ankt])

(32)

where Ap(17 + 5) <0 and ¢ = k(x cosa +y cos f +z cosy) + A([n + S|R* — ni*)e.

_ L A-B | 3i(nt9)
= +4-

p

Casel2. by =a, =b, = 0,a0 = (ff%)’ a1

_ H(n+8)(A=B)’aj—nat) _ 21(y+6)(A+B)(A—B)ao
0= a? 2\0 T Ad’
1 1

,u=0.

" 3A(n+96) 1+B+Atanh(R[xcosa+ycosﬂ+zcosy—2/1771<t]) ’ iv
j— _— e 5
2 P A + Btanh (R[x cosa + y cos f + 2z cosy — 2Ankt])

(33)

Qx,y,3,1) =

where Ap(7 + 5) <0 and ¢ = k(x cosa +y cos f +z cosy) + A([n + S|R* — nic?)e.

3A(n+6)(A*-B?
CaseI3.a1:az=bz=0,ﬂoZﬂ:\/l%,h:i% Mo\ F) )E ),

A(5(1-+6)(A>~B”)ad+4nk’b7 ) 2(1+6)(A>~B)ao An+68)(A’—B?)a)
w=- 4b? A L "
1 1 1
7 2 _ : '
Qx,9,2,¢) = j:B 3A(n+9) 14 VA® — B®sech(R[x cosa + y cos # + z cosy — 2Ankt]) ;o
2 P A + Btanh (R[x cosa + y cos ff + z cosy — 2Ankt])
(34)
where Ap(n + 8) >0, A*>B* and ¢ = k(x cosa +y cos f +z cosy) —
l([n + )& 4 nxz)t.
Casel4.ay =by = 0,a0 = — giap VA* = B' a1 = + 5 VA® — B, by =
1 [3+0)(A-B)  A((1+9)(A+B)A%ad+4n*(A-B)bT)  (n+8)(A+B)Aao
iV W= = 4(A-B)b? I\ 2b} S#=0

Q( ) {:&:R \/3/1(i7+5)(A2BZ){\/mtanh(R[xcosa+ycosﬁ+zc05y_2,1,7,@])
X,9,%,t) = |[£—

4A p A + Btanh (Rx cosa + y cos f + z cosy — 2Ankt])
_(AZ_BZ> %
Asech(R[xcosa +ycosf +zcosy — 2nkt]) /0
A + Btanh (R[x cosa + y cos f +z cosy — 2Ankt]) (A+B) ’

(35)

where Jp(n + 8) <0, A><B? and ¢ = x(x cosa +y cos f + zcosy) +
2(In+ 8% - n?)e.

Casel5.a, =by =0,a0 = i%@/—(Az—BZ),al = :l:%,/—(A2 —B?), by =

1 [34n+e)(A*-B) w— _ A((n+5)(A-B)A%ad +4n*(A+B)b]) 5 — _ Mnt8)(A=B)Aag
4 p > -

, u=0.

4(A+B)b? ’ 2b}
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i\/3/1(,7_~_5)(Az_Bz){,/—(Az—Bz) tanh (R[x cosa +y cos 8 + z cosy — 2Ankt])

3 ) ’t - :t
Q.3,2,1) { 4A P A + Btanh (R[x cosa + y cos f + z cosy — 2Ankt])

1
2
Asech(R[x cosa +ycos f +z cosy — 2Ankt]) ~(A*-B?) 40
A + Btanh (R[x cosa + y cos  + z cosy — 2Ankt]) (A-B) ’

(36)

where Ap(n + ) <0, A2 <B*and ¢ = k(x cosa +y cos f +zcosy) +
l([n + )& 171<2)t.
Case 16.ay) = — (240n+9)4% - oba )R a; =2Ra p — + A'aotR%b /47 B, a; =

A2 sy 1 — 2 2
(42-B)by SRf 2 A3oz /lz(nié)zR“
T’w:—ﬂ<["+517+'7'<)’/):m’ﬂ= %

1

Qx [ = 2+ 5)R? 1+ VA% — B’sech(R[x cosa +y cos § +z cosy — 2Akt]) iei(p
VB = c A + Btanh (Rlx cosa + y cos  + z cosy — 2Ankt]) ’
(37)
where A%>B* and ¢ = k(x cosa +y cos f +z cosy) — /1([;1 + 6] % -+ mcz)t.
A’a;—(A+B)Rb; )R 2((n+6)(A*~B?)A+0oBby )R A?-B%)b
Casel7.by =0,a¢ = ( ﬂ(A(fB)A)Z 2) , a1 = (o) (;AZ) 2) , 4y _ () e ) =
) ) 34(n+6) (A—B?)" A2
w = A([n+ 5|R* — nk?), p = — = 0.

