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Chapter

Flooding Fragility Model
Development Using Bayesian
Regression
Alison Wells and Chad L. Pope

Abstract

Traditional component pass/fail design analysis and testing protocol drives
excessively conservative operating limits and setpoints as well as unnecessarily
large margins of safety. Component performance testing coupled with failure prob-
ability model development can support selection of more flexible operating limits
and setpoints as well as softening defense-in-depth elements. This chapter discuses
the process of Bayesian regression fragility model development using Markov Chain
Monte Carlo methods and model checking protocol using three types of Bayesian p-
values. The chapter also discusses application of the model development and testing
techniques through component flooding performance experiments associated with
industrial steel doors being subjected to a rising water scenario. These component
tests yield the necessary data for fragility model development while providing
insight into development of testing protocol that will yield meaningful data for
fragility model development. Finally, the chapter discusses development and selec-
tion of a fragility model for industrial steel door performance when subjected to a
water-rising scenario.

Keywords: fragility model development, Bayesian regression, Markov Chain
Monte Carlo, fragility model checking, Bayesian p-value

1. Introduction

Traditional component pass/fail design analysis and testing protocol drives
excessively conservative operating limits and setpoints as well as unnecessarily
large margins of safety. Additionally, pass/fail testing tends to result in data short-
comings which must then be addressed using defense-in-depth elements. Con-
trarily, component performance testing and failure probability model development
can support selection of more flexible operating limits and setpoints as well as
softening defense-in-depth elements. The two major obstacles involved in develop-
ing a failure probability model, also known as a fragility model, center on devising
an optimum component performance testing protocol so that meaningful data can
be collected, and navigating the process of developing and testing an appropriate
fragility model.

This chapter will first discuss the process of Bayesian regression fragility model
development which includes model checking protocol. The foundation of fragility
model development is Bayesian in nature where both data and parameters have
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probability distributions, and we seek a model that establishes a relationship
between parameters and observables ultimately yielding a posterior probability
distribution. That is, the Bayesian method requires an aleatory model, a prior
distribution for the parameters of the aleatory model, and data associated with the
aleatory model. Then, using Bayes Theorem, the posterior distribution for the
model output can be obtained using Markov Chain Monte Carlo (MCMC) methods
to address complicated integration. Multiple models are then developed, and a
rigorous process is used to check model validity to help identify the most appropri-
ate model. The model checking and comparison process uses multiple techniques
including three types of Bayesian p-values.

With a firm foundation for fragility model development, checking, and selection
established, the chapter then discusses component flooding performance experi-
ments associated with industrial steel doors subjected to a rising water scenario.
These component tests yield the necessary data for fragility model development
while providing insight into development of testing protocol that will yield mean-
ingful data for fragility model development. Finally, the chapter discusses the
development and selection of a fragility model for industrial steel door performance
when subjected to a rising water flood scenario.

2. Bayesian data analysis

Significant experience exists with fragility modeling focused on seismic fragility
model determination. In a seismic fragility model, the single vertical ground accel-
eration variable is used to completely characterize the failure probability of struc-
tures or components of interest. However, other observable parameters may be
important indicators for the potential of failure. Expanding upon the seismic exam-
ple, these observables could include the detailed characteristics of the earthquake
such as X, Y, and Z components of the ground motion; frequency of the waves; the
age of the component; the anchorage of the component; the specifics of the com-
ponent type; or any combination of the above.

Limitations found in these traditional fragility models include simplistic (single
“driving” parameter) and excessive conservatism. For complex flooding fragility
modeling requiring more observables, these issues will be avoided by moving to a
more flexible, data-informed approach—Bayesian fragility modeling through
phenomena-driven regression modeling. As stated by Box and Tiao, “Bayesian
inference alone seems to offer the possibility of sufficient flexibility to allow reac-
tion to scientific complexity free from impediment from purely technical limita-
tion.” [1].

