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Abstract

Aspergillus species are ubiquitous saprophytes and opportunistic pathogens 
causing wide spectrum of diseases in humans depending on the host immune status. 
Following pathogen entry, various soluble bronchopulmonary factors enhance 
conidial clearance. However, due to virulence factors and poor host immune 
response Aspergillus conidia bind and damage the airway epithelium. The host 
immune cells like neutrophils and macrophages recognise Aspergillus spp. through 
various pathogen recognition receptors and form reactive oxygen species which 
mediate conidial killing. Neutrophils also attack extracellular hyphae by oxidative 
attack, non-oxidative granule proteins and neutrophil extracellular traps. In case 
of adaptive immunity, Th1 cells are crucial sources of IFN-γ mediated protective 
immunity. The Th17 also display a highly pro-inflammatory which is counterbal-
anced by a Treg cell. B cells and antibodies also enhance fungal clearance although 
excessive IgE production may result in atopy. The immune responses are influenced 
by changes in production of short-chain fatty acids by the gut microbiome which 
primes cells toward Th2 responses, and this is synchronized by the Innate lymphoid 
cells. This review provides comprehensive knowledge of various virulence factors of 
Aspergillus, antifungal host defences including innate and humoral immune response 
and regulation of host immunity by microbiome.

Keywords: Immunity, pathogenesis, aspergillus, genetic polymorphism, virulence

1. Introduction

Aspergillus species are globally ubiquitous saprophytes and are also opportunis-
tic pathogens which have evolved in the environment and adapted to invade and 
proliferate within the human host. It can cause serious invasive infections. Invasive 
aspergillosis (IA) is associated with high mortality and morbidity which makes it 
essential to understand the factors involved in disease pathogenesis. The interplay 
between Aspergillus spp. and various components of the host immune system influ-
ences disease progression. Agent factors such as conidia size, temperature tolerance, 
hydrophobin /melanin expression etc. which contribute to virulence must be studied. 
Additionally, comprehensive knowledge of the host defenses, innate and humoral 
immune response, genetic susceptibility to Aspergillus and the role of microbiome in 
modulating immune response is important to study the disease immunopathogenesis.

In the genus Aspergillus, Aspergillus fumigatus is most commonly reported from 
human infections, followed by A. flavus, A. terreus and other uncommon species 
like A. niger and A. nidulans [1, 2]. It can cause plethora of infections, depending 
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on the immune status of the host as immunocompetent individuals with asthma or 
cystic fibrosis are predisposed to a hypersensitive response while Invasive aspergil-
losis (IA) is seen in severely immunocompromised patients.

A better understanding of the interplay between the host immune system and 
Aspergillus is important to understand disease pathology and can provide us with useful 
insights regarding potential therapeutic targets. In this review, we will thus discuss the 
pathogen related virulence factors, clinical spectrum of diseases caused by it, its interac-
tion with various components of the host immune system, factors involved in regulating 
the anti-fungal immune response and will also give an overview of the genetic poly-
morphisms in immune pathways that predispose to aspergillosis. Aspergillus and disease 
pathology and progression are the result of both fungal growth and the host response.

2. Virulence factors

The various virulence factors involved in the pathogenesis of aspergillosis are 
summarized in Table 1.

Function Gene(s) involved Reference

Enzymes

Superoxide dismutases 

(SODs)

Oxidative stress defense SOD genes [3]

Protease Degradation of host structural barriers

1. Serine protease
2. Metalloproteinase
3. Aspartic (acid) 
proteinase

Degrades elastin.
Degrades fibrinogen and laminin.
Assist in host cell invasion of the 
hyphae.

36-kDa
23-kDa

[4]
[5]
[6, 7]

Catalase ROS scavengers.
Breakdown hydrogen peroxide (H2 O2) 
to oxygen and water.

catA - conidium-
specific gene
cat2 - mycelium-
specific gene

[8, 9]

Toxins

1. Gliotoxin
2. Restrictocin
3. Aflatoxin

Inhibits macrophage phagocytosis. 
Induces fragmentation and apoptosis 
of DNA in macrophages. Inhibition of 
T-cell activation.
RNA nuclease activity by cleavage of the 
phosphodiester bond in the 28S rRNA of 
eukaryotic ribosomes
Induces DNA adducts causing genetic 
changes in cells responsible for 
carcinogenic potential in vitro. Also, 
epidemiologically to hepatocellular 
carcinoma.

