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Chapter

Agent-Based Modeling and
Analysis of Cancer Evolution

Atsushi Niida and Watal M. Twasaki

Abstract

Before the development of the next-generation sequencing (NGS) technology,
carcinogenesis was regarded as a linear evolutionary process, driven by repeated
acquisition of multiple driver mutations and Darwinian selection. However, recent
cancer genome analyses employing NGS revealed the heterogeneity of mutations in
the tumor, which is known as intratumor heterogeneity (ITH) and generated by
branching evolution of cancer cells. In this chapter, we introduce a simulation
modeling approach useful for understanding cancer evolution and ITH. We first
describe agent-based modeling for simulating branching evolution of cancer cells.
We next demonstrate how to fit an agent-based model to observational data from
cancer genome analyses, employing approximate Bayesian computation (ABC).
Finally, we explain how to characterize the dynamics of the simulation model
through sensitivity analysis. We not only explain the methodologies, but also intro-
duce exemplifying applications. For example, simulation modeling of cancer evolu-
tion demonstrated that ITH in colorectal cancer is generated by neutral evolution,
which is caused by a high mutation rate and stem cell hierarchy. For cancer genome
analyses, new experimental technologies are actively being developed; these will
unveil various aspects of cancer evolution when combined with the simulation
modeling approach.

Keywords: cancer, evolution, agent-based model, approximate Bayesian
computation, sensitivity analysis

1. Introduction

Cancer is a clump of abnormal cells that originates from normal cells. Normal
cells proliferate or stop proliferating depending on their surrounding environment.
For example, when skin cells are injured, they proliferate to cover the wound;
however, when the wound heals, they stop proliferating. In contrast, cancer cells
continue proliferating by ignoring the surrounding environment. Moreover, cancer
cells invade surrounding tissues, metastasize to distant organs, and impair functions
in the human body.

Malignant transformation from normal to cancer cells generally results from the
accumulation of somatic mutations, which are induced by various causes such as
aging, ultraviolet rays, cigarette, alcohol, chemical carcinogens, etc. Mutations that
contribute to malignant transformation are known as “driver mutations”, whereas
genes whose function are impaired by driver mutations are named as “driver
genes”. There are two types of driver genes are categorized: “oncogenes” and
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“tumor suppressor genes”. Oncogenes act as gas pedals for cell proliferation, which
are constitutively turned on by driver mutations. Tumor suppressor genes act as
brakes to stop cell proliferation, and inhibiting the function of the brakes is neces-
sary for malignant transformation.

Normal cells are transformed into cancer cell when two to 10 driver mutations
are acquired. Because these mutations are not induced simultaneously, but rather
gradually over a long period of time, this process is known as “multi-stage carcino-
genesis” [1]. This process is also regarded as a linear evolutionary process, driven by
repeated acquisition of multiple driver mutations and Darwinian selection. Under-
standing cancer from an evolutionary perspective is important, as therapeutic dif-
ficulties against cancer originate from the high evolutionary capacity, which easily
endows cancer cells with therapeutic resistance.

Mutations in cancer cells are experimentally detected by DNA sequencing. Next-
generation sequencing (NGS) technology, which raised around 2010, enabled can-
cer genome analysis to comprehensively detect mutations in cancer cells. During
the last decade, cancer genome analysis has revolutionized our understanding of
cancer [2]. Cancer genome analysis showed that cancer cells harbor a large number
of mutations, only a small fraction of which is driver mutations; namely, most
mutations in cancer cells are “neutral mutations”, which have no selective advan-
tages (also referred to as “passenger mutations” in paired with driver mutations).
By sequencing hundreds of tumor samples from different patients with the same
cancer type, the repertories of driver genes were also determined across various
types of cancer. Moreover, cancer genome analysis has revealed heterogeneity of
mutations within one tumor, which is termed intratumor heterogeneity (ITH) [3].
As described above, carcinogenesis was regarded as a linear evolutionary process
until the arrival of NGS; however, ITH is actually generated by branching evolution
of cancer cells.

However, cancer genome analysis is not sufficient to explain the origin of ITH.
To understand the evolutionary principles underlying the generation of ITH, a
simulation modeling approach is useful and increasingly employed in the field of
cancer research. In this chapter, we introduce such simulation modeling
approaches. We first describe agent-based modeling for simulating branching evo-
lution of cancer cells. We next demonstrate how to fit an agent-based model to
observational data obtained by cancer genome analyses, employing approximate
Bayesian computation (ABC). Finally, we explain how to characterize the dynamics
of the simulation models through sensitivity analysis.

2. Agent-based modeling of cancer evolution

To simulate heterogenous cancer evolution, agent-based modeling is widely
employed. An agent-based model assumes a set of system constituents, known as
independent agents, and specifies rules for the independent behavior of the agents
themselves, as well as for the interactions between agents and the agent environ-
ment [4]. The agent-based model is a flexible representation of the model, and
given the initial conditions and parameters of the system, the behavior of the
system can be easily analyzed by computational simulation. For modeling of cancer
evolution, if each cell is assumed to be an agent, ITH can be easily represented by
the differences in the internal states of each agent. As an example, we explain an
agent-based model named as the branching evolutionary process (BEP) model,
which was originally introduced by Uchi ez al. [5] to studying ITH of colorectal
cancer (Figure 1A). In the BEP model, a cell assumed to be an agent has a genome
containing 7 genes, each of which is represented as a binary value, 0 (wild-type) or
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Figure 1.