From the Bayesian perspective, both data and parameters can have probability
distributions, and the task of Bayesian analysis is to build a model for the relation-
ship between parameters (θ) and observables (y), and then calculate the posterior
probability. The Bayesian method, therefore, relies on three items: an aleatory
model, a prior distribution for the parameter(s) of the aleatory model, and data
associated with the aleatory model. An aleatory model pertains to stochastic or non-
deterministic events, the outcome of which is described using probability. The
posterior distribution for the model output function is developed in accordance
with Bayes’ Theorem [2], which is generally written as:

p θjyð Þ ¼ p θð Þp yjθð Þ
p yð Þ (1)

where,
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• p θjyð Þ :Posterior distribution, which is conditional upon data (y) that is known
related to the hypothesis (θ);

• p θð Þ :Prior distribution, for knowledge of the hypothesis (θ) that is
independent of data (y);

• p yjθð Þ :Likelihood, or aleatory model, representing the process or mechanism
that provides data (y);

• p yð Þ :Marginal distribution, which serves as a normalization constant.

In summary, the above equation takes our prior knowledge about the
parameters and updates this knowledge with the likelihood to observe the data for
particular parameter values and gives the posterior probability. It essentially states:
posterior∝prior� likelihood

This process combines everything that is known about a particular data set and
model response to produce a posterior estimate of the output function’s probability
distribution.

Integration of functions plays an important role in Bayesian statistical analysis;
however, explicit evaluation of these integrals is only possible for a limited number
of special cases. Usually, problems will involve complex distributions and explicit
evaluation is not possible. Traditionally, statisticians would be forced to use
numerical integration or analytical approximation techniques. However, there are
now several powerful software programs that exist for Bayesian inference. One of
the most widely used by statistical practitioners is the BUGS (Bayesian inference
Using Gibbs Sampling) family of programs. The most popular packages from the
BUGS family are WinBUGS and OpenBUGS. There are several methods devised for
construction and sampling complex Bayesian posterior distributions. BUGS soft-
ware utilizes MCMC methods to determine the posterior [3].

MCMC is a general method based on randomly sampling values from a prior
distribution to approximate the posterior distribution p θjyð Þ. The sampling is done
sequentially, with the distribution of the sampled parameter depending on the value
from the previous step only, forming a Markov chain [4]. Eventually the Markov
chain will converge to a unique stationary distribution, the posterior distribution.
Therefore, the key to MCMCmethod is the approximate distributions are improved
at each step in the simulation, and after running the simulation long enough,
converging to the posterior distribution.

3. Model checking and comparison

After constructing a probability model and computing posterior distributions for
all estimated parameters, the next step of a Bayesian analysis includes checking that
the model adequately represents the data and is plausible for the purpose for which
the model will be used. There are multiple ways of assessing a model’s performance.
The approach selected is posterior predictive checking, a useful direct way of
assessing the fit of a model to various aspects of the data. Additionally, residual tests
are used for informal model criticism and outlier identification.

Posterior predictive checks are a primary form of Bayesian model checking used
to assess the fit of the model to various aspects of the data. The procedure is based
upon the following assumption: if a given model fits, then data simulated or repli-
cated under the model should be comparable to the real-world observed data the
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model was fitted to [4]. In other words, the observed data should be plausible under
the posterior predictive distribution. If any systematic differences occur between
simulations and the data, it potentially indicates that model assumptions are not
being met.

The model is checked for deviations from an assumed parameter form by means
of test quantities or discrepancy functions, T yjθð Þ, that depend on both data (y) and
parameters (θ). A check is made whether T yjθð Þ is compatible with the simulated

distribution of T ysimulatedjθ
� �

by calculating a Bayesian p-value [4]. Regarding the
choice of discrepancy functions, focus is given to diagnosing global lack of fit rather
than discovering outliers; a task given to residual calculations. A summary of can-
didate discrepancy functions considered is provided in Table 1. Note, to avoid
numerical errors for binomial models if p = 0 or 1, a small ε = 0.00001 is added in
the expressions.

Note that ideally model checking should be based on new data, although in
practice the same data is generally used for both developing and checking the
model. This means Bayesian p-values based on these checks tend to be conservative
[3]. However, this does not imply that posterior predictive checks lack value. Given
that tests are conservative, small (less than 0.05) and large (greater than 0.95) p-
values strongly suggest lack of fit. P-values closest to 0.5 indicate a high degree of
predictive capability [2]. The concept of Bayesian p-value is graphically represented
in Figure 1.

Residuals measure the discrepancy between the observed data and an assumed
model. Informal tests based on Pearson and deviance residuals can be used to
identify obvious assumption violations. Note that these analyses are generally car-
ried out informally in Bayesian application, since all residuals depend on θ and have
posterior distributions [6]. Therefore, they are not truly independent as required in
unbiased application of goodness-of-fit tests.