18-kDa cytotoxin
gene cluster 
of aflatoxin 
biosynthesis 
regulated by 
AflCDC14

[10, 11]
[12, 13]
[14]

Others

1. Melanin Masking of beta (1,3)-glucan. Delay 
macrophage activation.
ROS scavengers.

pksP - polyketide 
synthase gene

[15, 16]

2. Rodlets Rodlet proteins form hydrophobic layer 
around Aspergillus conidia and helps in 
its dispersal.
ROS scavengers.

rodA gene [17]

Table 1. 
Virulence factors of Aspergillus species.
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3. Risk factors and clinical spectrum

An elaborate range of diseases can be caused by Aspergillus species and the 
clinical spectrum depends on the immune status of the infected host. Correlation of 
clinical spectrum of aspergillosis and immune status in various condition has been 
depicted in Figure 1.

Immunocompetent Patient: In immunocompetent individuals Aspergillus spp. 
remain colonized as a saprophytic fungus. Aspergillus spp. can colonize in pre-
existing cavities due to bronchiectasis, tuberculosis, cavitary neoplasia or sarcoid-
osis and cause chronic non-invasive infections like chronic pulmonary aspergillosis 
(CPA) [18, 19].

Hyper responsive or Atopic Patient: A hypersensitive response in these 
individuals in various forms like Allergic bronchopulmonary aspergillosis (ABPA), 
severe asthma with fungal sensitization (SAFS) and allergic rhinitis [20]. This 
is commonly seen in patients with cystic fibrosis (CF) and poorly controlled or 
steroid-refractory asthma [20]. In cases of CF, inflammation of bronchial mucosa 
and abnormal mucus can result in fungal colonization and up to 10% patients 
develop sensitization to A. fumigatus [21]. This can further progress to ABPA 
suggesting the importance of testing such patients with markers of immune 
hyper-reactivity.

Immunocompromised Patient: IA is a dreaded, life-threatening disease with 
a high mortality ranging from 40–80% [22, 23]. It is commonly seen in are indi-
viduals with hematological malignancies such as acute leukemia; solid-organ and 
hematopoietic stem cell transplant patients; patients on prolonged corticosteroid or 
chemotherapy. Invasive pulmonary aspergillosis (IPA) is also reported in patients 
with history of influenza or coronavirus disease and those receiving broad-
spectrum antibiotics [24, 25]. Genetic susceptibly to IA is also seen in patients 

Figure 1. 
Correction of clinical spectrum of Aspergillosis and immune status in various condition. *CID: Congenital 
immunodeficiency disorders includes chronic granulomatous disease, CARD9 deficiency, leukocyte adhesion 
deficiency, Job’s syndrome, pulmonary alveolar proteinosis.
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with congenital immune deficiencies like Caspase recruitment domain-containing 
protein-9 (CARD-9) deficiency and Chronic granulomatous disease [26, 27].

4. Pathogenesis

The range of ailments caused by Aspergillus depends on the host immune status. 
In atopic individuals the T helper 2 lymphocyte leads to hypersensitive response 
with increase in eosinophil counts and serum IgE levels. Formation of non-invasive 
aspergillomas is seen in CPA following repeated exposure to conidia in pre-existing 
cavitary lesions. IA is a destructive form of Aspergillus-related disease seen commonly 
in immunocompromised and critically ill patients.

5. Pathogen entry

The mode of reproduction in Aspergillus is predominantly asexual by formation 
of conidia (2–5 μm in size) which are ubiquitously present in the environment. 
These dormant conidia disperse in air easily due to their small size and common 
occurrence in soil, seeds and grains, decaying vegetation etc. and humans can 
inhale several hundred conidia per day. Aspergillus spp. are also found indoors in 
moisture damaged buildings both at homes and healthcare facilities [28] . There 
are therefore recommendations to avoid known sources of fungal proliferation 
(plants and flowers) in indoor places as they can serve as natural niches for fungal 
growth [29].

Conidia being small bypass the natural host nasal and bronchial defenses. The 
rodlet layer forms a hydrophobic layer outside conidia and protects it from host 
defenses and reach the lung alveoli. Natural defenses like mucociliary clearance and 
cough reflex are further compromised in intubated and mechanically ventilated 
patients. Also, the tracheal and bronchial epithelium is injured and provides easier 
passage for fungal conidia to the lower respiratory tract. Among healthy hosts, 
neutrophils and macrophages effectively clear the Aspergillus conidia. However, in 
immunocompromised patients, few conidia start swelling and become metaboli-
cally active after losing the outermost rodlet layer. These conidia, then germinate to 
produce fungal hyphae and cause a spectrum of invasive diseases.

6. Interaction with the innate immune system

The interaction of Aspergillus with cells of the innate immune system is depicted 
in Figure 2.

6.1 Soluble lung components

Various soluble factors found in the bronchopulmonary fluid are involved in 
Aspergillus defense including pathogen recognition receptors (PRRs) like C-type 
lectins, mannose binding ligand (MBL), Surfactant proteins (SP) – A and –D 
and pentraxin (PTX). These soluble factors enhance complement activation and 
phagocytosis of conidia, thus contributing to its clearance.

