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Abstract

Genomic instability is a condition that may be associated with carcinogenesis 
and/or physiological disorders when genetic lesions are not repaired. Besides, 
wild, captive, and domesticated vertebrates are exposed to xenobiotics, leading 
to health disorders due to cytogenotoxicity. This chapter provides an overview 
of tests to assess cytogenotoxicity based on micronuclei (MNi) formation. Bone 
marrow micronuclei test (BmMNt), peripheral blood erythrocyte micronuclei test 
(PBMNt), and lymphocyte cytokinesis blocking micronuclei assay (CBMN) are 
discussed. The most illustrative studies of these techniques applied in different 
vertebrates of veterinary interest are described. The values of spontaneous basal 
micronuclei in captive, experimental, and farm animals (rodents, hamsters, pigs, 
goats, cattle, horses, fish) are summarized. In addition, a flow cytometry technique 
is presented to reduce the time taken to record MNi and other cellular abnormali-
ties. Flow cytometry is helpful to analyze some indicators of genomic instability, 
such as cell death processes and stages (necrosis, apoptosis) and to efficiently 
evaluate some biomarkers of genotoxicity like MNi in BmMNt, PBMNt, and CBMN. 
The intention is to provide veterinary professionals with techniques to assess and 
interpret cytogenotoxicity biomarkers to anticipate therapeutic management in 
animals at risk of carcinogenesis or other degenerative diseases.

Keywords: Genomic instability, Micronuclei, MNi in erythrocytes, CBMN,  
Flow cytometry

1. Introduction

Genetic instability results from alterations induced by agents that severely 
damage DNA. The nature of the damage may be silent when it occurs in non-coding 
regions and therefore does not affect the cellular processes of organisms. Still, when 
damage occurs in key DNA segments, the biological functionality of cells, tissues, 
organs, and eventually organisms in a population is compromised [1]. In this sense, 
genotoxic and cytotoxic damage are indicators of genomic instability. Genotoxicity 
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involves changes in DNA structure such as aneugenic (loss of whole chromosomes) 
and clastogenic effects (loss of chromosome fragments); whereas cytotoxicity 
involves alterations in proliferation and cell cycle rate, as well as the magnitude and 
type of cell death (necrosis and apoptosis) [2, 3].

Various toxicological techniques can assess genotoxicity and cytotoxicity 
induced by physical, chemical, or biological agents. There are numerous models that 
can evaluate genotoxicity and cytotoxicity, ranging from biochemical and spectro-
photometric tests. These assays depend on sophisticated equipment and the use of 
expensive reagents and consumables, compared to the set of techniques presented 
here, which do not require expensive equipment and are accessible to any laboratory 
with an optical microscope and cell staining systems. Above all, these techniques 
provide a deep understanding of the biological and cellular mechanisms involved in 
each model [4].

Assays that record the number of micronuclei (MNi) and other nuclear abnor-
malities are very versatile, inexpensive, and can be used in a wide variety of in vitro 
and in vivo models. Various techniques are based on MNi formation with applicability 
in the veterinary field, starting from the theoretical principle described in mouse 
bone marrow [5, 6]. Different techniques were also developed, such as MNi formation 
in mouse peripheral blood erythrocytes [7, 8] and other mammals (primates, ungu-
lates, felines, and a wide variety of vertebrates, fish, birds, and amphibians) [9–11]. 
Also, MNi in lymphocytes by cytokinesis blockade (CBMN) is widely applicable in 
veterinary medicine because it can be developed both in cell lines and in almost any 
organism (humans, rodents, rabbits, fish, dogs, primates, etc.), whose entire blood 
volume allows extraction of at least 0.5 mL of whole venous blood [4, 12].

Despite these advantages, techniques based on MNi formation require manual 
counting with light or fluorescence microscopy. Therefore, reviewer training is crucial 
due to the time expenditure (2 to 4 hours per slide) and accuracy in distinguishing 
MNi and other cellular abnormalities [13, 14]. Besides, flow cytometry offers an 
alternative to reduce the time spent on the microscope by standardizing observations. 
Initially, this technique required lysing the cytoplasm to release MNi, and thus facili-
tate their identification [15, 16]. However, this prevents the observation of nuclear 
buds (NBUDs) nucleoplasmic bridges (NPBs), which are observed in binucleated 
cells [17]. Subsequently, flow cytometry was improved with image flow cytometry 
(IFC) techniques that efficiently and automatically record mono-, bi-, and polynucle-
ated cells with and without MNi, NBUDs, and NPBs, which is possible by combining 
the image flow cytometry technique with the machine learning approach [18].

