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Abstract

Although many ciliates are free-living, more than 140 families of ciliates (Alveolata, 
Ciliophora) include symbiotic species of animals. Symbiosis, defined as an interaction 
between two species, is analyzed in this chapter to show a wide diversity of symbiotic 
systems in ciliates (epibiosis, commensalism, mutualism, and parasitism), providing 
some data about ciliate strategies showing their success as symbionts. Some species are 
free-living as well symbionts, facultative symbionts, and obligate symbionts. Analysis 
of reconstructions of ancestral state evidence that the parasitism arose numerous times 
and independently among the lineages of ciliates. At least three evolutionary routes can 
be traced: (1) transition from free-living to mutualism and parasitism, (2) transition 
from free-living to parasitism, and (3) regression from parasitism to free-living. The 
evolution of the symbiosis in ciliates demonstrates a higher diversification rate con-
cerning free-living ciliates. The analysis of the evolution of the life cycles complexity, 
exploring molecular data of the phases of the ciliate cycle in their hosts is also essential. 
We propose new approaches for an integrative study of symbiotic ciliates.

Keywords: Ciliophora, diversity, ecology, macroevolution, morphology, physiology, 
symbiosis, taxonomy

1. Introduction

Ciliates (Alveolata: Ciliophora) comprise free-living and symbiotic species. 
According to Corliss, [1] 2,600 species of ciliates have been described as symbionts, 
mainly of individuals of metazoan phyla. This is equivalent to 33% of all the known 
species of the phylum. They belong to eight classes (Armophorea, Heterotrichea, 
Litostomatea, Nassophorea, Oligohymenophorea, Plagiopylea, Phyllopharyngea 
and Spirotrichea), 31 orders, 151 families, and almost 700 genera [2]. These sym-
biotic ciliates have been reported in aerobic and anaerobic environments and from 
aquatic and terrestrial habitats [2, 3].

The term symbiosis can be defined as a sustained relationship between at least 
two individuals from different species, either living in direct contact or close 
enough to each other during a part or the whole life cycles of the partners. This 
interaction is transmitted vertically (from one generation to the next) or horizon-
tally (acquired de novo in each generation). The intricate associations are believed to 
have an essential driving force in evolutionary biology, as a host and their symbiotic 
microbiota acclimatize on scales of short time [4].
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Due to the diversity of symbioses, a classification system for symbiotic associa-
tions has been developed. This classification is based on several features: i) the 
dependence, where symbionts can be obligate or facultative; ii) specificity of the 
symbionts; iii) nutrients obtention, then biotrophic and necrotrophic symbionts are 
distinguished on the basis of whether nutrients are obtained from a living or dead 
partner, and iv) location of the symbionts, ectosymbionts or endosymbionts [5]. 
The symbiotic relationships can be categorized into mutualistic, commensalistic, or 
parasitic [2, 6]. The boundary between these categories sometimes is not clear, and 
there are frequent transitions between them.

Several papers have been focused on providing taxonomic reports for symbiotic 
ciliates, some of them as general works, and a few directed to certain groups [7–16], 
and some were focused on certain geographic areas [17–24]. Critical reviews of 
some species as Balantidium coli were done by Schuster and Ramirez-Avila [25]; for 
chonotrichs [26]; peritrichs [27] and suctorians [28].

Also, very different topics about ciliates and their hosts have been devel-
oped as shown: symbiotic interactions [epibiotic, hyperepibiotic, commensals, 
parasites (obligates and facultatives)], codiversification: [29–37]. Morphology 
(variation, molecular characterization): [38], clevellandellid, Nyctotheroides; 
[39], Dicontophrya; [40, 41] peritrichs. Taxonomy (new family, genus or species), 
redescription, revision: Apostomatia: [42]; Apostomatida: [43]; Trichodina:  
[44]; Epistylis and Opercularia: [45]; Spirochona: [46]; Buetschlia and Charonina: 
[47, 48, 49–51, 31]. Life cycles, encystment/excystment process: [52–54]. 
Pathogenicity, damages, infestation degree, virulence: [55–59]. Molecular 
and phylogeny: [30, 60–68]. Ecological aspects: [69, 70]. Immunity: [71, 72]. 
Stomatogenesis: [73]. Ultrastructure: [74].