Although components of the complement system are predominant in serum 
they can also be found at lower levels in bronchial and alveolar fluid. Conidia and 
hyphae of Aspergillus species have been shown to bind to C3 followed by its cleav-
age to a ligand for phagocytic complement receptors iC3b. It has been reported 
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that the common pathogens A. fumigatus and A. flavus bind to fewer C3 molecules 
compared to other to species making their complement-mediated phagocytosis 
and killing, less effective. [30]. Hyphae and conidia from various Aspergillus spp. 
bind to alternative complement receptors like complement inhibitor factor H and 
the factor H family protein FFHL-1 which prevents complement cascade activation 
thereby protecting the fungus [31]. A. fumigatus and A. flavus have also been seen 
to produce a soluble complement-inhibitory factor which inhibits the activation of 
the alternative complement pathway [32]. This also acts as a defense mechanism of 
these species contributing to their overall pathogenesis.

6.2 Respiratory epithelial cells

The airway epithelial cells are the first cells to encounter inhaled Aspergillus 
conidia, which bind to it via sialic acid residues and subsequently modulate it. Other 
conidial proteins also mediate binding to fibrinogen, laminin and fibronectin which 
are all linked with lung injury indicating a role in adhesion and colonization [30]. 
A broad range of antimicrobial peptides of the defensin family are produced by 
the respiratory epithelial cells. Although the contribution of airway epithelial cells 
is less robust than that of the alveolar macrophages and germinating conidia and 
hyphae of Aspergillus are recognized by various PRRs on epithelial cells and subse-
quently assist in initiating pro-inflammatory response.

Figure 2. 
Innate immune response to Aspergillus infection. The conidia of Aspergillus spp. are inhaled and enter the 
lung where they encounter various soluble lung components including antibodies, complement factors and anti-
microbial compounds. Those conidia which swell and undergoes germination further interact with a variety of 
innate immune cells including alveolar macrophages, dendritic cells, and NK cells. Conidial germination and 
development of hyphal forms is also prevented by neutrophils.
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The proteases secreted by A. fumigatus cause desquamation and shrinkage of 
the respiratory epithelial cells along with actin cytoskeletal rearrangement with 
loss of cellular attachment and focal contact, thus assisting in invasion by ger-
minating hyphae [33]. Secondary metabolites like gliotoxin, fumagillin, helvolic 
acid, verruculogen also damage airway epithelium and interfere with mucocilliary 
clearance [30, 34].

6.3 Pathogen recognition by innate immune cells

The recognition of Aspergillus by host immune cells is mostly via the PRRs – 
TLR1, TLR2, TLR4, TLR6 and the C-type lectin receptor i.e. dectin-1 [35]. TLR2 
recognizes both hyphal and conidial form, while TLR4 recognizes only the hyphal 
morphology [36, 37]. The protective role of TLR4 mediated immune recognition 
has been seen in allogeneic hematopoietic stem cell transplant patients where it 
is observed that TLR4 polymorphisms are associated with IA [38]. The critical 
role of TLR6 in regulation of allergic inflammatory response in chronic fungal-
induced asthma was studied by Moreira et al. in mice and the absence of TLR6 
was found to be associated with less production of IL-23 and Th17 responses 
causing exacerbation of asthma [39]. Interestingly, the inflammatory response 
to A. fumigatus is intact in alveolar macrophages even in the setting of TLR2 
deficiency and mice with defects in TLR2/TLR4 or its downstream effectors (like 
MyD88) have higher susceptibility to A. fumigatus lung infection, only in the 
setting of neutropenia [40–42].

Dectin – 1 is also an important PRR recognizing beta (1,3)-glucan on Aspergillus 
in both immunosuppressed and immunocompetent hosts. Although beta (1,3)-glu-
can is usually masked by the rodlet layer on resting conidia, the conidial swelling 
on entry in host epithelium exposes it, causing dectin – 1 mediated recognition 
and phagocytosis. Macrophages stimulation by A. fumigatus conidia increases 
intracellular PRR expression as well eg. Nucleotide-binding oligomerization domain 
(NOD) proteins ((NOD1 and NOD2) followed by production of proinflammatory 
cytokines which contribute to innate immune response [43].