Hlustration of the BEP model. (A) A flowchart of a simulation based on the BEP model. First, a cell is tested for
survival and killed with a provability q. Next, the cell is tested for cell division and replicated with a provability
p. Before cell division, each gene in the cell is mutated with a provability v. After this process is applied to each
cell, the simulation proceeds to the next time step. (B-D) illustration of division operation (see the main text for
details). This image originally appeared in [5].

1 (mutated). Thus, the genome is represented as a binary vector g with length z. In
a unit time step, a cell replicates with a probability p and dies with a probability 4.
When the cell replicates, a wild-type gene is mutated with a probability ». The first
d genes in g are considered as driver genes, whose mutations accelerate replication.
A normal cell without mutations has a replication probability p, and each driver

mutation increases p by 10/ -fold; i.e., P=p- 10", where k = Zf:]gi, the number
of mutated driver genes. The death probability is fixed as ¢ = ¢q,,. Let ¢ and ¢ denote
the size of the simulated cell population and number of the time steps, respectively.
A simulation is started with co normal cells and the unit time step is repeated while
the population size ¢ < ¢4, and time step ¢ <ty

The BEP model assumes that a simulated tumor grows in a two-dimensional
square lattice where each cell occupies one lattice point. Initially, ¢ cells are
initialized as close as possible to the center of the lattice. In a unit time step, along an
outward spiral starting from the center, we replicate and kill each cell with proba-
bilities p and ¢, respectively. When cells replicate, the BEP model places the
daughter cell in the neighborhood of the parent cell, assuming a Moore neighbor-
hood (i.e., eight points surrounding a central point). If empty neighbor points exist,
we randomly select one of these points. Otherwise, we create an empty point in any
of the eight neighboring points as follows. First, for each of the eight directions, we
count the number of consecutive occupied points that range from each neighboring
point to immediately before the nearest empty cell as indicated in Figure 1B. Next,
any of the 8 directions is randomly selected proportionally with 1/I;, where
1;(1<i<8) is the count of the consecutive occupied points for each direction. The
consecutive occupied points in the selected direction are then shifted by one point
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so that an empty neighboring point appears as shown in Figure 1C. Note that
simulation results depend on the order of the division operation in the two-
dimensional square lattice. The BEP model first marks cells to be divided and then
applies the division operation to the marked cells along an outward spiral starting
from the center. In each round on the spiral, the direction is randomly flipped in
order to maintain spatial symmetry. An example of such spirals is shown in
Figure 1D.

Given that a cell without mutations divides according to this rule, after a normal
cell acquires its first driver mutation, which accelerates cell division, the proportion
of the clone originating from the cell increases in the whole cell population. By
repeating these steps, each cell gradually accumulates driver mutations and accom-
panying passenger mutations, which do not affect the cell division rate, finally
forming a tumor with many mutations. Depending on the parameter values during
the course of cancer evolution, each cancer cell can accumulate different combina-
tions of mutations to generate different types of ITH. Figure 2 show an example of
snapshots of two-dimensional tumor growth simulated based on the BEP model
with an appropriate parameter setting. In this example, driver mutations gradually
accumulated in the cells, and a clone with four mutations was selected through
Darwinian selection and finally became dominant in the tumor.

The BEP model is a very simple model and has many limitations. Although this
BEP model assumes that driver mutations increase the replication probability, it is
considered that driver mutations decrease the death probability. The BEP model
also assume that each diver mutation has the same effect on the replication proba-
bility; however, actual tumors contain different driver mutations of different
strengths. Although actual tumors grow in a three-dimensional space, the BEP
model assumes tumor growth on the a two-dimensional square lattice; extension to
a three-dimensional lattice should be considered as a future improvement. For on-
lattice models, various other simulators has been developed for studying tumor
growth (off-lattice models which do not assume that tumor growth on the lattice
reflects the actual situations more accurately, but are computationally intensive and
not commonly used [7]). For example, the pioneering works of agent-based
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Figure 2.

Visualization of a simulation based on the BEP model. (A) Evolutionary snapshots obtained by simulating two-
dimensional tumor growth based on the BEP model with an appropriate parameter setting. The region with the
same color represents a clone with the same set of mutated genes. (B) Single-cell mutation profiles at three time
points in the simulated tumor growth. Top colored bands vepresent clones, whereas the blue bands on the left
represent driver genes. This image was obtained by modifying a figure that oviginally appeared in [6].
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modeling were performed by Anderson and colleagues [8, 9]. Enderling and col-
leagues extended the model to incorporate cell differentiation from cancer stem
cells where differentiated cells have a limited potential for cell division [10, 11].
Sottoriva et al. [12] found that hierarchical organization of cell differentiation
affects tumor heterogeneity, which leads to an invasive morphology with finger-
like front. Waclaw et al. [13] predicted that dispersal and cell turnover limit
intratumor heterogeneity.