4(A2a1—ZBRh2)

QUey,zt) = [t IR () B+ Atanh (Rlxcosa +y cosf +zcosy — 2nxt]) L
2 )>%5t1) = A + Btanh (R[x cosa + y cos § + 2z cosy — 2Ankt]) )

(38)

o

where ¢ = k(x cosa + y cos f +z cosy) + A([n + S|R? — ni*)t.

A%a;+(A—B)Rb, )R 2(A(n+8)(A*~B?)A—0Bby )R
Case IS8. b1 = O, ag = —( al(A(+B)A)2 2) y a1 = — ( U )( O_AZ) 2) 5
A?—B?)b
aZ — ( AZ ) 2’

_3A(r+9) (a2-p2)"A2

= 2 — 2 = =
w = A([n+ 8|R* — nk?), p (a2 u=0.

b

24(n + 6)R? {1 B+ Atanh (Rx cosa + y cos 8 —i—zcosy—Z/InKt])}r :
c

_ . i
Q.y,2,8) = [ A + Btanh (R[x cosa + y cos  + z cosy — 2An«t])
(39)

where ¢ = k(x cosa +ycosff +zcosy) + 1([,1 + 5]R2 - I1K2)t.

26A? > A’R

A(n+8)R 2 2 (AZ—B2 bz 2 (72 o
+ (7]26) \/_(A _B))aZ:T);w:/1<[7]+5]%_777<2>,p:—W,ﬂ—o
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An + 5)R? B + Atanh (R + n ikt
Q(x,9,2,t) = (n ) 14 + Atanh (R[x cosa +ycosff +zcosy nkt])
20 A + Btanh (R[x cosa + y cos f +z cosy — 2Ankt])

1
2

—(A?* — B*)sech(R[x cosa +y cos f + z cos y — 2/nkt])
A + Btanh (R[x cosa + y cos ff +z cosy — 2Ankt])

where A <B? and ¢ = x(x cosa +y cos f + z cos y) +ﬂ<[17+5]R72— mcz)t.

(A(y+8)(A—B)A—20h,)R* aq = (A+B)A2ao+(A—B)R2b2, by =

Case I10. ¢ = 7 , a1 = R

A’-B%)b 2 o2
—( e ) Z,a)=/1<[17+5]%—711<2>,P= _W,” = 0.

LR [ (A2~ BY), 4, =

Qe pznt) — |1 OR [ B Atanh (Rix cosa+y cosf+ = cosy — 2]
»)>%,1) = 20 A + Btanh (R[x cosa + y cos f + z cosy — 2Ankt])

1
2

—(A? — B?)sech(R[x cosa + y cos f + z cosy — 2Akt])
A + Btanh (R[x cosa + y cos  +z cosy — 2Mnkt])

where A% <B% and ¢ = k(x cosa +y cos f +z cos ) —I—/l([n-l-ﬁ]%z— mcz)t.

Set II. If ¢ = —1, then the following cases of solutions are acquired.
S A _ R _ L AP’ 34(n-+6)
CaseIIl.bl—az—bz—O,ao—ﬁ,al—i 5A — Z) 5
_ z((n+5)(A+Z)2ag—nx2a§)’ o 2/1(;1+6)(A;Z)(A+B)2a0’ 4=0.

+

R B + Acoth(R 2 o
Q(x,y,2,t) = > M {1 + Acoth(R[x cosa + y cos f +z cosy /Upct])}] o,

o A+ Beoth(R[x cosa + y cos f +z cosy — 2Axt])
(42)

where 4p(n + 8) <0 and ¢ = x(x cosa +y cos f +z cosy) + A([n + 6]R* — nx?)z.