6.4 Alveolar macrophages

Alveolar macrophages recognize and phagocytose fungal (1,3)-glucan bound to 
dectin-1. Internalization of conidia occurs within 2 hours and then conidial swelling 
begins [44]. This is an important requirement for induction of reactive oxygen spe-
cies (ROS) production by the macrophage. Kinetic studies indicate that maximum 
ROS production occurs after 3 hours of phagocytosis resulting in fungistatic inhibi-
tion of germ tube formation due to which conidia are unable to germinate [44]. In 
immunosuppressed mice, although corticosteroid intake does not directly affect the 
internalization of conidia by alveolar macrophages there is impaired killing of A. 
fumigatus conidia due to defective production of ROS thereby increasing suscepti-
bility to IA [44, 45]. The exact mechanisms of conidial killing by ROS are unknown 
and could be via direct toxicity or by acting as a cofactor for other phagolysosomal 
toxic molecules like elastase, cathepsins, proteases and chitinases [46]. In addition 
to phagolysosome acidification, phosphatidylinositol (PI) 3-kinase activity is also 
an important requirement for proper killing of conidia [47].

Neutrophils and macrophages produce nitric oxide (NO) and reactive nitrogen 
intermediates (RNI) that can also contribute to conidial killing. However, the 
expression of nitrogen oxidative species (NOS) which is seen in classically activated 
or M1 macrophages does not have much effect on conidial killing. A study by Lapp 
et al., reported that in A. fumigatus genes encoding flavohemoglobins (FhpA and 



7

Immunopathogenesis of Aspergillosis
DOI: http://dx.doi.org/10.5772/intechopen.98782

FhpB) which converts NO to nitrate and S-nitrosoglutathione reductase (GnoA) 
which reduce S-nitrosoglutathione to ammonium and glutathione disulphide are 
observed [48]. Although, these genes play a major role in detoxification of host 
derived RNI, they were not found to be essential for virulence.

Following macrophage phagocytosis, dihydroxynapthalene-melanin  
(DHN-melanin) of A. fumigatus prevents the phagolysosome acidification allowing 
conidial germination. However, A. terreus conidia lack the genes for DHN-melanin 
synthesis and instead produce a different type of melanin, i.e., Asp-melanin [49]. 
Although Asp-melanin does not impede acidification of phagolysosome it hampers 
phagocytosis and contributes to the survival and long-term persistence of A. terreus 
even in acidic environment.

In a study by Bhatia et al., alveolar macrophages were found to express Arginase 
1 (Arg1) a key marker of alternatively activated macrophages (AAMs)/M2 mac-
rophages after infection by A. fumigatus [50]. These macrophages efficiently 
phagocytose conidia and play a crucial role in pathogen clearance. The activation 
of macrophages is also followed by translocation of mitogen-activated protein 
kinases (MAPKs) to the nucleus where they phosphorylate the transcription factor 
NF-kappa B, thus activating a pro-inflammatory immune response.

6.5 Neutrophils

Neutrophils are professional phagocytes playing a pivotal role in innate immu-
nity. Neutrophil recruitment is essential for effective Aspergillus clearing as they 
attack the germinating conidia and extracellular hyphae which have escaped 
macrophage surveillance. Neutrophils utilize TLR2, TLR4 and dectin-1, to identify 
and respond to Aspergillus. It can also be recognized directly by the complement 
receptor 3 (CD3, i.e., CD 11b/CD18), antigen–antibody complex detection by the 
Fcγ receptors (FcγR) or indirectly by opsonisation by various soluble components in 
lung environment.

In a study by Braem et al., higher deposition of the serum C3b was reported on 
germ tubes and swollen conidia compared to dormant conidia [51]. Also, patchy 
deposition of both C3b and immunoglobulin G (IgG) is seen over dormant conidia 
compared to uniform deposits on other morphotypes.

The release of chemotactic molecules, like C5a, increases migration of neutro-
phil to the infection site. The soluble mammalian extracellular β-galactose-binding 
lectin, galectin-3 is released in infected host tissues and facilitates neutrophil 
recruitment to the site of A. fumigatus infection by directly stimulating neutrophil 
motility in addition to exhibiting with both antimicrobial and immunomodulatory 
activities [52].

Neutrophil mediated killing involves both oxidative killing by NADPH oxidase 
which generates superoxide and myeloperoxidase and non-oxidative granule 
proteins containing various compounds with antimicrobial activity e.g., defen-
sins, serine proteases, lysozyme, pentraxin-3 and lactoferrin [53]. Neutrophils 
attach to hyphae, spread over their surfaces, and degranulate thereby damaging 
the fungal hyphae. Neutrophils form aggregates in the lung and restrict conidial 
germination via lactoferrin mediated sequestration of iron [54]. Also, neutrophils 
produce lipocalin-1, which sequesters fungal siderophores thereby inhibiting fungal 
growth [55].