Each group developed a model different from the others, and thus only limited
conditions were considered in each study. To address this issue, Iwasaki and Innan
[14] developed a flexible and comprehensive simulation framework named as
tumopp so that all previous models were included in a single program. This enables
researchers to explore the effects of various model settings with simple command-
line options. For example, the combined effect of local density on the cell division
rate and method of placing new cells had a major impact on ITH. Under the
condition with random push and no local competition, all cells undergo cell division
at a constant rate regardless of the local density, and new cells are placed while
randomly pushing out pre-existing neighbor cells. This behavior creates shuffled
patterns of ITH with weak isolation by distance. In contrast, under the conditions of
strong resource competition, the division rate of a cell is higher when it has more
space (empty sites) in the neighborhood, which generally applies to cells near the
surface of the simulated tumor; new cells are placed to fill the empty space without
pushing existing cells. This setting tends to create a biased complex shape with
clusters of genetically closely related cells, resulting in strong isolation by distance.
Thus, it has been demonstrated that various patterns in the shape and heterogeneity
of tumors arose depending on the model setting even without Darwinian selection.
This suggests a caveat in analyzing ITH data with simulations using limited settings
because another setting may predict a different ITH pattern, which could result in a
different conclusion.

Moreover, tumopp introduced several other factors to relax various assumptions.
First, it adopted a gamma function for the waiting time involved in cell division,
whereas all previous studies assumed a simple decreasing (i.e., exponential) func-
tion implicitly or explicitly. The shape of the gamma distribution can be specified
by parameter k, which affects the growth curve and inequality of clones in a tumor.
An exponential distribution, which is the most widely used, is included as a special
case with k = 1, whereas punctual and deterministic cell divisions can be achieved
with & = oo. It is reasonable to expect that the true value of k lies somewhere in-
between, such as at ~ 10, because cell division is neither a memoryless Poisson
process (k = 1; equivalent to an exponential distribution) nor perfectly synchro-
nized (k = oo; equivalent to Dirac delta distribution) [15, 16]. Second, a hexagonal
lattice has been implemented, which is thought to be biologically more reasonable
because the distance to all neighboring cells is identical so that there is only one
definition of the neighborhood. A hexagonal lattice should be used for future work
when the spatial pattern is of interest to the study. These factors will contribute to
simulating the evolutionary processes of cellular populations under more realistic
conditions.

3. Fitting the simulation model to observational data

As described in the “Introduction” section, cancer genome analysis demon-
strated intratumor heterogeneity and branching evolution of cancer; paticulally, an
approach known as multiregion sequencing has been popularly employed for ana-
lyzing solid tumors. Here, we introduce a concrete example of a multiregion
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sequencing study and explain the utility of cancer evolution simulation when com-
bined with multiregion sequencing data.

In multiregion sequencing, multiple samples obtained from physically separate
regions within the tumor of a single patient are analyzed (Figure 3A), with two
categories of somatic single-nucleotide mutations identified: “founder” and
“progressor” mutations (Figure 3B). Founder mutations are defined as present in
all regions, whereas progressor mutations are defined as present in some regions
(note that they are also referred to using different terms in different studies, e.g.,
public/private or trunk/branch mutations). Founder mutations are thought to
accumulate during the early phases of cancer evolution. The common ancestor
clone acquires all founder mutations, and then branches into subclones, which
accumulate progressor mutations and contribute to forming ITH. Through these
multiregion mutational profiles, we can infer an evolutionary history of the cancer
by constructing a phylogenetic tree (Figure 3C).

As a pioneering study, Gerlinger et al. [17] performed multiregion sequencing,
revealing extensive ITH and clonal branching evolution in renal cancer. Ther also
identified not only founder mutations in some known driver genes such as VHL, but
also progressor mutations in other known driver genes such as SETD2 and BAP1.
Interestingly, in some cases, different mutations in the same driver gene or genes
with the same function were acquired independently. This phenomenon known as
parallel evolution also indicates that part of the ITH was generated by Darwinian
selection.

Uchi et al. [5] also investigated ITH in nine cases of surgically resected late-stage
colorectal tumors by multiregion sequencing to identify founder and progressor
mutations in each case. Figure 4 shows the results obtained from one of the nine
cases, which contains 20 samples from the primary lesion and one sample from the
metastatic lesion. Note that the progressor mutations showed a mutational pattern
that was geographically correlated with the sampling locations. Moreover, they
found that mutation allele frequencies, which can be approximately regarded as the
proportion of cells with mutations in each region, tended to be lower for progressor
mutations than for founder mutations. This observation suggests that the founder
mutations existed in all the cancer cells while the progressor mutations existed in
only a fraction of the cancer cells in each region. Thus, even in each region, exten-
sive ITH may have existed, which was not captured by the resolution of multiregion
sequencing. In addition, most mutations in known driver genes such as APC and
KRAS were identified as founder mutations. However, progressor mutations con-
tain few driver mutations and parallel evolution was not confirmed, which contrasts
to the findings obtained in renal cancer. These observations suggest that apart from

A C
Founder
mutation
Progressor
mutation
Normal cell
Figure 3.