A standardized Pearson residual is defined as:

Name Definition Binomial Expression

χ2
T y, θð Þ ¼

P

i

yi�E yi jθð Þð Þ2
Var yi jθð Þ

P

i

yi�npið Þ2
npi 1�pið Þþε

Likelihood ratio
T y, θð Þ ¼ 2

P

iyi log
yi

E yi jθð Þ

� �

2
P

iyi log
yiþε

npiþε

� �

Freeman-Tukey
T y, θð Þ ¼

P

i
ffiffiffiffi

yi
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E yijθ
� �

q
� �2

P

i
ffiffiffiffi

yi
p � ffiffiffiffiffiffiffi

npi
p� �2

Table 1.
Discrepancy functions used for model checking [5].

Figure 1.
Depiction of the Bayesian p-value predictability.
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ri ¼
yi � E yijθ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var yijθ
� �

q (2)

Where is the E yijθ
� �

expected value and Var yijθ
� �

is the variance. Since it is
considered a function of random yi for a fixed θ, Pearson residuals should generally
take on values between �2.0 and 2.0 [6]. Values falling outside this range would
represent outliers.

Residuals can also be based on a saturated version of the deviance., defined as:

Ds θð Þ ¼ �2 log p yjθð Þ þ 2 log p yjθ̂s yð Þ
� �

(3)

where θ̂s yð Þ are the saturated estimates. Models for which saturated deviance is
appropriate, such as Poisson and binomial, the rule of thumb for a rough
assessment of the fit is the mean saturated deviance should approximately equal
sample size n [3].

Following model checking, comparisons can be made on the performance of
alternative hypothesized models. It is not an uncommon occurrence for more than
one probability model to provide an adequate fit to the data. These models may
differ in prior specification, link function selection, or which explanatory variables
are included in the regression, to name a few. Therefore, an analysis should not only
examine models to see how they fail to fit reality but compare how sensitive the
resulting posterior distributions are to arbitrary specifications using any number of
model comparison or performance metrics.

There are a variety of Bayesian model comparison methods, including methods
based on information criteria, which are measures of the relative fit. Deviance
Information Criteria (DIC) is a measure of model fit that can be applied to Bayesian
models and is applicable when the parameter estimation is done using techniques
such as Gibbs sampling. It is particularly useful in Bayesian model selection prob-
lems where the posterior distributions of the model have been obtained by MCMC
simulation. DIC is a generally straightforward computation, and no additional
scripting is needed to calculate it in OpenBUGS, making it the comparison approach
selected for this work.

As a rule of thumb, the model with the smallest DIC usually indicates the better
fitting model. Note, however, only differences between models in DIC are important,
not strictly absolute values. While it is not easy to define what constitutes an impor-
tant difference, the following rough guide can be used for DIC comparison [3]:

• Differences greater than 10 can be used to rule out the model with the higher
DIC.

• Differences between 5 and 10 are substantial.

• Differences less than 5, there is uncertainty about choice of model. Other
methods may need to be considered, especially if models make different
inferences.

Note that these considerations include negative values for the DIC, which occur
in cases where the deviance is negative. It must also be noted that since DIC is a
measure of relative fit, a model with the smallest DIC can still be a poor fit for the
data [2].
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4. Experiments

The objectives of component flooding experiments are to test individual com-
ponent performance in flooding scenarios and acquire the necessary data to develop
component fragility mathematical models. To conduct rising water experiments,
the Portal Evaluation Tank (PET) was designed and built to facilitate testing.

Figure 2.
PET tank and piping.