Another neutrophil dependent defense is the formation of neutrophil extracel-
lular traps (NETs). Conidia and germ tubes of the A. fumigatus have been shown to 
trigger the formation of NETs. Pathogens in contact with the NETs become immobi-
lized, limiting the spread of the infection. Calprotectin, a chelator of Zn2+ and Mn2+ 
ions is also produced by neutrophils and is associated with the Aspergillus-induced 
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NETs [56, 57]. Thus, in view of the important role that neutrophils play against 
Aspergillus, it is no surprize that patients with qualitative or quantitative defects 
in the neutrophils experience a greater risk of IA. It is worth mentioning however, 
that neutrophils may act as double-edged swords, since these are needed for fungal 
eradication but can also cause further lung injury by release of proteases and ROS. 
Thus, stringent regulatory mechanisms are essential to balance the protective activ-
ity and immunopathological responses for efficient control of the Aspergillus.

6.6 Natural killer cells

There is growing evidence suggesting the role of NK cells in immune response 
against Aspergillus spp. Direct antifungal activity via cytotoxic molecules like 
perforin and NK cell derived cytokines and interferon modulate the activation of 
other immune cells. A. fumigatus activates NK cells resulting in the production of 
low-levels of TNF-α, IFN-γ and lytic granules and release of fungal DNA [58]. These 
cells are a major source of early IFN-gamma production in the lungs of neutropenic 
patient with IA causing higher expression of IFN-inducible chemokines and subse-
quently enhancing macrophage antimicrobial effects. Studies in mice-models also 
suggest a critical role of NK cells in the pulmonary clearance of A. fumigatus [59].

Interestingly, in a study by Santiago et al., down-regulation of NK cell activating 
receptors NKG2D and NKp46 and a failure of full granule release was observed on 
contact of NK cells with A. fumigatus hyphae [59]. They also reported A. fumigatus-
mediated NK cell immune-paresis which reduces cytokine-mediated response causing 
immune evasion during pulmonary aspergillosis [59]. Characterization of the clinical 
impact of NK cells in antifungal host immune response is still in its nascent stage as it 
involves complex interplay between multiple arms of the immune system [60].

6.7 Dendritic cells

Dendritic cells (DCs) bridge the innate and adaptive immune responses. They 
not only sense and patrol the lung environment but also initiate host response by 
antigen presentation which primes the T cell responses and causes cytokine secre-
tion. Immature DCs are phagocytic and constantly perform surveillance of the 
lung environment while expressing PRRs like TLR 1, 2, 3, 4, 6 and Dectin-1 on cell 
surface that recognize various pathogen-associated molecular patterns (PAMPs). 
After phagocytosis, A. fumigatus conidia have been reported to escape from DCs, 
whereas some species like A. terreus persist with long-term survival, protecting 
them from anti-fungal action [49].

Typically, DCs are of two types, the plasmacytoid (pDCs) which are IFNα (type 
I interferon)-producing cells with a significant role in antifungal response and 
Classical (cDCs) which remain in the lymphoid tissue and cross-present antigens to 
T cells [61]. There is considerable plasticity in the functional activity of pulmonary 
DCs depending on the morphology of invading fungus [62].

1. Although DCs internalize both conidial and hyphal form of A. fumigatus, 
internalization of conidia occurs by coiling phagocytosis while entry of hy-
phae occurs by zipper-type phagocytosis. Also, phagocytosis of conidia is via 
involvement of a C-type lectin receptor while CR3 together with FcγR mediate 
the entry of opsonized hyphae.

2. Cytokine production is also variable depending on the fungal morphotype as 
TNF-α response is seen to any fungal form, but IL-12 is produced on exposure 
to conidia, while IL-4/IL-10 upon phagocytosis of hyphae.
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3. The pulmonary DC transport Aspergillus fungal forms to the draining lymph 
nodes and spleen followed by functional maturation and eventual degradation 
for efficient antigen presentation.

4. The DCs also direct both local and peripheral T helper cell in response 
to fungus.

7. Interaction with the adaptive immune system

The adaptive immune response to Aspergillus infection is depicted in Figure 3.

7.1 Role of T-cells

Antigen-specific Th1 cells are crucial sources of IFN-γ mediated protective 
immunity to A. fumigatus [18, 58]. Peripheral blood of healthy adult donors has been 
found to have A. fumigatus specific effector/memory CD4 T cells with Th1 pheno-
type [63, 64]. A Th17 phenotype is noted in lung-derived Aspergillus-specific T cells 
[65]. IL-22 is produced by Th17 cells and has shown to play a crucial role in regulat-
ing Aspergillus induced asthma. [66]. Like neutrophils, Th17 responses represent a 
“double-edged sword”. During pulmonary fungal infections, the Th17 cell usually 
display a highly pro-inflammatory profile, which is detrimental to the infected host.