2. Basis of the bone marrow micronucleus test (BmMNt)

In 1973, the bone marrow micronucleus test (BmMNt) was reported as being a 
more effective in determining chromosomal damage than the metaphase scoring 
method used at that time. Nevertheless, limitations of this method included the 
use of high concentrations of metaphase cells to quantify significant differences, in 
addition to the animal sacrifice requirement [19]. Then, in 1975 W. Schmid reported 
the principles of BmMNt, describing that MNi result from a malfunction in the cell 
division process, mainly in two different ways [5]:

Case 1: Acentric or fragment chromosomes do not migrate to the spindle poles in 
anaphase stage of cell division. Then MNi can be seen in the daughter cells.

Case 2: After one or more mitoses of exposed cells to mutagen agents, if the 
mitotic spindle is damaged, the nucleus of daughter cells could contain many MNi 
of a larger size than those produced in case 1.
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Schmid manuscript also describes erythrocytes derived from the bone marrow 
as the best cell type to perform the assay since distinguishing between immature 
erythrocytes (polychromatic) and mature (normochromic) erythrocytes is pos-
sible, considering immature erythrocytes remain in circulation for 24 to 48 hours, 
while mature erythrocytes remain for about 30 days [5].

2.1 Mammalian bone marrow erythrocyte micronucleus test (MEMT)

Chromosomal damage, genome instability, and cancer risk assessment are the 
main objectives of bone marrow erythrocyte micronucleus assay (BmMNt) [20]. Its 
robustness lies in the fact that it determines in a simple and relatively fast way the 
clastogenicity or aneugenicity of chemicals [21]. The mammalian erythrocyte micro-
nucleus test (MEMT) has been widely reported and reviewed by different research 
groups and government agencies. However, since its publication, more than 30 years 
of evidence was compiled to standardize the procedure to ensure its applicability. In 
addition, MEMT has been compared with other mutagenicity assays, which include 
the mutation in mouse lymphoma cells L5178Y, Salmonella typhimurium, sister chro-
matid exchanges, and chromosomal aberrations in Chinese hamster ovary cells [22].

The number of cells required for an appropriate genotoxicity analysis was 
defined by the statistical analyses of all the techniques used to evaluate MNi forma-
tion, including the MEMT technique [23, 24]. On the other hand, the preferred 
species for this technique are mice, rats, and Chinese hamsters. Therefore, in vivo 
testing is usually performed on rodent’s bone marrow erythrocytes. However, other 
mammals, in which the spleen does not filter efficiently micronucleated erythro-
cytes, are accepted if stain accuracy is evaluated [24–26].

3. Potential uses of peripheral blood micronucleus test (PBMNE)

The peripheral blood erythrocyte micronucleus test (PBMNE) is used for 
ecotoxicological studies, monitoring of health effects from anthropogenic con-
tamination, and genotoxic evaluation of pharmacological therapy administered 
in patients with chronic diseases [1]. Regarding the experimental procedure, mice 
are the most commonly used animals [2]. However, there are more animal models 
such as the rat and hamster [3] and others not as common like primates [4], birds 
[5], reptiles [6, 7], amphibians [8, 9], embryos [10], and fish [11]. Peripheral blood 
is the most versatile tissue for genotoxic and cytotoxic analysis. It is possible to use 
polychromatic and normochromatic erythrocyte conditions to explain the effects of 
myelosuppression and DNA damage [12]. Like all diagnostic tests, it has its limita-
tions, which must be considered to avoid false negatives. One of them is that it does 
not detect substances that do not produce fractures or anaphase lags (aberrations 
that do not imply the occurrence of acentric fragments, for example, translocations 
and inversions); it is also not valuable for cells exhibiting a low rate of cell division 
or when organ-specific or species-specific carcinogens are tested [13].