Test Depth (in.) Flow rate (gal/min) Temperature

(F)

Notes

1S 46.1 1148 67.4

2S 39.0 1130 63.3

3S 37.1 1120 63.1

4S 37.8 979 63.0

5S 37.5 1133 63.0

6S 37.6 604 63.0

7S 37.7 593 63.0

8S 37.1 598 63.1

12S 44.5 975 64.0

— 25.7 248 61.6 Non-Failure

— 17.0 117 59.0 Non-Failure

— 27.4 285 59.3 Non-Failure

— 30.9 397 59.4 Non-Failure

— 32.3 484 59.6 Non-Failure

— 24.3 247 60.2 Non-Failure

— 34.8 593 60.7 Non-Failure

— 37.5 696 61.0 Non-Failure

— 38.0 734 61.2 Non-Failure

13S 41.4 1025 61.3

Table 2.
Steel door performance results [5].
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The PET is a steel semi-cylindrical tank with a height and diameter of 8 ft. Its
design includes a 62.4 ft2 opening for installation of components to be tested, a front
water tray with a 90-degree v-notch weir and the ability to hold up to 2,000-gal of
water. The PET is connected through 12 in. PVC pipes to a 60 HP pump, which is
located inside an 8,000 gal water reservoir, to support variable inlet flow rates up to
�4,500 gpm. Additionally, the design of PET, once filled, can rely on the pump and
pressure and air relief values to provide hydrostatic head to simulate depths up to
20 ft. The PET, along with piping, is shown in Figure 2.

Accompanying instrumentation and measurements included electromagnetic
flowmeters for upstream and downstream flow rates and two pressure transducers
for averaged water depths and temperature. The PET can also measure small leak-
age rates that do not exceed the v-notch weir barrier using an ultrasonic depth
sensor. The top of the PET is also equipped with pressure and air relief valves and a
digital pressure gauge to measure pressures for simulated hydrostatic head once the
PET is filled.

The components tested were industrial steel doors oriented to swing outwards,
away from the tank interior. A strengthened wall was built to support the
doorframe, ensuring stability. The aim of these experiments was to test the door to
failure only and not the supporting wall structure. The experimental approach
subjected each steel door to a water rising scenario until catastrophic failure of the
door occurred or the leakage rate equalized with the filling rate. A compiled sum-
mary of the steel door results, including non-failure tests, are given in Table 2.

5. Model development

Having conducted the flooding experiments and collected observational data on
door failures, models where developed that analyzed the fragility of components
using explanatory variables. An explanatory variable is a type of independent vari-
able that is possibly predictive of a component’s fragility in a regression analysis. For
the probability of door failure during a flooding event, water depth, flow rate, and
temperature may be leading indicators of failure and information about these
explanatory variables is incorporated into the Bayesian inference.

The mathematical modeling uses the discrete binomial distribution to represent
failure of a door installed in the PET during a rising water flood event. This is a
commonly used model for failure on demand with key parameters p, the probability
of failure on demand, and trials n = 1 (only a single door is potentially challenged
during testing). The fragility model in this case looked at seven possibilities: each of
the variables alone driving the model to failure, a combination of two variables
driving the model to failure, and all three variables driving the model to failure. The
above cases are modeled as:

Logit pð Þ ¼ interceptþ aD (4a)

Logit pð Þ ¼ interceptþ bF (4b)

Logit pð Þ ¼ interceptþ cT (4c)

Logit pð Þ ¼ interceptþ aDþ bF (4d)

Logit pð Þ ¼ interceptþ aDþ cT (4e)

Logit pð Þ ¼ intercept þ bF þ cT (4f)

Logit pð Þ ¼ interceptþ aDþ bF þ cT (4g)
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where a, b, and c are the coefficients of the covariate parameters represented as
D, F, and T for depth, flow rate, and temperature respectively. Since parameter p
represents a probability, it must be constrained between 0 and 1 with a link
function. The logit function was selected, which is defined as:

Logit pð Þ ¼ ln
p

1� p

� �

(5)

While the logit function should transform the parameter p onto an appropriate
scale, in practice this was not always true from the special case of n = 1. Periodically,
the sampler from the prior distribution selects illogical or extreme values. This can
cause errors such as numerical overflow or, within the logistic regression, results in
negative parameter values that cannot be log transformed. The improper value
prompted a binomial calculation that OpenBUGS is unable to perform, causing the
run to crash. It should also be noted that subtle differences in programs could
resolve some of these problems. Not all available programs, for instance, use the
same sampling approach. A similar model setup in R or JAGS could run without
additional considerations for the case of n = 1.

A robust solution focuses on the parameter that fails to meet specifications. The
binomial probability of failure, p, needs to take on values between 0 and 1 for
OpenBUGS to perform the calculation, as referenced earlier. This requirement can
be achieved by restricting p using built-in scalar functions, max and min. They are
defined and operate as follows:

• max(e1, e2) e1 if e1 > e2; e2 otherwise,

• min(e1, e2) e1 if e1 < e2; e2 otherwise.