The Th2 cell-mediated immune responses along with Th1 and Th17 induces 
chronic pulmonary inflammation and lead to significant lung damage [67, 68]. This 

Figure 3. 
Adaptive immune response to aspergillus infection. Aspergillus spp. antigens are presented to naive T cells 
in peripheral lymphoid organs by dendritic cells and macrophages which further induces inflammation with 
coevolution of Th1, Th2, and Th17 response. B cells are also stimulated resulting in formation of anti-fungal 
antibody producing plasma cells.
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allows influx of macrophages followed by differentiation of both M1 and M2 sub-
types [69]. These macrophages and T cells play a key role subsequently promoting 
extensive remodeling of medium- and small-sized pulmonary arteries. Pulmonary 
artery pathology including an increase in intimal area, smooth muscle proliferation, 
calcification of elastic membrane, and narrowed arterial lumens is seen in those 
with fatal asthma [70].

In healthy subjects, a strong Treg response has been seen as a part of the normal 
physiological T-cell repertoire which counterbalances the A. fumigatus specific T 
cells [71]. This intriguing finding raises the possibility that colonizing A. fumigatus 
may selectively promote Treg responses and subsequently limit antifungal immune 
activity. Activation of indoleamine 2,3- dioxygenase (IDO) as a regulator of infec-
tion-linked tissue pathology is now being recognized as it acts via local tryptophan 
depletion, or generation of immunomodulatory metabolites. Interaction of TLRs 
with PAMPs induces IDO which regulates the inflammatory/anti-inflammatory 
status of the innate immune cell and modifies the local tissue microenvironment. 
There is also activation of GCN2, a T-cell stress-response kinase which senses amino 
acid starvation and impairs lymphocyte proliferation while enhancing polarization 
toward a Treg phenotype [72]. In patients of CF with ABPA, dysregulation of the 
IDO pathway is seen at both the genetic and transcriptional levels, leading to an 
imbalanced Th17/Treg with high Th2 polarization resulting in chronic inflamma-
tion and significant lung damage in response to A. fumigatus [73].

7.2 Role of B-cells

In a study by Montagnoli et al., the role of B cells and antibodies in the genera-
tion of antifungal immune resistance was studied in B cell-deficient (μMT) mice 
which were infected with A. fumigatus [74]. They reported that, although passive 
transfer of antibodies helped in fungal clearance, a compensatory increase in both 
innate and Th1-mediated resistance to infection was seen in μMT mice with asper-
gillosis. This suggests that in the absence of opsonizing antifungal antibodies, the 
nature of the interaction between the innate immune cells and with fungi may be 
modified with subsequent development of long-lasting antifungal immunity [74].

Chen et al., demonstrated that basophil interaction with IgD bound antigens 
and activation of TLRs induces expression of B-cell-activating factor (BAFF), 
an important regulator of B-cell activation, proliferation, and immunoglobulin 
production. This results in IgG and IgE production by B cells, pointing to a role of 
basophils in adaptive immune responses [75]. In a study by Boita et al. stimulation 
of basophil membrane by Aspergillus resulted in upregulation of BAFF expression 
in patients with SAFS and ABPA. These patients had high IgE suggesting the role of 
basophils in polyclonal IgE production [76].

8. Role of the microbiome

Host immune responses are influenced by changes in the gut microbiome. Short-
chain fatty acids (SCFAs) produced by the gut microbiome are recognized by innate 
immune cells like macrophages and neutrophils expressing G-coupled protein 
receptor GPR43 [77]. The gut microbiome also plays a crucial role in anti-Aspergillus 
host defense by coordinating lymphocyte subsets at the mucosal level in distant 
organs such as the lungs. Although, fungal microbiome compromise <0.1% of total 
microbiome, fungal cell components such as β-glucans may influence immune 
responses as perceived by their role in autoimmune diseases [78]. In-vivo studies in 
mice have revealed that intake of SCFA (propionate/butyrate) or supplementation 
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of diet with fermentable fibers which increases SCFA producing bacteria, increases 
the generation of DCs and macrophages in the lung and bone marrow with 
increased phagocytic capacity [79–81]. These alterations also reduce the ability to 
prime cells toward Th2 responses lowering DC ability to induce Aspergillus-allergic 
inflammation [82].

The intestinal segmented filamentous bacterium (SFB) have been shown to 
induce Th17 cells producing IL-17 and IL-22 in the lamina propria of the gut and can 
even regulate pulmonary adaptive immune response by increasing Th17 responses 
in the lung [83, 84]. However, it is important to determine whether lung microbi-
ome also has similar Th17-polarizing ability which can influence anti-Aspergillus 
host response.

It has also been observed that in germ-free mice, the absence of commensal gut 
microbiota leads to increase susceptibility to pulmonary viral infections. Hence, 
the gut microbiome can influence pulmonary immune responses by release of type 
1 IFN [85, 86]. Intestinal colonization of microorganism is necessary for cytotoxic 
activity by NK-cell, CD8+ T-cell clonal expansion, and production of specific 
antibodies [85].