Therefore, if all industrialization processes have the potential to generate large 
amounts of genotoxic substances, it is necessary to implement new models, such 
as plants or animals, to evaluate whether a particular substance or agent is harmful 
in the short/long term due to its mutagenic, clastogenic or aneuploidogenic, and 
teratogenic properties. Furthermore, to define toxic doses with greater precision, 
studies in several bioindicator models and not only in one must be carried out [14]. 
For the selection of any organism (plant or animal) as a toxic biomonitor, its cost, 
convenience, sensitivity, and possible extrapolation to other organisms or situations 
must be justified [15].
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3.1 Peripheral red blood micronuclei assay

Peripheral blood was selected as a non-invasive sample to perform the MNi 
assay considering the invasive procedure implicated in a bone marrow sample. MNi 
are characterized by having a round or almond shape, with a diameter that varies 
from 1/20 to 1/5 (0.4 to 1.6 μ) of the average erythrocyte size (6 to 8 μ in diameter). 
William Henry Howell and Justin Marie Jolly identified MNi in erythrocyte precur-
sors at the end of the 19th century and described them as remnants of the nucleus 
of circulating erythrocytes. Therefore, they are called Howell-Jolly bodies [16]. 
Subsequently, Dawson described MNi in the bone marrow of patients with several 
pathologies, including deficiency of cobalamin and folates; thereafter, MNi were 
described in lymphocytes [17].

Young or polychromatic erythrocytes (EPC) lose ribosomes within 24 hours 
after enucleation but retain MNi; later, they reach maturity and are transformed 
into normochromatic erythrocytes (ENC). These are stained blue-gray with the 
Giemsa stain or red with acridine orange, facilitating their identification when they 
are counted in tests of short exposure periods [1, 18]. Under certain circumstances, 
micronucleated erythrocyte (MND) values are often altered. Regardless of the tis-
sue that is used in the MNi test, the data obtained are highly informative since it is a 
diagnostic tool to detect the loss of genetic material when these structures are iden-
tified in the cytoplasm of cellular compartment of the analyzed sample [19, 20].

3.2 Peripheral blood and mononuclear phagocytic system MNi test

The mononuclear phagocytic system (MPS), formerly called the reticuloendo-
thelial system, is responsible for eliminating old or altered red blood cells, including 
micronucleated cells. In addition, the MPS system plays a key role in regulating 
innate immunity and it is constituted by dendritic cells, macrophages, and mono-
cytes. The spleen, which is rich in macrophages, is the most sensitive detector for 
any red blood cell abnormality. By filtering the blood, the spleen eliminates foreign 
particles through phagocytic cells and destroys old erythrocytes or their fragments 
caused by structural changes that reduce their flexibility, making it difficult to pass 
through the microcirculation, undergoing cell lysis and splenic clearance [14, 21].

In mammals, two types of spleen are described, “defensive” and “storage.” The 
former is smaller in size, has less muscle, but is abundant in lymphatic tissue and 
sinusoids; the latter, is larger, scarce in sinusoids, rich in the red pulp, and stores a 
more significant amount of blood [21]. Nevertheless, some species have a “defen-
sive” spleen, which eliminates the abnormal erythrocytes in their entirety, making 
it impossible to observe MNi in peripheral blood. On the other hand, species with 
“storage” spleen are deficient in their phagocytic function and allow MNi to be 
observed at any time during the life of the species, as in the case of mice [14].

The number of MNi in peripheral blood is practically null in humans [22]. 
However, they can be observed in impaired splenic function secondary to patholo-
gies that directly affect it, for example, when patients have been splenectomized 
or were born prematurely. Since it is ethically not allowed to carry out biomonitor-
ing programs in humans, these type of bioassays provide the opportunity to test 
genotoxic agents [14, 17, 22].

The organism’s age influences the variability in the number of MND [23] dem-
onstrated when analyzing their frequency in splenectomized patients since adults 
showed a higher frequency than children [24, 25]. Similar results are described in 
rodent spermatids, where old mice and hamsters have more MNi than young ones, 
probably because genetic damage continually accumulates throughout the organ-
ism’s life [25, 26]. Some organisms present a higher frequency of MNi in juvenile 
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Group Species E / Ex Treatment (Doses) /Analyzed zone Frequency Total Erythrocytes Ref

Primates Capuchin monkeys
Cebus capucinus

E Captivity 20.5 ± 2.0 10, 000 [4, 14]