For the probability of failure to be properly scaled, the following criteria need to
hold true:

• return 1 if probability of failure is greater than 1,

• return 0 if probability of failure is less than 0,

• otherwise p.

The quantity p.bound[i] - > max(0, min(1, p[i])) performs all three listed
criteria. Inserting p.bound into the model script restricts the probability to lie
between 0 and 1 and prevents OpenBUGS from crashing [7]. A logistic link function
can now be used when n = 1 for all regression models.

The water temperature data was included as an explanatory variable with the
expectation that it would be eliminated as part of the Bayesian analysis. To address
the possibility of temperature as a failure influence, centering was used on the
covariates. Interpreting coefficients in models with interactions can be simplified by

subtracting the mean, x ¼ N�1 P xi, of each input variable xi. For example, the

temperature T in Eq. (4c) would be subtracted by T and the following logistic
regression would be fit:

Logit pð Þ ¼ intercept þ c T � T
� �

(6)

where the data is now centered at zero. The main effects of using explanatory
variables are now interpretable based on comparison to the mean of the data.
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Coefficients that stay relatively the same compared to the un-centered results
indicate low predictability, while large predictive differences are leading indicators
of component failure.

Looking at the steel door data, however, leads to a different discovery. Table 3
gives the results for the standard models, and Table 4 gives the results when
centering is applied. Depth’s predictive difference is greater than flow rate, but the
highest is temperature. Additionally, temperature has the smallest DIC between the
three models.

To understand why temperature appears to be the leading indicator of failure,
the steel door data, along with its collection process, must be examined. Of the
nineteen test results recorded in Table 2, the first nine tests all resulted in door
failures. These nine tests were conducted exclusively during the spring. The
remainder of the tests, nine non-failure and one failure, where conducted in a single
day during the winter when the reservoir water was cooler. The results could mean
that warmer water temperatures cause steel doors to fail in flooding events, imply-
ing a correlation of variables observed together. It is noted, however, that correla-
tion does not necessarily mean causation. The relationship could have alternative
explanations, such as a third-cause fallacy, where a spurious correlation is mistaken
for causation. A spurious correlation is a relationship in which events or variables
are associated, but not causally related, due to the presence of a third factor [8].
Seasonal weather changing the interior temperature of the laboratory is a hidden
third factor. Therefore, steel door flooding failure and water temperature may be
correlated with each other only because they are correlated with the weather when
testing was conducted. By conducting all non-failure tests in the cooler winter
conditions and majority of failures in the warmer spring, an unintentional bias was
introduced into the temperature data. This bias, that temperature impacts failure,
becomes apparent when looking at the centering comparison.

There is another means of verifying the introduced bias in temperature by
looking at the residuals. Pearson residuals should take on values between �2.0 and
2.0. Any data point with values outside this range represent an outlier. If there is a
bias introduced from when the tests were conducted, the last data point, a failure
during winter testing, should be considered an outlier. Figure 3 shows the residual
box plot for the temperature regression model. Note that the last data point has an
outlier residual value of 3.53 � 6.037, confirming the bias.

Model Mean Standard Dev. 97.5% Interval DIC

Depth 1.66 0.91 (0.42, 3.89) 13.86

Flow Rate 0.013 0.006 (0.004, 0.028) 16.0

Temperature 2.56 0.88 (1.10, 4.51) 8.294

Table 3.
Coefficient results for standard logit regression model for steel doors [5].

Model Mean Standard Dev. 97.5% Interval DIC

Depth 2.05 1.26 (0.46, 5.21) 14.39

Flow Rate 0.013 0.006 (0.005, 0.028) 15.98

Temperature 7.85 4.69 (2.04, 19.74) 8.98

Table 4.
Coefficient results for centered logit regression models for steel doors [5].
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Since the steel door temperature data is biased, it is dropped from consideration
as an explanatory variable for now. In experiments, controlling and extensively
testing the relationship between dependent and independent variables can identify
spurious correlation. For component flooding experiments, steps could be taken to
control the temperature of the reservoir water. If future testing corrects for this
bias, temperature data could again be considered as part of the Bayesian analysis for
steel doors. Of the remaining depth and flow rate data, centering simplified
interpreting coefficients and indicated depth as a significant indicator of failure.

