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Chapter

Using the Structural Kinome 
to Systematize Kinase Drug 
Discovery
Zheng Zhao and Philip E. Bourne

Abstract

Kinase-targeted drug design is challenging. It requires designing inhibitors that 
can bind to specific kinases, when all kinase catalytic domains share a common 
folding scaffold that binds ATP. Thus, obtaining the desired selectivity, given the 
whole human kinome, is a fundamental task during early-stage drug discovery. This 
begins with deciphering the kinase-ligand characteristics, analyzing the structure–
activity relationships and prioritizing the desired drug molecules across the whole 
kinome. Currently, there are more than 300 kinases with released PDB structures, 
which provides a substantial structural basis to gain these necessary insights. Here, 
we review in silico structure-based methods – notably, a function-site interaction 
fingerprint approach used in exploring the complete human kinome. In silico meth-
ods can be explored synergistically with multiple cell-based or protein-based assay 
platforms such as KINOMEscan. We conclude with new drug discovery opportuni-
ties associated with kinase signaling networks and using machine/deep learning 
techniques broadly referred to as structural biomedical data science.

Keywords: kinase inhibitor, structural kinome, cysteinome,  
drug design and discovery, drug resistance, protein-ligand interaction fingerprint

1. Introduction

A kinase is an enzyme that catalyzes the transfer of the gamma-phosphate group 
of ATP to a specific substrate [1, 2]. The human kinome comprises 538 known 
kinases, and these play an important role in the signal transduction and regulation 
of cellular functions, such as cell proliferation and necrosis [3, 4]. Correspondingly, 
dysfunctional kinases are associated with a variety of diseased conditions, such as 
cancer, inflammatory disease, cardiovascular disease, neurodegenerative disease, and 
metabolic disease [5, 6]. Therefore, kinases represent important therapeutic targets to 
overcome these diseases [7] and have become one of the most potentially impactful 
target families [8–10]. Since the first kinase-targeted drug, imatinib [11], was approved 
by the US Food and Drug Administration (FDA) in 2001, a significant breakthrough in 
kinase drug design for cancer treatment [12], 63 small molecule kinase inhibitors have 
been approved by the FDA [13, 14] as of Feb. 12, 2021. These drugs provide a variety 
of disease treatments, such as for non-small cell lung cancer (NSCLC) [15], chronic 
myelogenous leukemia (CML) [16], rheumatoid arthritis [17], breast cancer [18], 
and acute lymphoblastic leukemia (ALL) [19]. However, in practice, the off-target 
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toxicities and other adverse effects, such as congestive heart failure and cardiogenic 
shock in some CML patients [20], require the further development of more effective, 
highly selective inhibitors [3].

Attaining such high selectivity is a daunting task since the inhibitor should bind 
to a specific primary kinase or selected kinases, yet all kinase catalytic domains share 
a common folding scaffold that binds ATP [21]. To validate selectivity, kinome-scale 
screening of lead compounds has been attracting more attention [22, 23]. Indeed, 
there are a number of experimental kinome-scale screening methods [22, 24], such 
as KinaseProfiler [25], KINOMEscan [26], and KiNativ [27]. Although kinase profil-
ing technologies are gradually maturing, they are expensive, especially for screening 
a large compound library against the whole kinome, which remains impractical.

With the availability of an increasing number of kinase structures, virtual 
structure-based drug screening provides a low-cost and effective way to filter a 
large compound library and identify the most likely compounds at an early stage of 
drug screening. Used concurrently with experiential profiling platforms, in silico 
methods provide early-stage kinome-scale drug screening. Based on structural 
insights, the atom-level binding characteristics of every compound can be revealed 
and can be used as a guideline for further compound identification and optimiza-
tion. Given the more than 300 kinases with released PDB structures, subtle differ-
ences have been found in the vicinity of the binding site where the adenine base of 
ATP binds, as well as binding sites away from the ATP binding site, such as in the C 
lobe of the kinase domain [28, 29]. This structural corpora provides insights toward 
achieving the desired selectivity.

In this chapter we describe the characterization of the whole structure kinome to 
facilitate drug development. Specifically, we use the function-site fingerprint method 
to analyze the structural kinome providing systematic insights into kinase drug 
discovery. With increased knowledge of kinase-driven signaling pathways new kinase 
targets are continuously being explored for related disease treatment. Looking ahead 
to structural biomedical data science, combining structure-based polypharmacology 
with machine/deep learning new challenges and opportunities are discussed.