Symbiotic systems between ciliates/animals are present in a broad spectrum of 
kingdom Animalia, and some examples are the following (animal group alphabeti-
cally arranged, different taxonomic levels): acari: [75]; amphipods: [76]; antilope: 
[77]; anuran: [78]; Asian elephant: [79]; baboon: [80]; bryozoans: [81]; buffaloes: 
[82]; capybara: [83–85]; cattle: [86]; chimpanzees: [87]; cirripedians: [88]; crusta-
ceans: [89]; ctenophores: [90]; cuttlefish: [91]; dromedary camels: [92]; elephants: 
[93]; fishes: [94, 95]; frogs: [96]; great apes: [97]; horses: [98, 99]; humans: [100, 
101]; polyps of hydras: [102]; insects: [103]; isopods: [104, 105]; kinorhynchs:  
[106]; llamas: [107]; maccacus: [108]; mammals: [109]; mollusks: [71, 76]; nema-
todes: [29, 110]; nemerteans: [13]; oligochaetes: [111, 112]; ostracods: [113]; poly-
chaetes: [114, 115]; rhinoceroses: [116]; sea urchins: [117]; thoroughbreds: [118]; 
turbellarians: [119]; wood-feeding roaches: [120].

Some examples of ciliate taxa that include symbiotic species are the following:
Heterotrichea: Folliculinids attach to the integument of various invertebrates as 

bivalve shells, crustaceans exoskeleton, polychaete tubes, hydroid perisarcs, bryo-
zoan tests, with a widespread occurrence [121], and may cause the skeletal eroding 
band or brown band diseases of scleractinian corals [2]; their life cycle includes a 
migratory swimming stage.

Spirotrichea: Hypotrichs are known mainly as free-living organisms, but some 
species such as Euplotes balteatus have been recorded in some sea urchins’ intestinal 
tract [122]. Some species of stichotrichids as Plagiotoma lumbrici are endosymbionts 
of oligochaetes [123].

Armophorea: Class Armophorea includes clevellandellids as Nyctotheridae, with 
obligate endosymbionts usually as commensals of invertebrates and vertebrates; life 
cycles include a phase of the cyst [2].

Litostomatea: Trichostomes are symbionts of vertebrates as ruminants and 
foregut fermenters [2], including the human pathogen, Balantidium coli, species 
that have a life cycle including two phases: trophozoites and cysts [25]. This species 
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has been considered to be included in a new genus, Neobalantidium coli [124]. The 
genus Balantidium has a more significant number of species that have been reported 
as endocommensals in the digestive tracts of a widely diverse range of metazoan, 
as mollusks, arthropods, fishes, reptiles, birds, and mammals [124]. In the rumen 
ecosystem, ciliates can account for up to 50% of the total microbial nitrogen, reach-
ing densities of 105 to 106 cells/ml rumen fluid, being Charonina ventriculi one of 
the smallest rumen ciliates [125].

Ophryoscolecidae and Cycloposthiidae include species as endosymbionts 
of ruminants and equids, respectively [126]. Entodiniomorphid ciliates of the 
genus Triplumaria are found in the intestine of elephants and rhinoceroses [60]. 
Entodiniomorphida do not form cysts, and in non-ruminant mammals, the infections 
of hosts occur by coprophagy [47].

Phyllopharyngea: Chonotrichs live on marine and freshwater hosts and divide 
by forming external or internal buds [127], with a dimorphism where the adults live 
attached to several appendages of crustaceans, and the larva is free and swims to 
reach a new host [128].

Suctorians, as a rule, reproduce by different modes of budding, produce one 
to several larvae, with a short swimming existence, and then lose their cilia and 
metamorphose into adults or trophonts [127]. The non-ciliated mature stages of 
suctorians are usually sessile, attached to the substrate by a non-contractile stalk, 
and reproduce by ciliary larvae called swarmers or migrators [129].

Oligohymenophorea: Yi et al. [130] documented that the life cycle of 
Ichthyophthirius multifiliis, a parasite of fish, consists of three key developmental 
stages: the infective theront, the parasitic trophont, and the reproductive tomont.

Mesanophrys pugettensis, is a scuticociliate thata was observed with a diphasic 
life history, the larger phase or trophont, and the smaller phase resembling tomites 
[34], is a facultative parasite of the Dungeness crab. Conchophthirus species are 
generally considered an endocommensal inhabiting the mantle cavity of freshwater 
clams or mussels [30].

Thigmotrichids from several families were analyzed by Raabe [131–134], where 
species of Hemispeiridae are symbionts of the mantle cavity and nephridia of  
molluscan, those of Ancistrocomidae, Sphenopryidae and Thigmophryidae are 
ectosymbionts of mantle cavity and gills of molluscan, and Hysterocinetidae 
species were categorized as endoparasites of the gut of prosobranch mollusks; life 
cycles include tomites.