Common marmoset
Callithrix jacchus

Ex - Water 0.2 ml
- Methotrexate 2.5 mg/kg

- Cytosine arabinoside
3 mg/kg

8.0 ± 3.3
22.0 ± 5.7
31.2 ± 10.3

10, 000

Carnivores Cougar
Puma concolor

E Captivity 18.5 ± 0.7 10, 000 [14]

Tiger
Panthera tigris

E Captivity 20.5 ± 2.9 10, 000

Lion
Panthera leo

E Captivity 0.6 ± 0.1 10, 000 [28]

Rodents Guinea pig
Cavia porcellus

E Captivity 0.3 ± 3.0 10, 000 [28]

Yellow-necked mouse
Apodemus flavicollis

E Captivity 0.2 ± 0.01 2, 000 [3]

Common vole
Microtus arvalis

E Captivity 0.03 ± 0.01 2, 000

Mouse
Mus macedonicus

E Captivity 0.02 ± 0.01 2, 000

C57BL / 6 E Captivity 0.3 ± 0.1 2, 000 [29]

Chiropters Marines Bat
Pteronotus mexicanus

E Captivity 0.06 ± 0.04 1, 000 [30]

Common Bottlenose dolphin
Tursiops truncatus

E Captivity 24.3 ± 6.1 10, 000 [31]
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Group Species E / Ex Treatment (Doses) /Analyzed zone Frequency Total Erythrocytes Ref

Ungulates Beef cattle
Bos taurus

E Captivity 0.08 ± 0.2 3, 000 [32]

Sheep
Ovis aries

E Captivity 1.0 ± 0.7 3, 000 [32]

Horse
Equus ferus caballus

E Captivity 0.2 ± 0.3 3, 000 [32]

Birds Helmeted manakin
Antilophia galeata

E Captivity 1.1 ± 1.2 10, 000 [5]

Golden-crowned warbler
Basileuterus culicivorus

E Captivity 2.0 ± 1.2 10, 000

Gray-headed tanager
Eucometis penicillata

E Captivity 2.4 ± 1.6 10, 000

Flavescent warbler

Myiothlypis flaveola

E Captivity 2.0 ± 1.8 10, 000

Orange-fronted Parakeetaratinga canicularis Ex Mitomycin C
2 mg/kg

6.0 ± 3.3 10, 000 [33]

Reptiles Lizard
Tupinambis merianae

E Captivity 1.0 ± 0.2 1, 000 [6]

Caiman
Caiman latirostris

E Captivity 1.1 ± 0.7 1, 000 [7]
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Group Species E / Ex Treatment (Doses) /Analyzed zone Frequency Total Erythrocytes Ref

Amphibians American bullfrog
Lithobates catesbeianus

E Captivity 3.6 ± 2.8 1, 000 [34]

Ex Radiation
3.3 Gy

7.3 ± 3.1 1, 000

Frog
Physalaemus cuvieri

E Emas National Park 0.2 ± 0.6 1, 000 [9]

Lesser Treefrog
Dendropsophus minutus

E 0.2 ± 0.4 1, 000

Mole salamanders
Ambystoma sp.

Ex Cyclophosphamide
75.0 mg

6.4 ± 2 2, 000 [8]

Fishes Brown trout
Salmo trutta

E Gafo River 2.4 ± 1.9 1, 000
(renal erythrocytes)

[11]

E Trubia River 4.1 ± 1.3

Common carp
Cyprinus carpio

E Trasimeno River 0.5 ± 0.2 25, 000 [35]

Ex CH3COO2H
NaCIO
CIO2

0.8 ± 0.3
2.5 ± 0.5
1.7 ± 0.4

25, 000

Fish
Tilapia, sp.

E Xochimilco River 7.4 ± 5.7 10, 000 [36]

Astyanax bimaculatus Ex Cyclophosphamide
16 mg/ kg

2.0 ± 0.7 1, 000 [37]

Ex Vinblastine Sulfate
8 mg/kg

1.2 ± 0.6 24, 000

E: environmental, Ex: experimental

Table 1. 
Examples of experimental species used in the MNi erythrocyte test as environmental biomonitors.
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Figure 1. 
Human lymphocyte binucleated cells: a) Binucleated normal cell (BNC), b) Binucleated cell with micronucleus 
(MNi), c) Binucleated cell with nucleoplasmic bridge (NPBs), d) Binucleated cell with nuclear bud (NBUDs).

stages due to the immaturity of their nuclear phagocytic system; upon reaching 
adulthood, their system becomes efficient and prevents the visualization of MNi 
[14, 25].