2. Kinome-level profiling

Due to the common ATP-binding pocket, the kinase domain was thought to be 
undruggable prior to the 1990s [30]. With advances in protein- and cell-level experi-
mental techniques and an increase in structure-based knowledge of protein kinases, 
variation among different kinases became apparent [31]. However, possible specificity 
requires kinome-scale validation. Moreover, with the increased knowledge of kinase 
signal pathways, traditional “one-drug-one-target” models have been replaced by the 
acceptance of polypharmacology. Examples include the FDA-approved drug Crizotinib 
targeting ALK and Met for treating NSCLC, and Cabozantinib targeting VEGFR, 
MET, RET, FLT1/3/4, AXL, and TIE2 for treating thyroid cancer. Hence, kinome-level 
profiling is an important step in confirming the selectivity of multi-target drugs.

Multiple commercial platforms provide kinome profiling services with panels 
ranging from 30 to 715 kinases (Table 1) [1, 32, 33].

Apart from revealing off-targets, profiling inhibitors offers new opportunities 
for drug discovery [23, 34–39]. Through profiling, the target spectrum reveals the 
compound’s selectivity based on the coverage of kinases it hits, including unex-
pected off-target interactions, which is a cost-effective way of jumpstarting new 
kinase drug discovery [40]. For example, Druker et al. utilized an in vitro profil-
ing panel of 30 kinases to establish the selectivity of imatinib in 1996 [16]. Later 
scientists revisited the successful drug using a larger profiling panel and found that 
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imatinib has multiple off-targets in the human kinome. By utilizing the off-target 
interactions, imatinib can be repurposed for other diseases. Indeed, in 2008 the 
FDA approved imatinib as an adjuvant treatment to CD117-positive gastrointestinal 
stromal tumors (GIST) in adult patients [41, 42].

3. Structural kinome

Profiling the whole human kinome as a routine procedure can validate the selec-
tivity of any given compound by comparing the binding affinities, such as IC50 or Kd 
[10, 43]. Subsequently optimizing the compound toward the desired selectivity is the 
next critical step in early-stage drug discovery. This often begins with deciphering the 
kinase-ligand characteristics and analyzing the structure–activity relationships, such 
as confirming which part of the binding sites is nucleophilic/electrophilic, which 
sub-pocket is hydrophobic, or which amino acids can provide covalent interactions. 
These atom-level interaction details provide the basic principles by which to modify 
the functional groups of the given compound. Iteratively combining compound 
optimization with kinome profiling establishes lead compounds for further testing.

As of Feb. 2021, there are 304 kinases associated with 5208 PDB structures covering 
all kinase groups, i.e., AGC (276 structures), Atypical (255 structures), CAMK (587 
structures), CK1 (82 structures), CMGC (1428 structures), STE (296 structures), 
TK (1447 structures), TKL (335 structures), and other (493 structures) [44, 45]. 
The 3-D kinase structure corpus provides a basis for structural kinome-based drug 
discovery. Scientists can not only directly review the compound binding details against 
the specific target, but they can also compare nuances -similarities and differences - 
among different kinase targets. For example, in comparing the ATP binding mode, 
63 FDA-approved small-molecule kinase drugs can be divided into Type-I, II, III, or 
IV inhibitors [29, 46]. Similarly, based on the possible existence of a covalent interac-
tions, these kinase drugs can be divided into covalent (irreversible) inhibitors and 
noncovalent (reversible) inhibitors (Table 2) [47, 48]. Overall, the desired selectivity 
is achieved by utilizing every nuance of the different binding sites and accommodating 
the different sub-pockets of the binding sites among the different kinases [13, 46, 49]. 
As such, deciphering the whole structural kinome will be very useful in enhancing 
kinase inhibitor screening, optimization, and prediction. To this end, we introduce the 
alignment of the binding sites across the structural kinome and describe the character-
istics of the aligned binding sites for achieving the desired selectivity.

Providers Technologies Kinases Results Websites

Reaction biology HotSpot™ 
33PanQinase™

715 IC50 https://www.reactionbiology.

com

DiscoverRx KinomeScan 489 Kd/ IC50 https://www.discoverx.com

Thermo Fisher 

Scientific

Z′-LYTE

Adapta

>485 IC50/ EC50 https://www.thermofisher.

com

Eurofins 

Discovery

KinaseProfiler™ >420 IC50 https://www.

