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Chapter

On the Use of Homogeneous
Polynomial Yield Functions in
Sheet Metal Forming Analysis
Mehmet Firat, Bora Şener,Toros Arda Akşen and Emre Esener

Abstract

Sheet metal forming techniques are a major class of stamping and manufacturing
processes of numerous parts such as doors, hoods, and fenders in the automotive
and related supplier industries. Due to series of rolling processes employed in the
sheet production phase, automotive sheet metals, typically, exhibit a significant
variation in the mechanical properties especially in strength and an accurate
description of their so-called plastic anisotropy and deformation behaviors are
essential in the stamping process and methods engineering studies. One key gradi-
ent of any engineering plasticity modeling is to use an anisotropic yield criterion to
be employed in an industrial content. In literature, several orthotropic yield func-
tions have been proposed for these objectives and usually contain complex and
nonlinear formulations leading to several difficulties in obtaining positive and con-
vex functions. In recent years, homogenous polynomial type yield functions have
taken a special attention due to their simple, flexible, and generalizable structure.
Furthermore, the calculation of their first and second derivatives are quite straight-
forward, and this provides an important advantage in the implementation of these
models into a finite element (FE) software. Therefore, this study focuses on the
plasticity descriptions of homogeneous second, fourth and sixth order polynomials
and the FE implementation of these yield functions. Finally, their performance in
FE simulation of sheet metal cup drawing processes are presented in detail.

Keywords: Homogeneous polynomials, yield criteria, finite element,
plastic anisotropy, cup drawing

1. Introduction

Sheet materials represent significant anisotropic behavior due to their
thermomechanical process history. Anisotropy states the variation of the mechani-
cal properties with direction. This material property is determined from tensile test
and it is calculated by dividing width plastic strain increments to thickness plastic
strain increments. From this definition, it is seen that anisotropy indicates the
resistance to the thinning. Therefore, it can be said that increasing anisotropy values
improves the deep drawability of the material. Two approaches are applied in the
description of the anisotropy. The first approach is the phenomenological approach
in which global material behavior is determined according to the average behavior
of all grains. The second approach is crystal plasticity which investigates the behav-
ior of one grain to determine the material behavior.
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In the phenomenological plasticity approach, the transition from the elastic
deformation to plastic deformation is defined with yield functions [1]. A yield
function establishes the relationship between principal stresses and yield stress of
the material. Plastic flow occurs when the yield function reaches a critical value
which is the yield stress of the material. Therefore, yield condition actually indicates
a state of equilibrium and it can be defined by the following equation:

F ¼ fy σð Þ � σy ¼ 0 (1)