Multivegion sequencing (A) DNA samples from multiple vegions of a single tumor ave analyzed by next-
generation sequencing. (B) Through multivegion mutation profiling, founder and progressor mutations are
identified as common mutations in all vegions tested and only restricted vegions, respectively. (C) In a
phylogenetic tree constructed from the multivegion mutation profile, the trunk and branches correspond to the
Sfounder and progressor mutations, vespectively. This image originally appeared in [6].
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Figure 4.

Multirvegion sequencing of colovectal cancer. (A) Schema of the tumor subjected to multivegion sequencing.

(B) Multiregion mutation profile. The depth of red represents the mutant allele frequency, wheveas the colors
of the sample labels were prepared so that the similarities of colors vepresent those of mutation patterns.

(C) Phylogenetic tree constructed from the multivegion mutation profile. The time when mutations in known
driver genes of colorectal cancer were acquired is indicated along the tree. This image was obtained by modifying
a figure that oviginally appeared in [5].

Darwinian selection, there are other evolutionary principles generating ITH. To
identify these principles, they developed the BEP model as described above; by
fitting the BEP model to the multiregion sequencing data, they evaluated the
evolutionary principles generating ITH in colorectal cancer.

To fit the simulation model to the observational data, we can employ ABC [18],
which constitutes a class of computational methods rooted in Bayesian statistics that
can be used to estimate the posterior distributions of model parameters. A common
incarnation of Bayes’ theorem relates the conditional probability of a specific
parameter value € given data D to the probability of D given 6 by the rule,
p(0|D)xp(D|0)p(0), where p(0|D) denotes the posterior, p(D|@) the likelihood, and
p(0) the prior. The prior represents beliefs or knowledge about 6 before D is
available. To obtain the the posterior, the likelihood function is required. For simple
models, an analytical formula for the likelihood function can typically be derived.
However, for more complex models, an analytical formula may be elusive or the
likelihood function may be computationally very costly to evaluate. Agent-based
models also fall into the latter case. ABC methods bypass evaluation of the likeli-
hood function by using summary statistics and simulations, which widen the realm
of models for which statistical inference can be considered. ABC has rapidly gained
popularity over the last few years, for analizing complex problems arising in bio-
logical sciences, e.g., in population genetics, ecology, epidemiology, and systems
biology.

In the basic form of ABC, which is known as rejection sampling, we first sample
a parameter value (or a combination of parameter values, if there is more than one
parameter) from a prescribed prior distribution of the parameter value. Simulated
data are then generated from the sampled parameter value. The similarity between
the simulated and observational data is evaluated using summary statistics (typi-
cally multiple), which is designed to represent the maximum amount of informa-
tion in the simplest possible form. If the distance of the summary statistics between
the simulated and observational data is below a tolerance parameter, the parameter
value is accepted and pooled into the posterior probability of the parameter value.
Repeating these steps many times, we can approximate the probability distribution.
A conceptual overview of the ABC rejection sampling algorithm is presented in
Figure 5.

In the study of colorectal cancer study by Uchi et al. [5], as summary
statistics, they adopted the proportions of founder mutations and unique mutations,
which is uniquely observed in each sample, in a multiregion mutation profile.



Simulation Modelling

Prior distribution of

Observational dat.a model parameter 6

v [ ]
e i tatisti (2 Given a certain model,
p om,t;)u % sutm ma’fzsta G 0 0 0 9 perform n simulations, each
HREERE e 1 2 s\ " Vn with a parameter drawn from
the prior distribution
Simulation 1 Simulation 2 Simulation 3 Simulation n
(3 Compute summary ; t ! t
statistic i, for each My M, M, H

simulation

P 1) <€ X v X v

(@) Based on a distance p(-,*)
and a tolerance ¢, decide for
each simulation whether its

summary statistic is sufficiently
close to that of the observed

data Posterior distribution of (5) Approximate the posterior

model parameter 8 distribution of @ from the distribution
of parameter values 6, associated
with accepted simulations.

Figure 5.
Conceptual overview of the ABC rejection sampling algorithm. This image orviginally appeared in [18].

They obtained multiregion mutation profiles for 9 cases with different sample
numbers. As the proportions of founder mutations and unique mutations depend on
the number of samples, they set the sample number to 5, which is the minimum
sample number of the 9 cases, by downsampling the samples in cases containing
more than 5 samples. They then estimated the mean of the proportions of

founder mutations and unique mutations and used these values as summary
statistics values of the observational data (Figure 6; note that although we should
apply ABC to each of the 9 case separately, they targeted the population mean for
simplicity).