eurofinsdiscoveryservices.com

Luceome 

Biotechnologies

KinaseSeeker™ 

KinaseLite™

409 IC50 https://www.luceome.com

ActivX 

Biosciences

KiNativ™ >400 Kd/ IC50 https://www.kinativ.com

Table 1. 
Commercial kinase profiling service providers as of Feb. 28, 2021, based on the provider’s webpages.
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Zhao et al. developed a function-site interaction fingerprint (FsIFP) approach 
to align and delineate the structural human kinome [29]. The FsIFP approach 
describes protein−ligand interaction characteristics at the functional site using 1D 
fingerprints [50], which can be compared and contrasted. The approach consists 

Drug Type Mode PDB ID Drug Type Mode PDB ID

Imatinib II Reversible 1OPJ Brigatinib I Reversible 5J7H

Gefitinib I Reversible 4I22 Midostaurin I Reversible 4NCT

Erlotinib I Reversible 4HJO Neratinib I Irreversible 2JIV

Sorafenib II Reversible 4ASD Abemaciclib I Reversible 5L2S

Sunitinib I Reversible 2Y7J Copanlisib I Reversible 5G2N

Dasatinib I Reversible 3QLG Acalabrutinib I Irreversible —

Lapatinib I Reversible 1XKK Netarsudil I Reversible —

Nilotinib II Reversible 3GP0 Fostamatinib I Reversible 3FQS

Pazopanib I Reversible — Baricitinib I Reversible 4W9X

Vandetanib I Reversible 2IVU Binimetinib III Reversible 6V2X

Crizotinib I Reversible 3ZBF Encorafenib I Reversible —

Vemurafenib I Reversible 3OG7 Dacomitinib I Irreversible 4I24

Ruxolitinib I Reversible 4U5J Gilteritinib I Reversible 7AB1

Axitinib I Reversible 4AGC Larotrectinib I Reversible —

Bosutinib I Reversible 4OTW Lorlatinib I Reversible 5A9U

Regorafenib II Reversible — Entrectinib I Reversible 5FTO

Tofacitinib I Reversible 3LXN Erdafitinib I Reversible 5EW8

Cabozantinib II Reversible — Fedratinib I Reversible 6VNE

Ponatinib II Reversible 4C8B Pexidartinib II Reversible 4R7H

Trametinib III Reversible 7JUR Upadacitinib I Reversible —

Dabrafenib I Reversible 4XV2 Zanubrutinib I Irreversible 6J6M

Afatinib I Irreversible 4G5J Pemigatinib I Rreversible —

Ibrutinib I Irreversible 5P9I Pralsetinib I Rreversible 7JU5

Ceritinib I Reversible 4MKC Ripretinib II Reversible 6MOB

Idelalisib I Reversible 4XE0 Selpercatinib I Rreversible 7JU6

Nintedanib I Reversible 3C7Q Selumetinib III Reversible 4U7Z

Palbociclib I Reversible 2EUF Tucatinib I Rreversible —

Lenvatinib I Reversible 3WZD Avapritinib I Rreversible —

Cobimetinib III Reversible 4AN2 Capmatinib I Rreversible 5EOB

Osimertinib I Irreversible 4ZAU Tepotinib I Rreversible 4R1V

Alectinib I Reversible 5XV7 Trilaciclib I Rreversible —

Ribociclib I Reversible 5L2T

Table 2. 
63 FDA-approved kinase small molecule drugs as of Feb. 12, 2021. Columns 2–4 show that the inhibitor types 
(column 2), covalent interaction modes (column 3), and PDB IDs if the drug-bound structure is available in 
the PDB (column 4; “-” means the drug-bound PDB structure is unavailable).
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of three steps (Figure 1). First, preparing the structural kinome database. All the 
released PDB structures can be directly downloaded based on keyword search 
or the kinase enzyme index [44]. Additionally, there are a few kinase-specific 
webpages such as UniProt (https://www.uniprot.org/docs/pkinfam), KLIFS [45] 
(https://klifs.net/), and the kinase sarfari https://chembl.gitbook.io/chembl-
interface-documentation/legacy-resources#kinase-sarfari). Second, aligning the 
binding sites. The SMAP software [51], one sequence-independent binding site 
comparison tool, was applied to compare all of the binding sites. Third, encoding 
the interaction fingerprint. Given any protein-ligand complex, every involved resi-
due comprising the functional site is converted into a fingerprint string by using the 
predefined standards [52] for different residue-ligand nonbinding interactions such 
as van der Waals, aromatic stacking interactions, hydrogen-bond interactions, and 
electrostatic interactions [53]. Currently, there are a few open-source tools avail-
able, such as IChem [54] and PyPlif [55] that provide these data. The function-site 
interaction fingerprints are obtained by combining the aligned binding sites with 

Figure 1. 
(a) Kinase binding site surrounding the ATP binding cavity (PDB ID: 1 m17 as the template). (b). The 
occupied binding pocket of a type-I kinase inhibitor (PDB ID: 4i22). (c) the binding characteristics of a type-II 
kinase inhibitor (PDB ID: 2hyy); (d) the binding characteristics of a type-III kinase inhibitor (PDB ID: 4an2).
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the encoded interaction fingerprints. So far, the FsIFP strategy has been successfully 
applied to a number of different drug design and discovery projects [15, 56–58].