3.3  Selection of a suitable peripheral red blood micronucleogenicity 
bioindicator

To properly select a biomonitor for the MNi test in peripheral blood, at least six 
MNi in a total count of 10,000 erythrocytes should be identified [25]. The analyzed 
tissue must meet the following requirements: be in constant division, have abun-
dant quantified cells, sufficient cytoplasm-nucleus relationship to identify MNi 
clearly, and a regular shape of the nucleus without lobes must be present to facilitate 
their observation [27]. This assay has been applied in a broad diversity of organ-
isms to take advantage of the available resources in the environment (Table 1). 
The investigations carried out by Dr. Zúñiga’s group concluded that the organisms 
with the best potential are felines, the capuchin monkey, and the atolero parakeet, 
among others [4, 14, 19, 38, 39].

4. The cytokinesis blocking micronucleus assay (CBMN)

The cytokinesis blocking micronucleus assay in lymphocytes (CBMN) was 
developed by a Ph.D. student more than 30 years ago [40], who anecdotally relates 
that while reviewing a biochemistry textbook [41]. He noticed that cytochalasin-B 
had the ability to block the action of actin in vitro cultures of human lymphocytes 
and thus obtain binucleated cells capable of recording clastogenic or aneugenic 
events resulting from exposure to xenobiotics. This biochemical principle is a 
fundamental aspect, enabling binucleated cells to remain in telophase (Figure 1). 
CBMN ensures that binucleated cell have undergone a single cell duplication in cul-
ture 72 hours after its initiation (Figure 1), making it possible to record cytotoxic 
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or genotoxic events before blocking cytokinesis based on the following biomarkers: 
micronuclei (MNi), nuclear buds (NBUDs), nucleoplasmic bridges (NPBs), as 
well as mononucleated, binucleated, trinucleated and tetranucleated cells, which 
are used to calculate the cell duplication index (NDI); also the number of cells in 
necrosis and apoptosis can be recorded to perform a complete analysis of genomic 
instability [42–44].

4.1  General procedure for the cytokinesis-block micronucleus (CBMN) assay in 
lymphocytes

The experimental procedure begins by extracting whole venous blood in hepa-
rinized tubes. According to the designed experiment, cultures are prepared with 
6.3 mL of RPM1–1640 medium supplemented with non-essential amino acids, 
0.2 mL of phytohemagglutinin, and 0.5 mL of whole venous blood incubated for 
44 hours at 37°C. After this time, between 3 and 6 μg/mL of cytochalasin-B is added 
to avoid the division of the cytoplasm (blocking cytokinesis), and incubation is 
resumed until 72 hours are completed (Figure 2).

Once the 72-hour incubation period is finished, cells must be fixed with Clarke’s 
solution and washed 3 to 5 times until a clear cell button is obtained. If necessary, 
impurities are removed with a trypsin solution. The cell button is transferred on 
slides and stained with eosin and methylene blue to record nuclear abnormali-
ties (Figure 1) in a total of 1000 binucleated cells and count in 500 cells those 
mononucleated, binucleated, trinucleated, and tetranucleated cells to calculate the 
cell proliferation index (NDI) and also record the number of cells in necrosis and 
apoptosis as indicated in the protocol [45, 46].

4.2  Application of the cytokinesis-block micronucleus (CBMN) assay in animal 
species

CBMN has been used to determine genomic instability in several models. 
Initially developed for human lymphocytes [47], it has been tested in other animal 

Figure 2. 
The general procedure of the cytokinesis-block micronucleus assay in lymphocytes.
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models of veterinary interest, such as cow [48–51], goat [52, 53], pig [54–56], rabbit 
[57, 58], horse [54], rodents [59], hamster cell lines [60], and rodent cell lines [61].

In most of the published articles presented in Table 2, only the MNi number 
was reported, eight included NDI, and only three took into account other nuclear 
abnormalities, such as NBUDs [50] and NPBs [49, 60]; no articles that considered 
the count of cells in necrosis and apoptosis were found.