For ABC, they generated simulation data while varying 3 parameters, m (the
mutation rate), d (the number of driver genes), and f (the effect of driver muta-
tions), which appear to be critical for simulation results (for strategies used to find
such parameters, read the next section). In each simulation trial, we simulated
multiregion sequencing from a tumor simulated by the BEP model; a multiregion
mutation profile was obtained by digging 5 squares out from a simulated tumor and
averaging the mutation status of cells in the squares. From the multiregion mutation
profile, the proportions of founder mutations and unique mutations were obtained
as summery statistics. They performed 50 simulations for each grid point in a three-
dimensional rectangular parameter space; namely, they assumed a uniform prior
for each of the three parameters. For each grid point in the parameter space, they
calculate the proportion of the simulation instances whose statistics fall within 1
standard deviation from the mean of the values observed in the real multiregion
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Figure 6.

Fitting the BEP model to multivegion sequencing data by ABC. (A) Observed values of summary statistics in the
multivegion sequencing data. After downsampling the samples in cases containing move than 5 samples, the
proportions of founder and unique mutations were estimated for 9 cases (case 1—9) and an “average” over the 9
cases was obtained as summary statistics values of the observational data. The error bars at case 1-3 and 5-8
indicate standard deviations for 10 downsampling trials while the ervor bar at average indicates standard
deviations over the 9 cases. (B) Multivegion mutation profiles of 9 colovectal tumors. For the cases except case 4
and 9, representative samples from the downsampling trials were presented as in Figure 4B. This image
originally appeared in [5].

mutation profiles. The distribution of the proportions can be regarded as the poste-
rior and visualized in heat maps (Figure 7).

As a result, when cancer evolution was simulated with the assumption of a high
mutation rate, we reproduced mutation profiles similar to those obtained by our
multiregion sequencing of colorectal cancers (compare Figure 8A and B with
Figure 4A and B). That is, irrespective of the presence of founder mutations,
progressor mutations contributed to the formation of a heterogeneous mutation
profile, which was geographically correlated with the sampling locations. Moreover,
we also reconstructed local heterogeneity, as illustrated by the finding that
progressor mutations existed as mutations with lower allele frequencies in each
region. Interestingly, although driver mutations were acquired as founder muta-
tions, progressor mutations contained few driver mutations, and most comprised
neutral mutations that did not affect the cell division rate. This suggests that, after
the appearance of the common ancestor clone with accumulated driver mutations,
extensive ITH was generated by neutral evolution. Moreover, the single-cell muta-
tion profiles of the simulated tumor suggest that the tumor comprises a large
number of minute clones with numerous neutral mutations accumulated
(Figure 8C).

By employing a agent-based model and ABC, Sottoriva et al. [19] also proposed a
Big Bang model of human colorectal tumor growth; in their model, tumors grow
predominantly as a single expansion producing numerous intermixed subclones
that are not subject to stringent selection, which is consistent with the model
developed by Uchi et al. [5], and both public (clonal) and most detectable private
(subclonal) alterations arise early during growth. Hu et al. [20] also employed an
agent-based model and ABC to examine the timing of metastasis in colorectal
cancer. Multiregion sequencing data containing both primary and metastatic sam-
ples were prepared from patients with metastases to the liver or brain. Simulta-
neously, a spatial agent-based model was developed to simulate tumor growth,
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Figure 7.

Fitting the BEP model to multivegion sequencing data by ABC (continued). (A) The proportion of simulation
instances fitted to the real data. Multiregion mutation profiles were simulated while varying 3 parameters and,
for each parameter settings, the proportion of simulation instances that were judged to be similar to the real data
based on summary statistics ave visualized as heat maps. (B) Multiregion mutation profiles from the
simulations. Representative instances from simulation with indicated parameter settings were presented as in
Figure 4B. Left blue bars indicate driver genes. This image oviginally appeared in [5].

mutation accumulation, and metastatic dissemination. From multiregion sequenc-
ing data of each patient, the time of dissemination, which is a parameter in the
agent-based model, was estimated by ABC. The results demonstrated that early
disseminated cells commonly (81%, 17 of 21 patients) showed metastases, whereas
the carcinoma was clinically undetectable (typically, less than 0.01 cm?). Collec-
tively, these examples demonstrated that ABC successfully fitted the simulation
model of cancer evolution to cancer genome data, providing insight into the mech-
anisms of cancer evolution.