The FsIFP approach, which examines the specificity among binding sites has 
been explored to design high-selectivity kinase inhibitors. Beyond the ATP binding 
pocket, there are other binding subpockets to be validated [59], such as hydropho-
bic segment, allosteric segment, DFG motif area, and G-rich-loop region  
(Figure 1a). Corresponding to these binding regions, inhibitors are classified as 
Type-I, Type-II, and Type-III.

Type-I kinase inhibitors mainly bind to the ATP-binding site in the “DFG-in” 
conformation. To obtain stronger binding affinity and greater selectivity than ATP, 
besides occupying the ATP-binding space, Type-I inhibitors extend into different 
proximal regions, specifically referred to as the front pocket region, the hydropho-
bic pocket region, the DFG motif, or the G-rich-loop region [13, 59]. For example, 
Gefitinib is one Type-I drug for the treatment of non-small cell lung cancer (NSCLC) 
[60]. Its quinazoline scaffold forms hydrogen bonds with the hinge region like the 
adenine moiety of ATP (Figure 1b). More importantly, the 3-chloro-4-fluorophenyl 
fragment of Gefitinib extends into the hydrophobic pocket, and the morpholine 
derivative binds at the front pocket and forms polar interactions with residues Cys797 
and Asp800 (Figure 1b) [61]. In contrast, Type-II kinase inhibitor typically bind 
in the “DFG-out” conformation. Type-II kinase inhibitors extend into the allosteric 
pocket region beyond the ATP binding pocket. For example, Imatinib is a Type-II 
inhibitor to treat positive acute lymphoblastic leukemia (Ph + ALL) in children. Like 
Type-I inhibitors, there is a scaffold fragment (Figure 1c) occupying the space where 
the adenine moity of ATP binds. At the same time, the 4-(4-Methyl-piperazin-1-
ylmethyl) benzamide extends into the allosteric pocket. Type-III inhibitors occupy 
the allosteric pocket (Figure 1d), which is not so well conserved that attractive for 
designing non-ATP competitive kinase inhibitors. Fingerprints established through 
aligned structures provide detailed information on the binding sites occupied by 
Type- I, II, and III kinase inhibitors.

The other noteworthy aspect is the difference in amino acids at the same spatial 
position among the aligned binding sites, which is useful in obtaining the desired 
selectivity. Typically, structural kinome-guided studies have shown that there are a 
number of cysteine residues distributed around the binding sites [1, 21, 62, 63]. In 
Zhang et al.’s review, they identified over 200 kinases bearing at least one cysteine 

Figure 2. 
(a) Covalent binding mode of Afatinib (PDB id: 4g5j). (b). 63 positions bearing the accessible cysteines  
(PDB id: 3byu). The legend shows the amino acids and the corresponding spatial positions (purple balls).
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in and around the ATP binding pocket, thus highlighting the broad structural basis 
to improve the selectivity and binding affinity by covalently utilizing these non-
catalytic cysteines [21]. Currently, 7 covalent kinase inhibitors have been approved 
(Table 2). This class of inhibitors not only bind to the ATP binding pocket, but 
also hit nearby cysteine to form covalent interaction; Afatinib (Figure 2a) being 
one example through binding to Cys797. Similarly, the other 6 inhibitors all form 
covalent bonds with the corresponding cysteines located in the front pocket. Like 
Afatinib, Osimertinib, Dacomitinib, and Neratinib all have covalent interaction 
with Cys797 in the EGFR crystal structure (Figure 2a). Ibrutinib, Acalabrutinib, 
and Zanubrutinib all form covalent interactions with Cys481, targeting BTK. In 
their study, Zhao et al [63] identified 63 different amino acid locations bearing 
accessible cysteines through surveying the whole structural kinome (Figure 2b), 
speaking to the broad applicability of designing covalent kinase inhibitors.

4. Challenges and opportunities

Since the launch of the first kinase drug, Imatinib in 2001, kinase targeted drug 
discovery has been on a fast track. In the last six years, an average of eight small 
molecule kinase drugs have been approved per year. This tremendous success 
benefits patients, but also highlights our ability to achieve drug discovery outcomes 
[9, 64]. However, challenges still remain in the development of efficient, non-toxic 
kinase-targeted drugs [3].