Development of the logistic regression models so far has been directly
interpreting the failure response given some predictor(s) data. It is also possible to
interpret indirectly by incorporating an additional random variability. These
models assume that besides the observed variables, there could be an unobserved
variable or random effects. Therefore, the probability of the binomial distribution is
allowed to adjust by some small amount, λi, for each observation.

A script was written where logistic regression equations contain a random or
latent effect. In the case of the depth model, previously given by Eq. (4a), it would
now be defined as follows:

Figure 3.
Box plot of the temperature regression model residuals using steel door data. [5].

Model χ
2 Likelihood Ratio Freeman-Tukey DIC

Depth 0.97 0.97 0.97 0.41

Flow Rate 0.99 0.99 0.99 0.13

Depth. Flow Rate 0.99 0.99 0.99 0.08

Table 5.
Depth, flow and combined p-values and DIC [5].
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#Bound Binomial Model using Logit Regression: Final

#Steel Door Data

model{

for(i in 1:tests){

failure[i] � dbin(p.bound[i], numtested)

p.bound[i] < � max(0, min(1, p[i]))

#Regression Model

logit(p[i]) < � int. + depth*WDepth[i]

failure.rep[i] � dbin(p.bound[i], numtested)

#Fit Assessment: Pearson Residuals Posterier Predective check (Bayesian P-Value)

residual[i] < � (failure[i] - (numtested*p.bound[i]))/sqrt(numtested*p.bound[i]*(1-p.bound

[i]) + 0.00001)

residual.rep[i] < � (failure.rep[i] - (numtested*p.bound[i]))/sqrt(numtested*p.bound[i]*(1-p.bound

[i]) + 0.00001)

sq.[i] < � pow(residual[i], 2)

sq.rep[i] < � pow(residual.rep[i], 2)

#Fit Assessment: Likelihood Statistic Posterier Predective check (Bayesian P-Value)

like.obs[i] < � failure[i]*log((failure[i] + 0.00001)/(numtested*p.bound[i] + 0.00001))

like.rep[i] < � failure.rep[i]*log((failure.rep[i] + 0.00001)/(numtested*p.bound[i] + 0.00001))

#Fit Assessment: Freeman-Tukey Statistic Posterier Predective check (Bayesian P-Value)

diff.obs[i] < � pow(sqrt(failure[i]) - sqrt(numtested*p.bound[i]), 2)

diff.rep[i] < � pow(sqrt(failure.rep[i]) - sqrt(numtested*p.bound[i]), 2)

prop[i] < � failure[i]/numtested

Ds[i] < � 2*numtested*(prop[i]*log((prop[i] + 0.00001)/(p.bound[i] + 0.00001))

+ (1-prop[i])*log((1-prop[i] + 0.00001)/((1-p.bound[i]) + 0.00001)))

phat[i] < � failure[i]/numtested

}

chisq.obs < � sum(sq[])

chisq.rep <� sum(sq.rep[])

p.chisq <� step(chisq.rep - chisq.obs)

likelihood.obs < � sum(like.obs[])

likelihood.rep <� sum(like.rep[])

p.likelihood <� step(likelihood.rep - likelihood.obs)

freeman.obs < � sum(diff.obs[])

freeman.rep <� sum(diff.rep[])

p.freeman <� step(freeman.rep - freeman.obs)

dev.sat < � sum(Ds[])

#Prior Distributions

int. � dnorm(0, .000001)

depth � dnorm(0, .000001)

}

data

list(

tests = 19,

numtested = 1,

failure = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

WDepth = c(46.1, 39.0, 37.1, 37.8, 37.5, 37.6, 37.7, 37.1, 44.5, 25.7, 17.0, 27.4, 30.9, 32.3, 24.3, 34.8, 37.5,
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Logit pð Þ ¼ intercept þ aDþ λi (7)

with λi � N 0, σ2ð Þ and unknown variance. A prior distribution is specified for σ.
More variability is accounted for by allowing the probability to vary on an
observation-by-observation bases.

The resulting p-values and DIC for the depth, flow rate, and combined regres-
sion models are given in Table 5. The larger p-values (all greater than 0.95) strongly
suggest lack of fit. The regression models without variability are favorable over the
inclusion of unobserved effects for their better fit.