Case [12. by = a; = by = 0, a0 = (1%, ar = + 455 | /- 20,
_ Hlroa-bianat) U0 ABJA-Bar ) _ g
1 1
B 3A(n +6) B + Acoth(R[x cosa + y cos  + z cosy — 2Ankt]) ’ iv
Qx.y,21) = iz p {1 A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt]) ’

(43)

where 4p(n + 8) <0 and ¢ = x(x cosa +y cos f + z cosy) + A([n + §]R* — nx?)z.
3A(n+6)(A—~B?)

Rb 1
CaseII3.a1:a2:b2:O,a0:j:\/zlz_i_B?bl:ij -, >
A(5(7+8) (A2—B*)ad+4n?h}) 2(1+6)(A*~B*)ao An+8)(A?—B?)a}
0= 4b? O = T ok E T T
1 1 1
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R 3/1(”+5){1j: —(AZ_BZ)csch(R[xcosa—i—ycosﬁ—i—zcosy—Zinxt])}} Jo

= |+ —
Qx.y,2,1) [ 2 p A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt])

(44)

where Ap(n + 8) >0, A2 <B? and ¢ = k(x cosa +y cos f +z cosy) —
l([n + 5]%4— 1’]K2)t.

Casell4.a), = b, = 0,a9 = — (AR—TB), a, = iAZA;le Al 3’1('L+5), b, =
2,2 _amla 2 2
i% AT B2, o = /1((f7+5)(A+f;%a0 4 al), i z(q+5)(A+2i)a(%A B )aO, 4= 0.

Q(x,y,2,t) =

R 3A(n + 5){ B + Acoth(R[x cosa + y cos  + z cosy — 2Ankt])
)

T4\ p A + Bceoth(R[x cos a + y cos ff + z cosy — 2Ankt]

2
ip
b

VA* — B*csch(R[x cosa +y cos f + z cos y — 2Anxt])
A + Beoth(R[x cosa + y cos f + 2z cosy — 2Ankt])

(45)

where Ap(n + 8) <0, A>>B? and ¢ = k(x cosa + y cos f +z cosy) +
l([n + )&~ n1<2>t.
Case II5. a; = 172 =0, ag = A-B) Rf}g), a1 = :tAi;le \/— 3/1(7’+5)’ bl = :I:Aquill \/A2 — Bz,

BZ
» — A((n+8)(A—B)’a} —4na?) o A(n+8)(A—B)(A?—B?)ao

2 b 2 b
4aj 2Aay

u=0.

Q(xyy,z> t) -

iB 34 +9) 1 B + Acoth(R[x cosa + y cos f + z cosy — 2Ankt])
4 p A + Bceoth(R[x cosa + y cos f +z cosy — 2Ankt])

b
ip
b

VA? — B’csch(R[x cosa + y cos f + z cosy — 2Anxt])
A + Bceoth(R[x cosa + y cos f +z cosy — 2Ankt])

(46)
where Ap(n + 8) <0, A*>>B? and ¢ = k(x cosa +y cos f +z cosy) +
l([n + )& 171<2)t.
Case I16. ag = — <M("+6izz_6h2)Rz, ay = —282, by = L HOR, [ (A%~ B), 4y =
- (Azjﬁz}bz’ @ = _'1<[’7 + 8% + ”Kz)’ p= 16l(zi5)R2’ p =P

2 —(A? — B*) csch(R[x cos a 4 y cos § + z cos y — 2Ankt]) ’ ‘
Qynnt) — {wwm{li Va8 y

o A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt])

(47)
where A% <B* and ¢ = k(x cosa +y cos  +z cosy) — /1<[17 + 6| % + 1’]K2)t.
2 2_ g \A—¢g 2_p2
Casell7.by = 0, ag — (A al;(f;i)sz)R,al _ 2(A(n+0)(A g,fz )A Bbz)R, 4y — (4 Alz )bZ,

11
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_ 3A(r+9) (42-B)'A2

= 2 — 2 = e
“= /1([’7 +OJRT — )’ p 4(A%a1+2BRb,)" n=0.