where σ and σy denote the equivalent and yield stresses, respectively. Eq. (1)
defines a surface in three dimensional stress space and it is called as yield surface.
According to Drucker’s postulate [2], this surface must be closed, convex, and smooth
in order to establish a relationship between plastic strain increments and stresses. In
the literature, Tresca and von Mises are well known and have been most commonly
used yield criteria. However, these yield criteria are isotropic and they could not give
satisfactory results for sheet metal forming processes. Therefore, the usage of aniso-
tropic yield functions is required for representation of sheet metal behavior and
several anisotropic yield functions have been proposed by researchers. The first
phenomenological anisotropic yield function was proposed by Hill in 1948 [3]. Hill
added some coefficients to von Mises criterion to transform isotropic von Mises
criterion into an anisotropic form. Hill’s quadratic criterion could be used for both
plane stress (2D) and general stress (3D) states. The criterion has four coefficients for
2D stress state, and it has six coefficients for 3D stress state. These coefficients could
be obtained analytically according to stress or plastic strain ratios. Hill48 quadratic
criterion has a simple form and useful coefficient identification procedure. However,
this criterion could not simultaneously predict the variations of the stress and strain
ratios within the sheet plane. Therefore, it could not successfully define the plastic
behavior of highly anisotropic materials such as Al-Mg alloys, Ti alloys, etc. Different
type yield criteria have been applied to accurately describe the anisotropic behavior
of these materials. The most popular approach used to derive an anisotropic yield
criterion is the linear transformation method. In this method, Cauchy stress tensor or
the deviatoric stress tensor is transformed linearly, and an anisotropic yield function
is obtained by substitution of this transformed tensor in an isotropic yield function
[4]. Yld89 is one of the functions developed by this approach. Barlat and Lian [5]
applied linear transformation method to Hosford 1972 [6] isotropic yield criterion
and developed this anisotropic material model. The criterion has four coefficients and
it could be used for only 2D stress state. Then, Barlat et al. [7] extended this yield
criterion for 3D stress state and developed a criterion has six coefficients in 1991.
However, these yield criteria could not accurately describe the anisotropic behavior
of especially Al-Mg alloys. Another yield criterion based on linear transformation
approach was developed by Karafillis and Boyce [8] in 1993. Karafillis and Boyce
generalized Hosford’s yield function and proposed an isotropic yield function. Then
researchers applied to linear transformation approach and developed an anisotropic
yield criterion. They applied their developed yield criterion for modeling of AA2008-
T4 alloy and could successfully define the angular variations of both stress and plastic
strain ratios of the material. Barlat et al. have inspired by this method and developed
Yld2000 and Yld2004 yield criteria, respectively [9, 10]. From these models,
Yld2000 could only be used for plane stress condition, whereas the other could be
used for both plane stress and general stress states. Yld2004 criterion has 18 coeffi-
cients and it could successfully describe in-plane variations of plastic properties of
highly anisotropic aluminum alloys. These models are effective in the representation
of the anisotropic behavior. However, their parameter identification procedures con-
sist of complex nonlinear formulas and computation of the derivatives is difficult.
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Another method which is applied to derive anisotropic yield function is the
polynomial approach. Due to inability of quadratic Hill48 criterion, Hill suggested
that the usage of general homogeneous polynomials as yield functions in 1950 [11].
In the literature, firstly Gotoh [12, 13] applied this method and modeled the aniso-
tropic behavior of commercial Al-killed steel and Cu-(1/4)H sheets with fourth-
order polynomial yield function. Gotoh determined explicitly the coefficients of the
polynomial function for these materials and successfully predicted the angular
variations of the plastic properties. However, Gotoh did not take into account the
convexity of the yield surface in the parameter identification. This deficiency was
noticed by Soare et al. [14] and they proposed changes to Gotoh’s identification
procedure. This modification has contributed to the applicability of the polynomial
criteria and important results have been obtained.

In the present work, polynomial yield criteria, their modeling capability and
applications on the sheet metal forming simulations have been investigated. Article
consists of four sections. In Section 2, the theoretical background of the developed
polynomial yield functions are briefly explained. Then, applications of polynomial
criteria and results are presented. In Section 4, the main conclusions and findings
are summarized.

2. Homogeneous polynomial yield functions

It is seen from the literature that the second, the fourth, and the sixth-order
homogeneous polynomials have been used as yield functions. Therefore, the general
formulation of these functions are explained in this section.

2.1 Second-order polynomial yield function

Conventional quadratic Hill48 yield criterion can be defined as second-order
polynomial yield function (P2). The form of the criterion for plane stress state could
be written as follows:

P2 ¼ a1σx
2 þ a2σy

2 � 2a3σxσy þ 2a4σxy
2 (2)

a1, a2, a3, and a4 are function parameters and they can be determined based on
stress or plastic strain ratios. The equations related to stress and plastic strain
ratios are given in below. The coefficients determined with stress or strain based
definition are distinguished by subscripts σ and R, respectively.

a1_σ ¼ 1; a2_σ ¼
1

σ90

� �2

; a3_σ ¼
1

2
1þ 1

σ90

� �2

� 1

σb

� �2
 !