CBMN is a valuable model for testing genomic instability effects in veterinary 
pharmacology experiments, such as the one performed in cows to test the mixture 
of an antiparasitic (cypermethrin) and a pesticide (chlorpyrifos), which reported 
16.1 ± 2.3 NBUDs and found no evidence of cytogenotoxicity compared to the 
gamma radiation exposure [50]. The cytotoxic potential of epoxiconazole and 
fenpropimorph was also evaluated in bovine lymphocytes, and findings showed no 
genotoxic effects, however, the cell proliferation index decreased [51]. Moreover, 
in a trial using the antibiotic enrofloxacin [49], authors found that by increasing 
the dose, the number of MNi also increased. Another study with dogs analyzed the 
effect of oral administration of cadmium oxide (10 mg/K), where no significant 
differences after administration for 3 and 28 days [56] were observed. Finally, it has 

Taxonomic 

Group

Order, Family

Species, 

common 

name

n CBPI MNi 

frequency

BN cells 

counted

Ref

Artiodactyla 
Bovidae

Bos primigenius 
Taurus, cow

20 1.45 12.3 ± 4 .1 500 [48]

3 1.57 ± 0.06 39 ± 2.5 1000 [49]

1 1.3 ± 0.03 11.0 ± 3.2 1000 [50]

2 1.28 ± 0.001 13.5 ± 0.71 1000 [51]

Capra, goat 3 ND 5 ± 2 500 [53]

Artiodactyla, 
Suidae

Sus scrofa, pig 5 ND 5.8 1000 [54]

3 8.33 ± 1.528 1000 [58]

Carnívora, 
Canidae

Canis canis, 
dog

? ND 35 ± 4 1000 [62]

20 1.67 ± 0.21 11.0 ± 3.29 1000 [55]

30 ND 4.61 ± 0.88 1000 [56]

Lagomorpha, 
Leporidae

Oryctolagus 

cuniculus, 
rabbit

5 1.55 ± 0.01 6.33 ± 0.94 2000 [57]

3 ND 5.0 ± 2.0 500 [53]

1 ND 6.8 1000 [54]

Perissodactyla, 
Equidae

Equus caballus/
horse

N/A * 1.914 ± 0.002 16.33 ± 0.298 1000 [60]

Rodentia, 
Cricedae

Cricetulus 

barabensis)/
Hamster

N/A ** 1.67 ± 0.016 3 ± 1 2000 [61]

Rodentia, 
Muridae

Mus musculus/
mice

6 ND 51 ± 2.16 1000 [59]

Mus musculus/
mice L-929

N/A ** 1.67 ± 0.016 3 ± 1 2000 [61]

Sample size (n), Cytokinesis proliferation block index (CBPI), Frequency of binucleated cells with micronucleus 
(MNi frequency), Number of binucleated cells counted (BN cells Counted).
*Chinese hamster ovary cells (CHO-K1).
**L-929 murine fibroblast cell line.

Table 2. 
CBMN studies in different vertebrates.
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been reported that loperamide reduces cell proliferation and produces a significant 
increase in the number of MNi [57].

In general, it has been established that the number of spontaneous MNi in 
bovines is 3 times higher compared to human lymphocytes [48]. On the other hand, 
CBMN in goat estimates a better dosimetry fit for gamma radiation than in humans 
and rabbits. However, pigs and horses also show an excellent dosimetry correlation 
against X-rays and gamma rays [52, 54, 63].

CBMN has shown that dogs as human pets are excellent sentinels of exposure to 
environmental factors [55], partly because canine lymphocytes are three times more 
sensitive than humans to radiation [62].

5. Flow cytometry

Flow cytometry is a technique that started as an immunological technique at 
the beginning; however, currently, it represents a tool to perform fast and multipa-
rametric analyses in molecular biology, microbiology, virology, toxicology, cancer 
biology, and infectious diseases that can affect any organism [1].

The equipment needed to perform flow cytometry is a cytometer. This is a 
machine capable of analyzing cells or particles mixed in a liquid solution that makes 
them pass one by one into tubes with a unique system of fluids. The positioning of 
cells in a line allows the exposure of every single cell to a laser light, which inter-
rogates each cell individually. Then, the interpretation is performed by a computer 
that analyzes the light as numeric and graphical data in a standardized format 
(*.fcs), which can later be read and analyzed by any flow cytometry software [1, 2].