The apostomes is a small group of oligohymenophorean ciliates, with four 
major life histories: 1-exuviotrophic, that remain encysted on the exoskeleton of a 
crustacean host, and excyst to feed on exuvial fluid, reproducing during the host 
ecdysis, 2-sanguicolous, penetrate the cuticle of the host, feed on the cells and 
fluid of the hemocoel and reproduces, 3-chromidinid, found in the renal organs 
and opalinopsids found in the liver and intestines of cephalopods ingesting fluids 
and cells, 4-histotrophs, such as Vampyrophrya [135]. Apostome ciliates have life 
cycles typically involving crustaceans, with a non feeding microstome tomite and a 
macrostomous trophont [127]. Species of apostome of genus Collinia are endopara-
sites able to reproduce rapidly within the host that invariably kill the euphausiid 
within 40 hours of infection; Gymnodinioides genus includes exuviotrophic species 
that feed on the fluid within the exuviae of crustacean hosts and Landers et al., 
[136] documented for Gymnodinioides pacifica the presence of trophonts, phoronts, 
tomonts and tomites. For Synophrya the phoront, hypertrophont, hypertomont, and  
hypertomites were observed [137].

Pilisuctorian ciliates spend most of their lives perched on cuticular setae of 
crustaceans, and complete their life cycle on a single host, having the stages tomite, 
tomont and trophont [138].
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In peritrichs, a significant character is the scopula which is the region that 
originates the stalk to attach the organism to the substrate and modifies to a highly 
complicated adhesive apparatus in mobiline [127]; two phases are known, the 
trophont and the dispersive telotroch.

Species of sessile peritrichs genera such Ambiphrya, Epistylis, Heteropolaria, 
Rhabdostyla, and Zoothamnium are epibionts of zooplanktonic invertebrates, larval 
stages of aquatic insects, aquatic mollusks, crustaceans, fish, amphibians, and 
reptiles as the main groups of organisms [139]. Members of genus Epistylis have been 
reported as epibionts in several metazoans, but also as an important fish ectoparasite 
being considered an emerging pathogen [140]. Genus Lagenophrys comprises only 
symbiotic species of freshwater and marine crustaceans [89]. Trichodinids are the 
most devastating ectoparasites of cultured fish, causing severe damage [141], and 
for genus Trichodina about 300 species have been described, mostly from freshwater 
environments [142]. Also, there are reports of trichodinids from the gills of limpets 
[143] and have been documented as symbionts of a broad spectrum of aquatic and 
terrestrial invertebrates and vertebrates hosts [65]. Trichodinella epizootica is one of 
the most widely distributed freshwater trichodinids in Europe and Asia, but has also 
been reported from Africa, the Pacific region and North America [55]. Urceolaria 
includes species ectosymbionts of freshwater turbellarians, marine polychaetes, and 
mollusks; Leiotrocha species are ectocommensals and endocommensals of marine 
molluscans, and species of Polycycla are endocommensals of Holothuroidea [144].

2. Ecological relationships: Classical definitions and approaches

2.1 Epibiosis

Epibiosis is a facultative association of two organisms: the epibiont, which 
colonizes the surface of live substrates, and the basibiont, which hosts the epibionts 
[145]. Some species of epibiotic communities show preferences for specific location 
sites on the host [76]. According to Wahl and Mark [146], when the effects associ-
ated with epibiosis are neutral or positive for a basibiont species and beneficial for 
an epibiont species, selection should favor the evolution of the epibiotic relation-
ship, which tends to increase specificity through evolutionary history. Although 
many epibiont ciliates are not harmful to their basibionts, some studies have shown 
that the epibionts can cause deleterious effects on their hosts [147–149].

Historically, studies involving epibiont ciliates focus on the following interests: 
new records and checklists [27, 28], descriptions of new taxa using morphological 
and molecular data [150], possible deleterious effects on hosts [149, 151], distribu-
tion and preferred sites of epibiont populations and communities [152], spatial 
and temporal distribution of the epibiotic relationship [153], laboratory rearing 
and experimentation studies [154–156], and even investigations into extrinsic and 
intrinsic factors involved in the kinetics of epibiont ciliate populations [157, 158].

2.2 Mutualism

Mutualism is a relationship with high metabolic dependence, where both 
organisms, ciliate and their hosts, obtain benefits [159, 160]. In the phylum 
Ciliophora, this type of relationship is seen, mainly in the subclass Trichostomatia, 
which includes the ciliates of the digestive tract of herbivorous mammals [161]. 
The symbiont ciliates represent approximately 2,600 of the described organisms, 
of which around 1000 species belong to the subclass Trichostomatia [2]. This 
subclass comprises ciliated protists, mostly mutualists of the digestive tract of 
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several vertebrate hosts, with only one species showing parasitism in humans, 
Balantidium coli [2, 162, 163]. The subclass Trichostomatia is divided into three 
orders: Vestibuliferida, Entodiniomorphida, and Macropodiniida.