Although the problem of computational cost generally accompanies ABC, new
sampling approaches utilizing Markov chain Monte Carlo and its derivatives [21]
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Computer-simulated tumor with extensive ITH generated by neutval evolution. (A) Tumor simulated based on
the BEP model with an assumption of a high mutation rate. (B) Simulated multivegion mutation profile of the
simulated tumor. Cell populations in the regions labeled with A—H were extracted from the simulated tumor
and their averaged mutation profiles were obtained. (C) Simulated single-cell mutation profile of the simulated
tumor. This image was obtained by modifying a figure that originally appeaved in [5].

have been developed to overcome this limitation. Moreover, considering the
increasing computing power, this problem will potentially be less important. Nota-
bly, ABC has many potential pitfalls [18]. For example, setting the tolerance
parameter to zero will give accurate results, but typically at a very high computa-
tional cost. In practice, therefore, values of greater than zero are used, but this
introduces bias. Similarly, sufficient statistics are sometimes not available and other
summary statistics are used instead, but this introduces additional bias because of
the loss of information. Additionally, prior distributions and choices of parameter
ranges are often subject to criticisms, although they are not unique to ABC and
apply to all Bayesian methods. Model complexity (i.e., the number of model
parameters) is also an important point. If a model is too simple, it can lack predic-
tive power. In contrast, if the model is too complex, there is a risk of overfitting.
Moreover, the complex model faces a problem known as the curse of dimensional-
ity, in which the computational cost is severely increased and may, in the worst
case, render the computational analysis intractable. When constructing a simulation
model, we should follow the Occam’s razor principle: i.e., achieve the lowest model
complexity that is sufficient to explain the observational data. To determine the
optimal model complexity, we can also employ the model selection scheme based on
Bayes factor if a choice of summary statistics is appropriate [22].

4. Characterizing the dynamics of the simulation model

In the previous section, we explained how to fit a simulation model to observa-
tional data. Another direction for studying a simulation is by characterizing the
dynamics of the simulation model without observational data. Namely, we can
examine parameter dependance by performing a large number of simulations while
varying the parameter values. This approach is known as sensitivity analysis and
can provide insights into the modeled system as well as identify parameters that are
critical for the system dynamics. In sensitivity analysis, as in ABC, we define a
summary statistic Y. A simulation model is then regarded as a function: Y = F(X)
where X = {X1, X, ... X}, } are model parameters. The aim of sensitivity analysis can
also be considered as characterizing the function “F”.

So far, a number of approaches have been proposed for sensitivity analysis. For
example, one-factor-at-a-time (OFAT) sensitivity analysis is one of the simplest
and most common approaches that changes one parameter at a time to determine
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the effects on a summery statistic [23]. In OFAT sensitivity analysis, we move one
parameter, while leaving the other parameters at their baseline (nominal) values,
and then return the parameter to its nominal, which is repeated for each of the other
parameters. We then plot the relationship between each parameter and a summary
statistic to examine the dependency of the summary statistic on the parameter, or
the relationship can be measured by partial derivatives or linear regression. In
exchange for its simplicity, this approach does not fully explore the input space, as
it does not consider the simultaneous variation of multiple parameters. This means
that the OFAT approach cannot detect interactions between parameters.

Global sensitivity analysis aims to address this point by sampling a summary
statistic over a wide parameter space involving multiple parameters. Sobol’s method
is a popular approach for estimating the contributions of different combinations of
parameters to the variance of the summary statistic while assuming that all parame-
ters are independent [24]. The sensitivity of the summary statistic Y to a parameter
X; is measured by the amount of variance in Y caused by the parameter X; and can be
expressed as a conditional expectation, Var(Ex ,(Y|X;)), where “Var” and “E” denote
the variance and expected value operators, respectively, and X.; denotes the set of all
input variables except for X;. This expression essentially measures the contribution X;
alone to uncertainty (variance) in Y (averaged over variations in other variables),
and is known as the first-order sensitivity index or main effect index. Importantly, it
does not measure the uncertainty caused by interactions with other variables. A
further measure, known as the total effect index, gives the total variance in Y caused
by X; and its interactions with any of the other input variables. Both quantities are
typically standardized by dividing by Var(Y'). In Sobol’s method, we typically attempt
full exploration of the parameter space based on a Monte Carlo method to grasp
parameter interactions and nonlinear responses.

However, such approaches appears to be insufficient to comprehensively grasp
how the parameters judged to be influential control the behaviors of agent-based
models. To overcome this point, Niida et al. [25] recently developed a new approach
to sensitivity analysis for agent-based simulations, named as MASSIVE (Massively
parallel Agent-based Simulations and Subsequent Interactive Visualization-based
Exploration). MASSIVE overcomes the limitations of existing methods by taking
advantage of two currently rising technologies: massively parallel computation and
interactive data visualization. MASSIVE employs a full factorial design involving a
multiple number of parameters (i.e., test every combination of candidate values of
the multiple parameters), which can broadly cover a target parameter space. In
addition, when analyzing a stochastic simulation model such as an agent-based
model, multiple simulation trials with the same parameter setting are required to
examine stochastic effects. To cope with the computational cost problem caused by
these features, MASSIVE utilizes a supercomputer, in which agent-based simula-
tions with different parameter settings and the following post-processing step of
simulation results are performed in parallel. The massively parallel simulations
generate massive results, which then pose a problem for interpretation. This prob-
lem was solved by developing a web-based tool that interactively visualizes not only
the values of multiple summary statistics, but also output images (e.g., mutation
profiles) from simulations with each parameter setting.