The final OpenBUGS script for the depth regression model, prior distributions,
and dispersed initial values is shown in Table 6. Included are the script for the three
Bayesian p-value calculations and the saturated deviance.

The mean values calculated for the applicable parameters in the outward swing-
ing steel door fragility models and corresponding Bayesian p-values are shown in
Table 7. The saturated deviance for all three models compared with the data sample
size suggests that all three models fit adequately. The DIC is nearly the same for all
three models, the smallest belonging to the depth model by a non-significant
amount. The model with only depth as an explanatory variable has the closest
Bayesian p-value using the likelihood ratio (0.38). It also has the slightly closer
average p-value compared to 0.5 than the regression model with only flow rate and
the combined model with both variables. Given the results, the model with only
depth is recommended for predictive analyses.

With depth selected as the explanatory variable regression model, the parame-
ters in Table 7 are used with the fragility model to calculate the failure probability
for a steel door as a function of water depth. The probability p is given by:

38.0, 41.4),

WFlow = c(1148, 1130, 1120, 979, 1133, 604, 593, 598, 975, 248, 117, 285, 397, 484, 247, 593, 696, 734,

1025)

)

inits

#Depth

list(int = �28, depth = 4, flow = 0, temp = 0, failure.rep = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(int = �122, depth = 0, flow = 0, temp = 0, failure.rep = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

Table 6.
OpenBUGS script [5].

Parameter Depth Flow Rate Depth, Flow Rate

intercept 75.68 �8.51 �72.5

a (depth coeff.) 2.05 — 1.83

b (flow rate coeff.) — 0.01 0.007

Sat. deviance 12.88 14.29 13.31

Chi-squared 0.19 0.26 0.14

Likelihood ratio 0.38 0.36 0.29

Freeman-Tukey 0.33 0.23 0.21

Table 7.
Summary posterior estimates of logistic regression parameters and Bayesian p-values using steel door data [5].
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p ¼ 1

e� �75:68þ2:05xð Þ þ 1
(8)

where x is the given water depth. Figure 4 shows the plot of failure probability
versus water depth with 95% credible intervals. It should be noted that the mean,
shown in red, is close to the bound at low probabilities. This is due to a couple of
non-failure tests reaching water depths greater than some observed failure depths,
bringing the mean near the credible interval at low fragility probabilities.

6. Conclusion

Component failure probability models provide a pathway for selection of more
flexible operating limits and setpoints. Model development requires component
performance data and an effective process for probability model selection and
checking. Using Bayesian methodology, prior knowledge about model parameters
can be updated with the knowledge of the likelihood to observe data for parameter
values giving a posterior probability. In short, the process combines everything that
is known about a particular data set and model response to produce a posterior
estimate of the output function’s probability distribution. Integration of these func-
tions is necessary and can be accomplished through MCMC methods.

Bayesian model checking is used to assess the fit of the model to various aspects
of the data using the assumption that if a given model fits, then data simulated or
replicated under the model should be comparable to the real-world observed data. If
any systematic differences occur between simulations and the data, it potentially
indicates that model assumptions are not being met. The model is also checked for
deviations by means of test quantities or discrepancy functions that depend on both
data and parameters by calculating a Bayesian p-value. The DIC can also be used as
a measure of model fit that can be applied to Bayesian models and is applicable
when the parameter estimation is done using techniques such as Gibbs sampling. It
is particularly useful in Bayesian model selection problems where the posterior
distributions of the model have been obtained by MCMC simulation.

Application of the data collection, model development, and model checking
process was carried out for the performance of steel doors subjected to water rise
flooding conditions. The resulting fragility model provides a carefully developed

Figure 4.
Fragility curve showing probability of failure versus water depth. Blue curves represent the 95% credible
intervals [5].
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representation of the failure probability as the flood depth changes. The model can
then be used in more comprehensive probabilistic flooding analyses rather than
simply using an empirically derived pass-fail water depth for steel doors subjected
to water rise flooding scenarios. The overall result of using the rigorously developed
fragility model is a more robust representation of how components will perform
when subjected to challenges such as flooding. With an improved representation of
overall performance available, necessary limits and controls can then be selected
without undue conservatism.
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