; a4_σ

¼ 2
1

σ45

� �2

� 1

2

1

σb

� �2

(3)

a1_R ¼ 1; a2_R ¼ r0 1þ r90ð Þ
r90 1þ r0ð Þ ; a3_R ¼ r0

1þ r0
; a4_R ¼ r0 þ r90ð Þ 1þ 2r45ð Þ

2r90 1þ r0ð Þ (4)

2.2 Fourth-order polynomial yield function

For plane stress state, the fourth-order polynomial yield function (P4) is
expressed as following:
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P4 ¼ a1σx
4 þ a2σx

3
σy þ a3σx

2
σy

2 þ a4σxσy
3 þ a5σy

4 þ a6σx
2 þ a7σxσy þ a8σy

2
� �

σxy
2

þ a9σxy
4

(5)

where a1, a2, a3 … .a9 are the material coefficients. In order to determine these
nine coefficients, nine experimental data are required. Direct approach for coeffi-
cient determination can lead to oscillations in the predictions of the plastic strain or
yield stress ratios. Therefore, Soare et al. [14] proposed a different coefficient
identification procedure and derived upper and lower bounds on coefficients to
obtain a convex and smooth yield surface. In this section, the coefficient identifica-
tion procedure developed by Soare is explained:

(i) Firstly, the first five coefficients are determined with explicit formulas are
given below:

a1 ¼ 1, a2 ¼ �4r0= 1þ r0ð Þ, a5 ¼ 1= σ90ð Þ4, a4 ¼ �4a5r90= 1þ r90ð Þ (6)

where r0 and r90 indicate plastic strain ratios (r-values) along rolling and trans-
verse directions, whereas σ90 denotes yield stress ratio along transverse direction.

(ii) The coefficient a3 is determined according to the Eq. (7).

a3 ¼ 1=σb
4

� �

� a1 þ a2 þ a4 þ a5ð Þ (7)

where σb indicates the biaxial yield stress ratio.

(iii) The coefficient a9 is determined according to Eq. (8)

a9 ¼
2=σ45ð Þ4r45
1þ r45

þ 1=σb
4

� �

(8)

where σ45 and r45 indicate the yield stress and plastic strain ratios along the
diagonal direction.

(iv) The coefficients a6 and a8 are determined with the minimization of the error
(distance) function given in Eq. (9).

E ¼ w1

X

2

i¼1

σθð Þpred � σθð Þexp
σθð Þexp

" #2

þw2

X

2

i¼1

rθð Þpred � rθð Þexp
rθð Þexp

" #2

(9)

where w1 and w2 are the weight coefficients for stress and plastic strain ratios at
the interval angles. In this minimization problem, interval angles could be 150-750,
300-600 or 22.50-67.50. After determination of the coefficients a6 and a8, these coeffi-
cients are checked for positivity and convexity of the yield surface. In order to obtain
convex and smooth yield surface, a6 and a8 must satisfy the following inequalities:

0≤ a6 ≤ 6
ffiffiffiffiffiffiffiffiffi

a1a9
p

, 0≤ a8 ≤ 6
ffiffiffiffiffiffiffiffiffi

a5a9
p

(10)

v) The coefficient a7 is determined with Eq. (11)

a7 ¼
2=σ45ð Þ4
1þ r45

� 2 1=σb
4

� �

(11)

Inequalities related to convexity and positivity conditions are given detailed in [14].
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2.3 The sixth-order polynomial yield function

The sixth-order polynomial yield function (P6) has 16 coefficients for plane
stress state and the form of the criterion is given below:

P6 ¼ a1σx
6 þ a2σx

5
σy þ a3σx

4
σy

2 þ a4σx
3
σy

3 þ a5σx
2
σy

4 þ a6σxσy
5 þ a7σy

6

þ a8σx
4 þ a9σx

3
σy þ a10σx

2
σy

2 þ a11σxσy
3 þ a12σy

4
� �

σxy
2

þ a13σx
2 þ a14σxσy þ a15σy

2
� �

σxy
4 þ a16σxy

6 (12)

The coefficients a1, a2, a6, and a7 are calculated explicitly and the equations are
given below:

a1 ¼ 1, a2 ¼ � 6r0
1þ r0ð Þ , a7 ¼ 1=σ90ð Þ6, a6 ¼ �6r90a7= 1þ r90ð Þ (13)

The remained coefficients are determined by minimization of the error function
given in Eq. (8).