24(n+ &)R? B + Acoth(R[x cosa + y cos # + 2z cosy — 2Ankt]) : io
Q(x,9,2,t) = 1 e’
A + Bceoth(R[x cosa + y cos f + 2z cosy — 2Ankt])
(48)
where ¢ = k(x cosa +y cos f +z cosy) + A([ + SJR* — nk?)t.
A’a;—(A—B)Rb,)R 2(2(n+6)(A*~B?)A+0oBby )R
CaseIl8. b1 = 0,a0 = - m(A(-l—B)A)Z 2) a1 = — o aAz) 2 ’

(42-B)b, _ 3i(p+0) (A2-B?) A2

= — — 2 — 2 = —_

2= a0 /1([’7 +OIR" — )’ P 4(A%a1+2BRb,)" AN

Qx,9,5,1) — 24(n + 8)R? 1 B + Acoth(R[x cosa + y cos f + z cos y — 2Ankt]) %e“”
c A + Beoth(R[x cos a + y cos ff + z cosy — 2Ankt])
(49)
where ¢ = k(x cosa + y cos f + z cosy) + A([n + SIR* — ni?)t.
Case I19. g — (/1(77+5)(A—2i-£4)§4+26b2)R2, 41— (A—B)Aza;)lz—lgA—i-B)szz’ by =
IR /A7 53 A?-B*)b 2 o2

+AIRVA? — B4y = — ( A2 ) o= ’1<[’7 +0| 5~ ;7;<2>,p - _4/1(’?+5)R2’M =0.

Qxy,2,1) = A(n + 8)R? . B + Acoth(R[x cosa +y cos f + z cosy — 2Ankt])
Vo2t = 20 A + Bceoth(R[x cosa + y cos f + z cosy — 2Ankt])
1
VA% — B*csch(R[x cosa + y cos f 4z cosy — 2nkt]) | | iv
A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt]) ’
(50)

where A*>B? and ¢ = x(x cosa +y cos f + z cosy) +l<[17+5]%2— mcz)t.

Case I110. oy = (/1(:7+5)(A;(3,24+25b2)1e2’ 4y — — (A+B)A2ajl;l§A—B)R2bz, bl _
A*-B*)b
Qx,y,2,1) — A(n + 6)R? 1 B + Acoth(R[x cosa + y cos ff + z cosy — 2Ankt])
Yo% 0 = 20 A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt])
VA* — B?csch(R[x cosa +y cos f + z cos y — 24nxt]) ’ i
A + Beoth(R[x cosa + y cos f + z cosy — 2Ankt]) ’
(51)

where A% > B* and ¢ = k(x cosa +y cos f +z cos ) +/1<[17+5]R72— nkz)t.

5. Results and remarks
To give a clear insight into the behavior of resonant optical solitons, the graph-

ical representations for some of the extracted soliton solutions are presented.
Besides, the obliqueness influence on the resonant solitons is examined. Thus, we

12
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display the 3D and 2D plots of the absolute of these solutions by selecting different
values of the model parameters. For example, Figure 1(a)-(b) present the 3D and
2D plots of resonant soliton for the solution given in (24) of 3D-RNLS equation with
Kerr-law nonlinearity. It is clear from the graph that the wave profile represents
bright soliton. Figure 1(c)-(d) display the 3D plot for the effect of obliquity on the
resonant soliton given in (24), where Figure 1(c) shows the relation between x and
a while Figure 1(d) illustrates the relation between x and y. Figure 2(a)-(b) exhibit
the 3D and 2D plots of resonant dark soliton given in the solution (29) of 3D-RNLS
equation with Kerr-law nonlinearity. The obliqueness influence on the solution (29)
is shown in Figure 2(c)-(d). Additionally, Figure 3(a)-(b) demonstrate the 3D and
2D plots of resonant soliton given in the solution (40) of 3D-RNLS equation with
parabolic-law nonlinearity, where the wave profile describes a kink-shape soliton. It
can be seen that Figure 3(c)-(d) present the obliquity impact on the solution (40).
Figure 4(a)-(b) depict the 3D and 2D plots of resonant singular soliton given in the
solution (48) of 3D-RNLS equation with parabolic-law nonlinearity, where the
effect of obliqueness on this wave is illustrated in Figure 4(c)-(d).