Below I explain an example of sensitivity analysis, which was performed by
Niida et al. [26] to understand the precise mechanisms underlying neutral evolution
induced by a high mutation rate. First, they built an agent-based model, referred to
as the “neutral” model, for simulating neutral evolution in cancer. Although the
neutral model is similar to the BEP model, the neutral model assumes only neutral
mutations and omits spatial information. They also improved the approach used for
mutation accumulation in the BEP model. Namely, in the neutral model, they
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considered only neutral mutations that did not affect cell division and death. In a
unit time, a cell divides into two daughter cells with a constant probability g,
without dying. In each cell division, each of the two daughter cells acquires

k, ~ Pois(m,/2) neutral mutations. They assumed that neutral mutations acquired
by different division events occur at different genomic positions.The simulation
started from one cell without mutations and ended when the population size p
reached P or time ¢ reached T.

Through sensitivity analysis based on the MASSIVE method, they confirmed that
the mutation rate is the most important factor affecting neutral evolution (Figure 9).
As a summary statistic for evaluating ITH, they calculated Shannon index 0.05 by the
following procedure. After removing mutations with frequencies of less than 0.05,
the proportions of different subclones (cell subpopulations with different mutations)
were obtained and the Shannon index H was calculated using the following formula:
H=-%" p;log (p;), where n is the total number of different subclones and p; is the
proportion of each subclone. Based on this definition, a larger Shannon index 0.05
value indicates more extensive ITH. Together with a heat map of the Shannon index
0.05 values, we visualized single-cell mutations profiles obtained for different
parameter settings. The mutation profile matrix was obtained by sampling 1,000 cells
from a simulated tumor, and visualized after filtering out lower-frequency mutations,
such that the maximum number of rows was 300. The rows and columns are
reordered by hierarchical clustering and index mutations and samples, respectively.
They found that when the mean number of mutations generated by per cell division,
My, was less than 1, the neutral model just generated sparse mutation profiles with
relatively small values of Shannon index 0.05. In contrast, when m,, exceeded 1, the
mutation profiles presented extensive ITH, which are characterized by a fractal-like
pattern and large values of the ITH score (hereinafter, this type of ITH is referred to
as “neutral ITH”). These results suggest that neutral ITH is shaped by neutral muta-
tions that trace the cell lineages in the simulated tumors. Note that the mutation
profiles were visualized after filtering out low-frequency mutations. Assuming a high
mutation rate, more numerous subclones with different mutations should be
observed if mutations existing at lower frequencies are counted. However, the ITH
score does not depend on the population size P because low-frequency mutations
were filtered out before calculation.

Thus far, several theoretical and computational studies have shown that a stem
cell hierarchy can boost neutral evolution in a population of cancer cells [12, 27];
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Figure 9.

Sensitivity analysis of the neutval model. (A) Heap map obtained by calculating Shannon index 0.05 while
changing the neutral mutation vate m,, and maximum population size P. (B—H) Single-cell mutations profiles
obtained for seven parameter settings, which are indicated on the heat map in A. This image originally
appeared in [26].
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based on this, they extended the neutral model to the “neutral-s” model such that it
contains a stem cell hierarchy (Figure 10). The neutral-s model assumes that two
types of cell exist: stem and differentiated. Stem cells divide with a probability g,
without dying. For each cell division of stem cells, a symmetrical division generat-
ing two stem cells occurs with a probability s, whereas an asymmetrical division
generating one stem cell and one differentiated cell occurs with a probability 1 —s.
A differentiated cell symmetrically divides to generate two differentiated cells with

a probability g, but dies with a probability d‘é. The means of accumulating neutral
mutations in the two types of cell is the same as that in the original neutral model,
which means that the neutral-s model is equal to the original neutral model when

s = 0 ord? = 0. For convenience, they define § = log <d’é /. go) and hereinafter use

6 rather than dﬁ.
MASSIVE analysis of the neutral-s model confirmed that incorporation of the
stem cell hierarchy boosts neutral evolution (Figure 11). To obtain the heat map in

Figure 11A, the ITH score was measured while d‘é and 6 were changed, whereas
m, = 0.1and P = 1000 were maintained as constant. In the heat map, a decrease in

s leads to an increase in the ITH score when 6 >0 (i.e., dﬁ >g,). A smaller value of s
means that more differentiated cells are generated per stem cell division, and 6> 0
means that the population of differentiated cells cannot grow in total, which is a
valid assumption for typical stem cell hierarchy models. That is, this observation
indicates that the stem cell hierarchy can induce neutral ITH even with a relatively
low mutation rate setting (i.e., m, = 0.1), with which the original neutral model
cannot generate neutral ITH.