Recently, innate lymphoid cells (ILCs) have emerged as an important cell popu-
lation that has the capacity to synchronize microbiome-related immune regulation 
[87]. ILCs can express functional TLR2 which on stimulation induces IL-2 produc-
tion, subsequently increasing the expression of IL-22, enhancing the allergic airway 
responses induced by Aspergillus spp [88]. It has also been observed that commensal 
bacterial limit the production of serum IgE levels which directly influences bone 
marrow - basophil precursors, leading to increased allergic airway responses [89].

The treatment of diseases like COPD with steroids and bronchodilators, may 
also alter the microbiome [90] which can subsequently increase the risk of colo-
nization and infection by Aspergillus spp. In patients with Influenza, significant 
changes in the lung microbiome have been observed with a relative abundance of 
Firmicutes and Proteobacteria more specifically, Pseudomonas spp., which contrib-
utes to secondary invasive infections by Aspergillus spp. [91, 92]. Other factors like 
antibiotic exposure can also influence the micro-environment of the microbiome, 
which can affect the pulmonary immune responses to Aspergillus causing allergic 
airway diseases [93]. In patients with CF, interaction between fungal and bacterial 
pathogens and their biofilms may influence pathogenicity which can be observed 
by significant decrease in Aspergillus in the sputum on treatment with anti-pseudo-
monal antibiotics [94, 95].

9. Genetic susceptibility to aspergillosis

The genetic polymorphisms within pattern recognition receptors PRRs (TLR1, 
TLR2, TLR4, TLR5, TLR6, TLR9, Dectin-1, Dectin-2, DC-SIGN, MASP, MBL, PTX-
3 surfactant protein-A2 and plaminogen) cytokines (IL1, IL10, IFN- γ, CXCL10, 
ARNT2,) and their receptors (CX3CR1 and IL-4Rα) is depicted in –Table 2.

10. Conclusion

The clinical spectrum of Aspergillus related infections depends on the host 
immune status ranging from allergic manifestations in immunocompetent atopic 
individuals to invasive disease in immunosuppressed individuals. Various compo-
nents of the innate and adaptive immune system form an intricate network modulat-
ing host response to Aspergillus exposure. Many future studies are required to study 
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Gene Function SNP position Disease 

condition

Reference

Pattern Recognition receptors (PRRs)

TLR1 TLR1 forms heterodimer 
with TLR2 and facilitate the 
fungicidal activity by various 
oxidative pathways

239 C/G [80 R/T]
743 A/G [248 S/N]
1063 A/G

IA [96]

TLR 2 TLR-2 act as PRR for 
Aspergillus spp. Antigens and 
activate innate immune cells.
Further downstream 
signaling via TLR2 promote 
the fungicidal activity 
by various oxidative 
pathways which lead to 
proinflammatory cytokines 
release.

Arg753Gln (G + 2258A) 
polymorphism affects 
the TIR domain of 
TLR-2 and impairs its 
functional activity.

IA [97]

TLR4 TLR4 promotes fungicidal 
activity

[299 D/G] 1363 C/T
[399 I/T] 1063 A/G
[299 D/G]

IA after 
HSCT 
[EORTC]
CCPA

[38, 98, 99]

TLR5 TLR-5 induction causes 
increase in expression of 
pro-inflammatory cytokines

1174C T (STOP codon) IA [100]

TLR6 It promotes IL-23 release and 
a subsequent Th17 response.

745 C/T [249 S/P] IA after 
HSCT 
[EORTC]

[96]

TLR9 It recognizes unmethylated 
CpG DNA and induces 
innate immune responses.

1237 C/T [Promotor] ABPA [98]
[101]

Dectin-1 Dectin-1 is act as a PRR, 
which is present on myeloid 
cells surface and expressed 
by DCs and macrophages. It 
is specialized for recognition 
of β-1,3-glucan of fungal 
species.
It leads to production of 
chemokines and cytokines 
and causes recruitment of 
neutrophil recruitment and 
ROS production.

Y238X polymorphism
[Stop Codon 
Polymorphism]

IA [102]
[103]
[104]

Dectin-2 Dectin-1 is act as a PRR, 
which is present on 
plasmacytoid dendritic cells 
(pDCs). It is specialized for 
recognition of α-mannans of 
fungal species.
It leads to cytokine 
production, extracellular 
trap (pET) formation and 
ROS production.

(CLEC6A – A/G) 
[Intron]
(CLEC6A - C/T) 
[Intron]

IPA [104]

DC-SIGN DC-SIGN is a CLR. It 
recognizes galactomannans.

336 A/G [promoter]
c.898 A/G [3′-UTR]
c.74928 C/T [3′-UTR]
IVS2 + 11 G/C [Intron]

IPA [104]
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Gene Function SNP position Disease 

condition

Reference

pentraxin 
(PTX3)

PTX3 is a soluble 
opsonin. It is produced by 
phagocytes that facilitates 
microbial recognition and 
phagocytosis of conidia.