3. Applications of polynomial yield functions

Three validation studies are generally performed in the literature in order to
evaluate the prediction capability of orthotropic yield criteria: These are the
description of the planar variations of plastic properties, the prediction of the earing
profile and number of ears in cup drawing test, and prediction of the thickness
strain distributions along the different directions in a drawn part, respectively.
Obtained results with polynomial yield functions are presented in below.

3.1 Description of the directional properties

Soare et al. [14] investigated the prediction capability of the polynomial yield
functions. They described the anisotropic behavior of AA2090-T3 with P4 and P6
yield criteria. Figures 1 and 2 show the P4 and P6 predictions of the angular
variation of plastic properties for AA2090-T3 alloy, respectively.

It is seen from Figures 1 and 2 that both criteria could simultaneously predict
the angular variations of stress and plastic strain ratio. In addition to that the pre-
dictions of P6 criterion were more successful than P4 criterion especially at interval

Figure 1.
Comparison of the predicted results from P4 criterion with experiment (a) stress ratio, (b) r-value.
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angles. Sener et al. [15] investigated the evolution of anisotropic behavior of Al5754
with P2 and P4 yield criteria. They determined the coefficients of the yield functions
at four different plastic strain levels and predicted the angular variations of yield
stress and plastic strain ratios. Then, researchers compared the predicted results
from yield criteria with experimental data for each plastic strain level.
Figures 3 and 4 show the comparison results for P2 and P4 criteria, respectively.

It is seen from Figures 3 and 4 that P2 criterion could only accurately predict the
variation of r-values in the sheet plane, while P4 criterion could predict both the
angular variations of stress and strain ratios. This result is related to the identifica-
tion procedures of the yield criteria. As it is declared in Section 2 that, P2 criterion
takes as input either stress or strain ratios. However, the coefficients of P4 criterion

Figure 2.
Comparison of the predicted results from P6 criterion with experiment (a) stress ratio, (b) r-value.

Figure 3.
Comparison of the predicted results from P2 criterion with experiment (a) stress ratio, (b) r-values.

Figure 4.
Comparison of the predicted results from P4 criterion with experiment (a) stress ratio, (b) r-values.
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are calibrated with both stress and strain ratios. In addition to description of the
planar anisotropy, researchers investigated the variation of the yield locus shape
with plastic strain. Figure 5a and b show the variation of yield locus contours with
plastic strain for P2 and P4 yield criteria, respectively.

It is seen from Figure 5 that the contours of the yield locus are changed with
plastic strain and this evolution is more pronounced in P4 criterion.

3.2 Prediction of the earing profile

Cup drawing is a test which is used for validation of an anisotropic yield crite-
rion. If material has a strong anisotropy, the height of the formed cup is not uniform
and a series of crests and valleys are observed around the cup perimeter. This
waviness in the top edge of a cup is called as earing and four, six or eight ears could
be occurred in a drawn cup depend on the degree of the anisotropy [16, 17]. Soare
et al. [14] investigated the prediction capability of polynomial yield functions on the
cup drawing test. They implemented P4 and P6 yield criteria into FE code ABAQUS
and performed FE analyses of the test. Researchers also studied the effect of ele-
ment type on the predictions and they carried out simulations with shell and solid
elements. After FE analyses, they predicted the number of ears, cup height, and
compared the numerical results with the Yld96 criterion and experiment. Yld96
criterion was selected as reference by the researchers due to involving the same
number of material coefficients of both criteria. Figures 6 and 7 show the geometry
of the drawn cup and the comparison of the predicted cup profiles from P4 and
Yld96 yield criteria with experiment for AA2090-T3 alloy.

It is seen from Figure 7 that P4 and Yld96 criteria could successfully predict cup
heights, however the predictions of P4 were closer to the experiment in the rolling
direction. Both criteria predicted two extra ears along the transverse direction (90°
and 270°). It was also observed that there are no significant differences between the
predictions of P4-2D, and P4-3D models. Researchers also investigated the capabil-
ity of P6 criterion on earing prediction and compared the predictions with Yld2004
and experiment. These comparisons are shown in Figure 8.

From the comparisons, it is observed that P6 criterion could accurately predict
both the number of ears and cup height. Another observation in this study is related
to Yld2004 and P6 predictions. Both criteria gave similar results and this shows that
P6 has higher capability in the modeling of the anisotropy.