The underlying mechanism boosting neutral evolution can be explained as fol-
lows. Only stem cells were considered for an approximation, as differentiated cells
do not contribute to tumor growth with § > 0. While one cell grows to a population
of P cells, let cell divisions synchronously occur across x generations during the
clonal expansion. Then, (1+ s)* = P holds because the mean number of stem cells
generated per cell division is estimated as 1 + 5. Solving the equation for x gives
x = logP/log (1 +s); that is, it can be estimated that during clonal expansion, each
of the P cells experiences log P/log (1 + ) cell divisions and accumulates
my log P/21og (1 + s) mutations on average. They confirmed that the expected
mutation count based on this formula fit well with the values observed in their
simulation (data not shown). These arguments mean that a tumor with a stem cell
hierarchy accumulates more mutations until reaching a fixed population size than

@ O O O
Wsymmetric Division vgo

9" (1-s) Differentiated
Stem Cell D Cell
Symmetric Division

9,° S * d,
O O X
Figure 10.

Schema of the neutral-s model. Stem cells divide with a probability g, without dying. For each cell division of
stem cells, a symmetrical division generating two stem cells occurs with probability s, whereas an asymmetrical
division generating one stem cell and one differentiated cell occurs with probability 1 — s. A differentiated cell
symmetrically divides to generate two differentiated cells with probability g but dies with probability d°. This
image originally appeared in [26].
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Sensitivity analysis of the neutral-s model. (A) Heat map obtained by calculating Shannon index 0.05 while
changing the relative death rate of differentiated cells § = log (dg / go) and symmetrical division rate s. The

neutral mutation vate m,, and maximum population size P set to 10~ " and 105, respectively. (B-J) Single-cell
mutation profiles obtained for nine parameter settings, indicated on the heat map presented in A. This image
originally appeared in [26].

does a tumor without a stem cell hierarchy. That is, a stem cell hierarchy increases
the apparent mutation rate by log2/log (1 + s)-fold, which induces neutral evolu-
tion even with relatively low mutation rate settings.

Recent genomic analysis demonstrated that multiple evolutionary modes exists
in cancer systems. For example, as described above, ITH in renal cancer is gener-
ated by Darwinian selection, which is in contrast to neutral evolution in colorectal
cancer. Moreover, by multiregion sequencing of early-stage colorectal tumors, Saito
et al. [26] showed that ITH is shaped by Darwinian selection in the early phase of
colorectal cancer evolution, which means that a temporal shift of the evolutionary
principle shaping ITH occurs during colorectal tumorigenesis. Employing agent-
based modeling and MASSIVE analysis, Niida et al. [26] also constructed a model
that explain this evolutionary shift. Darwinian ITH in an early-stage tumor is
reproduced by the assumption of multiple driver mutations of relatively weak
strength. At some point, growth of the early colorectal tumor slows because
resource limitations, which is reproduced by introducing the carrying capacity into
the simulation model. When they assumed that an explosive mutation that negates
the carrying capacity was obtained with a small probability, a clone acquiring the
explosive mutation overcame the resource limitation and expanded as late-stage
tumors, in which ITH was generated neutral evolution. Another simulation study by
West et al. [28] proposed that spatial constraints and limited cellular mixing play
important roles in a similar Darwinian-neutral shift.

Sensitivity analysis also provides insight into metastatic tumor progression,
which is poorly understood despite its clinical importance. Evaluation of genomic
divergence between paired metastatic and primary tumors (M-P divergence) from
multiregion sequencing is a good starting point for addressing this problem. Sun
and Nikolakopoulos [29] extended tumopp [14] to simulate paired primary and
metastatic tumors, and explored factors affecting M-P divergence by sensitivity
analysis. As a result, they found that M-P divergence depends not only on the
metastatic dissemination time, but also on the evolutionary dynamics and
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detectability of seedling cell lineages in a primary tumor. It was concluded that
investigating tumor growth dynamics in detail is important, particularly when
researchers interpret heterogeneity among longitudinal samples to infer the evolu-
tionary timeline of cancer progression. Collectively, these examples demonstrated
that agent-based modeling combined with sensitivity analysis is a useful tool for
studying cancer evolutionary dynamics.

5. Conclusion

In this chapter, we introduced agent-based modeling of cancer evolution along
with methodologies for data fitting and sensitivity analysis. Although there is a long
history of theoretical science in the field of cancer research, this approach has been
overshadowed by experimental science until recently. However, with a recent
explosive increase in cancer genome data, there is now an increasing need to
integrate experimental and theoretical science. As an example, this chapter intro-
duced methods for modeling and analyzing the evolutionary processes generating
ITH, which is experimentally observed by multiregion sequencing. We also
presented exemplifying applications: e.g., agent-based simulation modeling and
analysis successfully demonstrated that ITH in colorectal cancer is generated by
neutral evolution, which is caused by a high mutation rate and stem cell hierarchy.
For cancer genome analyses, new experimental technologies are actively being
developed. For example, single-cell sequencing technologies can profile IHT at the
ultimate resolution [30] while liquid biopsy technologies, such as the sequencing of
circulating tumor DNA, enables us to non-invasively track cancer evolution during
treatment [31]. These technologies will unveil more various aspects of cancer evo-
lution when combined with the approach introduced in this chapter. This chapter
also exemplified how simulation modeling helps to solve scientific problems raised
by new experimental technologies. We hope that this chapter will provides readers
with some hints to solve their own problems using simulation modeling.
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