One can obviously see from Figures 1-4 that the obliqueness influences the
behavior of resonant solitons, where the structure of solitons is changed remarkably
with the variation of obliqueness parameters. Further to this, it is noticed that the

[e]

Figure 1.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (24) with
k=o05n=6=0c=1,R=A=2B=1,a=0=y=n7/3,y=2=0,t=1.

1o

(@) (b) (© (d)

Figure 2.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (29) with
the same values of parameters in Figure 1 except 6 = —1.

Figure 3.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (40) with
the same values of parameters in Figure 1 except A = 1,B = —2.
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—o=1/f
10— a=1/
— =14

Figure 4.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (48) with
the same values of parameters in Figure 1.

amplitude of the resonant solitons decreases and the width rises with the increase of
obliqueness as shown in the 2D graphs.

6. Conclusions

This work scoped the behavior of optical solitons of 3D-RNLS equation. The
dominant nonlinearity in the model is considered to have two forms which are Kerr
law and parabolic law. The resonant solitons are derived with the aid of projective
Riccati equations method. Various forms of wave structures are retrieved such as
bright, dark, singular, kink, dark-singular and combined singular solitons. The
influence of obliquity on resonant solitons is also examined. It is found that the
change in the obliqueness parameters leads to a noticeable variation on the behavior
of optical soliton waves. In addition to this, the amplitude of the resonant solitons
undergoes a reduction, but their width is enhanced as the obliqueness is increased.
The results obtained in this work are entirely new and it may be useful to under-
stand the dynamics of resonant solitons affected by obliqueness in different
nonlinear media such as optical fiber and Madelung fluids.

Conflict of interest

The author declares no conflict of interest.

Author details

Khalil S. Al-Ghafri
University of Technology and Applied Sciences, Ibri, Oman

*Address all correspondence to: khalil.ibr@cas.edu.om

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

14



Resonant Optical Solitons in (3 + 1)-Dimensions Dominated by Kerr Law...

DOI: http://dx.doi.org/10.5772/intechopen.100469

References

[1] Lonngren KE. Soliton experiments in
plasmas. Plasma Physics. 1983;25(9):
943-982.

[2] Agrawal GP. Nonlinear fiber optics:
quantum electronics—principles and
applications. Academic Press, New
York; 1995.

[3] Mollenauer LF, Gordon JP. Solitons
in optical fibers: fundamentals and
applications. Elsevier; 2006.

[4] Biswas A, Konar S. Introduction to
non-Kerr law optical solitons. CRC
Press; 2006.

[5] Bao W. The nonlinear Schrédinger
equation and applications in Bose-
Einstein condensation and plasma
physics. Dynamics in Models of
Coarsening, Coagulation, Condensation
and Quantization” (IMS Lecture Notes
Series, World Scientific). 2007;9:141-240.

[6] Gedalin M, Scott T, Band Y. Optical
solitary waves in the higher order
nonlinear schrédinger equation.
Physical review letters. 1997;78(3):448.

[7] Hong WP. Optical solitary wave
solutions for the higher order nonlinear
schrodinger equation with cubic-quintic
non-kerr terms. Optics Communications.
2001;194(1-3):217-223.

[8] Liu W, Pang L, Han H, et al.
Tungsten disulphide for ultrashort pulse
generation in all-fiber lasers. Nanoscale.
2017;9(18):5806-5811.

[9] Liu W, Zhu YN, Liu M, et al. Optical
properties and applications for MoS 2-
Sb 2 Te 3-MoS 2 heterostructure
materials. Photonics Research. 2018;6
(3):220-227.

[10] Singer A. Signal processing and
communication with solitons
[dissertation]. Massachusetts Institute
of Technology; 1996.

15

[11] Song Y, Shi X, Wu C, et al. Recent
progress of study on optical solitons in

fiber lasers. Applied Physics Reviews.
2019;6(2):021313.

[12] Porsezian K. Soliton propagation in
nonlinear optics with higher-order
effects. Journal of Modern Optics. 1997;
44(2):387-394.

[13] Radhakrishnan R, Kundu A,
Lakshmanan M. Coupled nonlinear
Schrédinger equations with cubic-
quintic nonlinearity: integrability

and soliton interaction in non-kerr
media. Physical Review E. 1999;60(3):
3314.