3.3 Prediction of thickness strains in rectangular cup drawing

Another study related to polynomial yield functions was carried out by Sener
et al. [18]. They investigated the anisotropic behavior of AISI 304 stainless steel

Figure 5.
Variation of the yield locus contours with plastic strain (a) P2, (b) P4.
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with P4 yield criterion. Investigation was conducted on the uniaxial tensile test and
a rectangular cup drawing process. Criterion could successfully describe stress
anisotropy and r-value variations. Researchers implemented the criterion into
explicit FE code Ls-Dyna by using user defined material subroutines and performed
FE simulation of rectangular cup drawing process. They investigated the thickness
distributions and flange geometry. Figures 9 and 10 show the comparisons of the
numerical and experimental results in terms of the thickness distributions and
flange geometry of the cup.

It is seen from the Figures 9 and 10 that the predicted thickness distributions
and flange geometry matches well with the experimental results. Then, Sener et al.
[19] expanded the study [18] and studied the variation of anisotropy during plastic

Figure 7.
Experimental and predicted cup profiles from the fourth-order polynomial and Yld96 criteria for AA2090-T3 [14].

Figure 6.
Drawn cup [14].
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deformation experimentally and numerically. They carried out FE simulations of
same industrial part at different plastic strain levels (0.2%, 2%, 5%, and 18%) and
compared P4 predictions with experimental data. Figure 11 shows the comparison
of the predicted thickness distributions along the three directions with experiment.

It is seen from Figure 11 that different thickness predictions were obtained at
different plastic strain levels. After the comparison of the predicted thickness
results with experiment, researchers eliminated two strain levels and then they
investigated the flange geometry results (Figure 12).

Figure 9.
Numerical and experimental thickness distributions (a) rolling (RD) (b) diagonal (DD), (c) transverse
directions (TD).

Figure 8.
Experimental and predicted cup profiles from the sixth-eight order polynomial and Yld2004 criteria for
AA2090-T3 [14].
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Figure 12.
Comparison of the numerical and experimental flange geometry.

Figure 11.
Comparison of the predicted thickness distributions with experiment (a) RD, (b) DD, (c) TD.

Figure 10.
Numerical and experimental flange geometry.
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From the comparison of the predicted and experimental flange geometry results,
it is seen that numerical results were matched well with the experiment.

4. Conclusions

In the present study, homogeneous anisotropic polynomial yield functions, their
types, and application areas in the metal forming process were investigated. In the
literature, generally anisotropic yield functions derived from linear transformation
approach are used. These functions have high modeling capability and they could be
used for different materials. However, yield functions based on linear transforma-
tion approach have some disadvantages. They have complex coefficient identifica-
tion procedure and nonlinear formulas. Therefore, calculations of the first and
second order gradients of these models are difficult and it causes to difficulties in
the implementation of the models into FE codes. On the other hand, polynomial
yield functions have a generalized, simple structure and derivatives of these func-
tions could easily calculated.

It is seen from the studies carried out in the literature that researchers generally
use the fourth and the sixth order polynomial functions to model of the anisotropic
behavior of the materials. Based on the results obtained from the studies performed
in the literature, the following conclusions could be drawn:

a. Homogeneous polynomial yield functions have high modeling capability in
the description of anisotropic behavior.

b. Homogeneous polynomial yield functions could be used for both plane stress
and generalized stress state. This provides the flexibility to the polynomial
yield criteria.

c. Sixth-order homogeneous polynomial yield function could predict six or
more ears in a deep drawn cup.

d. Homogeneous polynomial yield functions could model body centered and
face centered cubic materials without the need of any exponent related to
crystallographic structure.

e. Apart from the linear transformation approach, polynomial models may not
satisfy convexity requirements for each stress state. Therefore, the user
should consider convexity conditions and has to investigate the model
parameters in terms of convexity and positivity conditions.

f. The modeling capability of the fourth-order polynomial yield function is
similar with Yld96 yield function, whereas predictions of the sixth-order
polynomial yield function close to Yld2004-18p model.
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