Ruminant ciliates and the host have a fundamental symbiosis relationship for 
the digestion and absorption of large amounts of plant material by the ruminant 
[164, 165]. On the one hand, the host provides an ideal environment for the survival 
of the symbiotic microbiota. The rumen is a strictly anaerobic environment, with 
temperatures ranging from 38 to 41° C, redox potential around 250 to 450 mV 
(millivolts), osmolarity ranging from 260 to 340 mOsm (millivolts), and pH levels 
between 5.0 and 7.5. Maintaining these characteristics is essential for microbial 
enzymatic activity to occur. In return, symbionts provide energy, protein, and 
vitamins to the host [166]. In energy terms, about 50–70% of the energy obtained 
by the host comes from the absorption of volatile fatty acids (VGAs) (eg. acetate, 
butyrate, and propionate), which are absorbed after the breakdown and fermenta-
tion of plant fiber by ruminal microorganisms [165]. Ciliates also represent a great 
source of protein for the ruminant (about 2 to 5%). Still, the ruminal microbiota 
also synthesizes B and K vitamins in sufficient quantities for the maintenance and 
growth of the animal. Due to the important participation in the physiology of the 
ruminant, the evolutionary dynamics of ruminal ciliates has been suggested as 
closely associated with the radiation of their hosts [167–169].

2.3 Commensalism and parasitism

Commensalism occurs when the symbiont inhabits in the host with no evident 
benefit or harm [170].

Parasitism, which is less common in ciliates, involves the parasites that usually 
cause disease being pathogens. They may be localized or spread throughout a host, 
defined as the independent and dominant member of the symbiotic pair. Here, the  
parasite inhabits on or inside the host to obtain resources and to harm it [171].

3. Ecological relationships: evolutionary approach

From an evolutionary point of view, there are species that are entirely free-living, 
those which can live equally well both free or as symbionts, species that are almost 
entirely symbiotic with only occasional periods of “free” existence during their life 
cycles (facultative symbionts), and species which are entirely symbiotic (obligate 
symbionts). Most of the well documented associations between Ciliophora and 
Metazoa are the ones leading to a certain degree of metabolic dependence. We will 
use in this topic the idea of metabolic dependence to define the ecological relation-
ships: “free-living” (no metabolic dependence), “epibiont” (facultative metabolic 
dependence), “mutualistic” (mutual metabolic dependence) or “parasitic” (unilat-
eral metabolic dependence, including commensalism).

For many years the evolutionary studies for Ciliophora were based only on 
morphological data, mainly those related to the ultrastructural characterization of its 
complex infraciliature [2]. However, in recent years this scenario has been modified 
with the implementation of modern tools that use multidisciplinary methods to inte-
grate morphological, phylogenetic, molecular, and ecological data [161, 172–174]. A 
reliably dated phylogeny is fundamental to infer a broad macroevolutionary scenario 
for Ciliophora [172]. The inference of diversification rates from molecular phylog-
enies has increasingly been used to derive macroevolutionary patterns of lineages. 
Understanding how the different ecological relationships evolve in Ciliophora along 
time is a complex task that has been developed for many years. Different hypotheses 
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about the origin and evolution of parasitic life have been proposed. Parasitologists 
suggest that the symbiotic way of life probably descended from free-living lineages 
that subsequently adapted to life in special habitats. Besides this, several authors 
suggest multiple origins of parasitism based on a comparison of morphological and 
ultrastructural aspects between them and their free life co-specifics [175], however, 
the processes that lead to its emergence are still imprecise [176–178].

Concerning the phylum Ciliophora, the vast majority of ciliates are categorized as 
free-living, and studies suggested that symbiosis apparently arising independently 
among various classes [179]. For genus Tetrahymena (subclass Hymenostomatia, 
order Hymenostomatida), all gradations of adaptations to symbiosis occur. There 
are species that live totally free, those that can live equally well both free and as 
symbionts, species that are almost entirely symbiotic with only occasional periods 
of “free” existence during their life cycles (optional symbionts), and species that are 
totally symbiotic (mandatory symbionts) [180]. Different transition routes between 
ecological associations have also been proposed, based on morphological and 
ecological characteristics. The first one proposes that free-living organisms assume 
habits of low metabolic dependence (mutualism, commensalism, among others), 
and with the strengthening of relationships, where they become parasites [176, 181]. 
The second hypothesis suggests that a free-living organism, when it comes into 
contact with a host accidentally, adapts itself to live both freely and within that host 
(optional parasite) [179], that is, free-living organisms adapt to live inside a host, 
which becomes something advantageous and increases fitness, making this a favor-
able way of life for the species.