Clinical adverse effects are one major challenge. For example, kinase drugs affect 
the digestive system and cause nausea, vomiting, and/or diarrhoea [65]. Further, 
most kinase inhibitors cause serious adverse effects, such as different degrees of 
cytopenia [66]. These side effects typically result from off-targets effects. To avoid 
such side effects, a highly selective drug is desired. Alternatively, adverse effect can 
be due to on-target toxicities involving the intrinsic mechanisms of the drugs [67]. At 
this point in the evolution of small molecule kinase drugs, novel compound scaffolds 
are needed to reduce adverse effect as much as possible. Maximizing the diversity of 
molecular scaffolds is critically important for extracting the novel compound early 
on. The increasing availability of panels of phenotypic assays may provide one strat-
egy to profile selectivity by combining virtual structure-based kinome screening, 
which can filter a huge compound library into a highly focused kinase library [68].

Another challenge is acquired drug resistance [58, 69]. In clinical practice, 
kinase-targeted drugs are frequently subject to drug resistance, which has become 
a primary vulnerability in targeted cancer therapy. The first difficulty is exploring 
resistance mechanisms due to the diversity of specific drug-binding mechanisms. 
For example, drug resistance of Erlotinib, which is one FDA-approved kinase drug 
used to treat patients with EGFR-overexpression induced NSCLC, is caused by the 
gatekeeper T790M mutation, which increases the binding affinity of ATP to the 
EGFR kinase [70]. In another example, Crizotinib was often found to be ineffective 
in the majority of patients after 1–2 years’ treatment against ALK-positive NSCLC 
due to the acquired ALK L1196M mutation, which decreased the binding affinity of 
Crizotinib [71].

Nevertheless, these challenges also provide unique opportunities to develop new 
approaches and applications. Currently, in vitro and/or in vivo kinome-scale and 
proteome-scale profiling methodologies have been merged into the drug design 
pipeline, which potentially provides a thorough understanding of targets and 
selectivity of kinase inhibitors. Combined with the diseases’ signal pathway, the 
target spectrum can be further applied to “one-drug-multiple-target” drug design. 
For example, Midostaurin is a multi-target kinase drug [72] used to treat adult 
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patients with newly diagnosed FLT3-mutated acute myeloid leukemia (AML). For a 
“multiple-drug-multiple-target” combination therapy strategy, Capmatinib (a MET 
inhibitor) and Gefitinib (an EGFR inhibitor) had been approved to treat patients 
with EGFR-mutated-MET-dysregulated – in particular, MET-amplified - NSCLC 
[73]. We can expect profiling methodologies will be further developed to cover the 
whole kinome and even the proteome.

In virtual drug design and discovery, the incorporation of machine/deep learn-
ing and structural biomedical data science are advancing compound screening, 
target validation, and selectivity improvement [74]. Currently, data science has 
become one of the fastest-growing disciplines and deep learning has been applied 
to drug synthesis, design, and prediction [75–77]. Moreover, there are a large 
number of kinase assay databases available. For example, a database from Merck, 
KGaA, with over 1.0 million data points (i.e., 4,712 compounds x 220 kinases). 
Merget et al. used it to train one virtual profiling assay model to support virtual 
screening, compound repurposing, and the detection of potential off-targets [37]. 
Here, we collate the free databases of available kinase-inhibitor activity  
(Table 3). It is worth noting that the ChEMBL Kinase SARfari database, which 
contains ~54,000 compounds, ~980 kinases targets, and the corresponding 
approximately 530 K structure–activity data points [78], has been used to predict 
kinome-wide profiling of small molecules [79–81]. Taken together, data-driven 
methods and applications will further experimental protocols and facilitate the 
drug discovery processes.

Provider Technology Coverage Resource website

Reaction 

biology

HotSpot™ 300 Kinases 

× 178 

Inhibitors

www.guidetopharmacology.org

ChEMBL 

Kinase 

SARfari

Collected from 

academic publications

~530,000 

data points

www.ebi.ac.uk/chembl

Eurofins 

Discovery

KinaseProfiler™ 234 Kinases 

× 158 

Inhibitors

www.guidetopharmacology.org

DiscoverRx KinomeScan ~440 

Kinases × 182 

Inhibitors

lincs.hms.harvard.edu

ActivX 

Biosciences

KiNativ™ (194 to 316) 

Kinases × 30 

Inhibitors

lincs.hms.harvard.edu

Table 3. 
Kinase-inhibitor interaction activity data resource.
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