+281A/G[Intron 1]
+734A/C (D48A) 
[Exon 2]
+1449A/G [Intron 2]

IA [105]
[106]

Mannose-binding 

lectin-associated 

serine protease 

(MASP2)

MASP binds directly to 
Aspergillus fumigatus and 
promote complement 
activation and phagocytosis

380 A/C [D120G] IA [107]

MBL MBL is a soluble PRR. It 
opsonizes the carbohydrate 
moieties of fungus 
and activates the lectin 
complement pathway using 
the MASPs and induces the 
release of proinflammatory 
cytokines.

868 C/T [52 C/R]
1011 A/G [Intron]
868 C/T [52 C/R]

CCPA
ABPA
CNPA

[108–113]

Plg Plasminogen is produced by 
phagocytes that facilitates 
microbial recognition.

28904 A/Ga [472 N/D] IA [114–116]

SFTPA2
surfactant 
protein-A2

1660 A/G [94 R/R]
1649 C/G [91 A/P]
1492 C/T [Intron]

ABPA [117, 118]

Cytokines

CXCL10 It is an ‘inflammatory’ 
chemokine. It binds to 
CXCR3 and mediate 
leukocytes recruitment such 
as eosinophils, T cells, NK 
cells and monocytes.

11101 C/Ta 
[Downstream]
1642 C/Ga [3′ UTR]
1101 A/Ga [Promotor]

IA [119]
[120]
[121]

ARNT2 It regulates the activity and 
differentiation of phagocytic 
cells like macrophages and 
lymphocytes.

80732053 [Intron] IA [122]

IFN-ɤ It promotes differentiation 
of Th1 response

1616 C/Ta [Promotor]
1082 A/G [Promotor]

IA [123]

IL-10 IL-10 plays a significant 
role in the development of 
atopy. It inhibits the activity 
of Th1 cells, NK cells, and 
macrophages which are 
essential for clearance of 
fungus.

2068 C/Ga [Intron]
1082 A/G [Promotor]
1082 A/G − 819 
C/T − 592 A/C 
[Promotor]
1082 A/G [Promotor]

IA
ABPA

[124]
[125]
[126]

IL-4R alpha IL-4 released by T cells binds 
to the IL-4 receptor (IL-4R) 
on B cells resulting in B cell 
proliferation and IgE isotype 
switching.

4679 A/C/G/T [75 
I/L/F/V]

ABPA [127]

Cytokine’s receptors

TNFR2
TNF receptor 
type 2

TNFR2 (p75) receptor is 
expressed by T regulatory 
cells for survival during 
clonal expansion.

322 [Promotor] IPA [107]
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the association and impact of the complex interactions between the gut/pulmonary 
microbiome and the immune system in Aspergillus-related diseases. An understand-
ing of the immune pathogenesis of aspergillosis can help in the development of 
strategies targeting Aspergillus itself as well as pulmonary or systemic immunity by 
influencing the host immune system, the microbiome and/or its metabolites.
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Gene Function SNP position Disease 

condition

Reference

Interferon 
regulatory factor 
- 4 (IRF4)

It regulates the NFκB 
pathway and cell 
proliferation and modulates 
the differentiation of 
different DC and Th17-
mediated immune responses 
against Aspergillus fumigatus.

rs12203592 IA [128]

CX3CR1 Modulates the interaction 
of fungal pathogens with 
immune phagocytes.

39286825 [Intron]
39293757 [Intron]

IA [122]

TLR-Toll-like receptor, IL – Interleukin, PRR – Pathogen Recognition Receptor, Th – T helper cells, DC-SIGN -  
Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin, PTX3- Pentraxin, MASP2 - 
Mannose-binding lectin-associated serine protease, MBL - Mannose-binding lectin, CXCL - chemokine (C-X-C 
motif) ligand, ARNT2 - Aryl hydrocarbon receptor nuclear translocator 2, IL-4R alpha - Interleukin 4 receptor 
alpha, TNFR2 - TNF receptor type 2, IRF4 Interferon regulatory factor - 4, CX3CR1 - CX3C chemokine receptor 1, 
IA- invasive aspergillosis, IPA- invasive pulmonary aspergillosis, CCPA- Chronic cavitary pulmonary aspergillosis, 
ABPA – Allergic bronchopulmonary aspergillosis, CNPA – Chronic necrotizing pulmonary aspergillosis, HSCT- 
Hematopoietic stem cell transplantation, EORTC- European Organization for Research and Treatment of Cancer.

Table 2. 
Summary of immune system related genes mediating susceptibility to aspergillosis.
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