[14] Triki H, Hayat T, Aldossary OM,
et al. Bright and dark solitons for the
resonant nonlinear Schrédinger’s
equation with time-dependent
coefficients. Optics & Laser
Technology. 2012;44(7):2223-2231.

[15] Triki H, Yildirim A, Hayat T, et al.
1-soliton solution of the generalized
resonant nonlinear dispersive
Schrédinger’s equation with time-
dependent coefficients. Advanced
Science Letters. 2012;16(1):309-312.

[16] Biswas A. Soliton solutions of the
perturbed resonant nonlinear
Schrodinger’s equation with full
nonlinearity by semi-inverse variational
principle. Quantum Phys Lett. 2012;1
(2):79-89.

[17] Eslami M, Mirzazadeh M, Biswas A.
Soliton solutions of the resonant
nonlinear Schrédinger’s equation in
optical fibers with time-dependent
coefficients by simplest equation
approach. Journal of Modern Optics.
2013;60(19):1627-1636.

[18] Eslami M, Mirzazadeh M,
Vajargah BF, et al. Optical solitons for
the resonant nonlinear Schrédinger’s
equation with time-dependent



The Nonlinear Schrodinger Equation

coefficients by the first integral method.
Optik. 2014;125(13):3107-3116.

[19] Mirzazadeh M, Eslami M,
Vajargah BF, et al. Optical solitons and
optical rogons of generalized resonant
dispersive nonlinear Schrédinger’s

equation with power law nonlinearity.
Optik. 2014;125(16):4246-4256.

[20] Mirzazadeh M, Eslami M,

Milovic D, et al. Topological solitons of
resonant nonlinear Schodinger’s
equation with dual-power law
nonlinearity by G'/G-expansion
technique. Optik. 2014;125(19):
5480-5489.

[21] Mirzazadeh M, Arnous A,
Mahmood M, et al. Soliton solutions to
resonant nonlinear Schrédinger’s
equation with time-dependent
coefficients by trial solution approach.
Nonlinear Dynamics. 2015;81(1):277-
282.

[22] Kilic B, Inc M. On optical solitons of
the resonant Schrédinger’s equation in
optical fibers with dual-power law
nonlinearity and time-dependent
coefficients. Waves in Random and
Complex Media. 2015;25(3):334-341.

[23] Arnous AH, Mirzazadeh M,

Zhou Q, et al. Soliton solutions to
resonant nonlinear schrodinger’s
equation with time-dependent
coefficients by modified simple
equation method. Optik. 2016;127(23):
11450-11459.

[24] Mirzazadeh M, Ekici M, Zhou Q,
et al. Exact solitons to generalized
resonant dispersive nonlinear

Schrédinger’s equation with power law
nonlinearity. Optik. 2017;130:178-183.

[25] Al-Ghafri KS. Different physical
structures of solutions for a generalized
resonant dispersive nonlinear
schrodinger equation with power law
nonlinearity. Journal of Applied
Mathematics. 2019;2019:1-8.

16

[26] Pashaev OK, Lee JH. Resonance
solitons as black holes in madelung
fluid. Modern Physics Letters A. 2002;17
(24):1601-1619.

[27] Ferdous F, Hafez MG, Biswas A,

et al. Oblique resonant optical solitons
with Kerr and parabolic law
nonlinearities and fractional temporal
evolution by generalized exp (— ¢ (£))-
expansion. Optik. 2019;178:439-448.

[28] Sedeeg AKH, Nuruddeen R, Gomez-
Aguilar J. Generalized optical soliton
solutions to the (3+ 1)-dimensional
resonant nonlinear schrédinger
equation with kerr and parabolic law
nonlinearities. Optical and Quantum
Electronics. 2019;51(6):1-15.

[29] Hosseini K, Matinfar M,
Mirzazadeh M. A (3+ 1)-dimensional
resonant nonlinear Schrédinger
equation and its jacobi elliptic and
exponential function solutions. Optik.
2020;207:164458.

[30] Hosseini K, Ansari R, Zabihi A, et al.
Optical solitons and modulation
instability of the resonant nonlinear
Schrodinger equations in (3+ 1)-
dimensions. Optik. 2020;209:164584.