For the flow cytometry data analysis, the first step involves standardizing the 
studied cell population. Then, the cohort points for the negative and positive 
phenotypic screening molecules should be identified in the selected cell population. 
To reach a better identification of the phenotypic molecules, it is necessary to use a 

Figure 3. 
Flow cytometry methodology. 1) Labelling of cells or particles with fluorescent molecules. 2) Cell mixture 
leaves the nozzle in droplets, laser beam strikes each cell or particle by the FSC detector, which identifies cell 
size, and the SCC detector, which identifies fluorescence/granularity/complexity. 3) Conversion of luminescent 
signals into numerical and graphical data to select the cell population according to its size and complexity. 
4) Detection of fluorescent markers in cells by a pseudocolor quadrant density plot: Negative cells without 
fluorescence (-/-). Positive cells to fluorescent marker 1(+/-). Positive cells to fluorescent marker 2 (-/+). 
Positive cells to both fluorescent markers (+/+).
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fluorescent positive control that can be a sample of cells from the same population 
with the maximal expression of the molecule; also, a negative control without a 
fluorescent signal should be considered (Figure 3) [2, 4].

To assess cell damage, the measurement of several indicators is available. In 
this context, cell viability is used as an indicator of cytotoxicity and involves the 
use of kits with contrast fluorescent colors (red and green). The viable cells will 
be the ones that have no damage at all, and they will be detected with a green color 
(495–515 nm); whereas cells with severe damage are discriminated by red brilliant 
(495–615 nm); the positive cells to both of the parameters, are in a process of early 
death, but still viable [64]. To be more specific in the cell death state, it is possible 
to define the apoptosis level using an annexin V/propidium iodide (PI) kit, which 
discriminates live cells by the absence to both fluorescent dyes; whereas the positive 
cells for only annexin V are in early apoptosis, while the positive cells for only PI are 
in necrosis; and the positive cells for both annexin V and PI dyes, are in frank or late 
apoptosis [65, 66].

5.1 Detection of MNi and other abnormalities by flow cytometry

Cytotoxicity and genotoxicity can be evaluated by flow cytometry. The initial 
approach to estimate genotoxicity by MNi detection is possible by ethidium monoa-
zide bromide (EMA) staining to label the chromatin of necrotic and mid/late-stage 
apoptotic cells. In addition, stripping of cytoplasmic membranes and incubation 
with the pan-nucleic acid dye SYTOX Green plus RNase to provide a suspension of 
free nuclei also allows detection of MNi [67, 68].

Some authors have used cytometric techniques to quantify MNi in normo-
chromatic and polychromatic erythrocytes, leading to a significant reduction of 
the counting time by 100 orders of magnitude and also reducing the number of 
experimental animals needed to perform the studies with the in vivo peripheral 
blood erythrocyte technique [67–69]. Flow cytometry is also used for counting MNi 
in bone marrow-derived erythrocytes and peripheral blood erythrocytes through in 
vivo experiments. Still, the most relevant advantage has been the adaptation of three 
approaches: flow cytometry, image recognition, and machine learning to detect 
both MNi and other nuclear abnormalities (NBUDs, NPBs) as well as necrotic and 
apoptotic cells, which opens a new perspective in the CBMN assay with lympho-
cytes [70–73].

6. Conclusions

The evolution of techniques that analyze genetic instability as micronuclei 
(MNi) and other cellular abnormalities has opened a new strategy to prevent 
cytogenotoxic effects on captive, farm, pet, and wild animals. On the other hand, 
these techniques contribute to better understand the pharmacology of drugs and 
the permissible environmental exposure levels to xenobiotics in laboratory studies.

BmMNt, PBMNE, and CBMN genomic instability tests have their sphere of 
applicability, advantages, and limitations. While BmMNt is mainly applied for in 
vivo experiments, its biomarkers are the end point, and it is not possible to follow 
up the effect for a long time. On the other hand, PBMNE allows daily monitor-
ing, especially in pharmacological, toxicological, and dosimetry experiments. 
CBMN is one of the most comprehensive MNi-based assays. Although it can only 
be performed in animal models, of which, collecting at least half a milliliter of 
intravenous blood is possible to record six biomarkers of genomic instability: MNi, 
NBUDs, NPBs, NDI, and cellular death (necrosis and apoptosis).
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