Previous studies aimed to test these hypotheses based on phylogenetic analyzes of 
small groups within Ciliophora [174, 182, 183]. The macroevolutionary analyzes from 
the whole Ciliophora phylogeny presented Figure 1 suggested that the ancestral way 
of life of the ciliates originated from a free-living organism and that the parasitic way 
of life arose numerous times and independently in Ciliophora, which was induced 
by two types of ancestors, free life and mutualistic (Figure 1). The transition to the 
parasitic way of life was recovered from two different origins: 1) a free-living ances-
tor evolved into a mutualistic organism and, later, to a parasitic organism, and 2) a 
free-living ancestor evolved into an organism parasite (highest number of cases). 
There are also cases where there has been a regression in the ciliate’s way of life, where 
parasite clades evolved to free-living clades (Figure 1).

Figure 1. 
Ancestral habit reconstruction for Ciliophora showing the main routes of transitions. Blue: Free-living. Yellow: 
Mutualism. Red: Parasitism/commensalism.
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4. Future perspectives

The analytical improvement for morphological, ultrastructural, molecular, and 
evolutionary characterizations in Ciliophora culminated in an “Age of Integration”, 
which several disciplines interact to infer patterns of biodiversity [184]. Although 
it is an age in full expansion, several gaps often prevent a study of diversity in its 
diverse areas in a complete way.

We are in a period of the paradigm shift, where Next Generation Sequencing 
(NGS) techniques have been applied exponentially, and, therefore, it is expected 
that new discoveries will emerge and new panoramas will be drawn on the diversity 
of the strains, as well as their respective ecological interactions. The transition from 
phylogenetic studies to phylogenomics is based on technological progress combined 
with exponential sequencing of molecular sequences (DNA, RNA), reduced associ-
ated costs, increased computational capacity, and improved analytical protocols. It is 
important to make efforts in studies to expand such technologies to lineages with little 
sampling in databases. For example, the classes Prostomatea, Oligohymenophorea, 
Litostomatea, and Phyllopharyngea, which present several examples of symbiosis, do 
not have available molecular sequences which prevents the evolutionary inferences of 
these lineages, requiring in the future more studies to refine the evolutionary hypoth-
eses about the phylum. Efforts to expand metataxonomy using metagenomics and 
metatranscriptome methods have fed the databases exponentially in several lineages, 
revolutionized the analysis of environmental microbial diversity [175, 185, 186]. In 
fact, the generation of data for the target sequencing of phylogenetic, metagenomic, 
and metatranscriptomic markers is now reasonably well established, and several DNA 
sequencing platforms based on different technologies are currently available as well 
as different bioinformatics programs for each level of data extraction. However, due 
to the limited size of the molecular sequences produced by the platforms (~ 500 bp), 
phylogenetic estimates may be inadequate. With longer readings comes an improved 
phylogenetic signal, and we show that it is possible to employ a complete phylogenetic 
signal approach to taxonomically classify sequences and obtain a robust evolutionary 
structure of environmental diversity. New sequencing technologies such as nanopore 
sequencing, which offer long reads, improved the phylogenetic signal and more 
robust taxonomic patterns, can be an alternative in future studies [187].

With the significant increase in the number of available sequences from NGS 
sequencing, more effective and less subjective methodologies have been proposed to 
define the limits and number of independent evolutionary entities, to accelerate the 
biodiversity assessment process. In the last two decades, the field of species delimita-
tion has intensified in relation to the number of methods available. For this, several 
methodologies have been proposed, based on biological [188], ecological [189], and 
molecular data [190], in addition to combining phylogenetic theory and population 
genetics [191–193]. The use of these methodologies in ciliates performed very recently 
to delimit organisms of free life, as species of the genus Frontonia, using the mito-
chondrial gene COX1 [194], species of the genus Spirostomum, using the ITS spacer 
region genes [195], and COI and 18S markers of the Paramecium genus.

Finally, several authors have emphasized the lack of studies on the distribu-
tion and occurrence of ciliates associated with Metazoa in natural conditions and 
the the lack of information on the ecology and interactions between epibionts 
and hosts. Few studies are exploring the natural history and complexity of life 
cycles, which makes it difficult to characterize optional and mandatory relation-
ships. The absence of the characterization of the ciliate at the stage it is in the 
host, most studies, only in the environment, making it difficult to characterize 
the life cycle. Relevant information about habitat, life cycle, infection site is rare 
for Ciliophora [160, 196, 197].
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