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1. Introduction

Flame retardant and thermally insulative polymers are of technological impor-
tance and fundamental interest [1, 2]. Polymers continue to infiltrate modern tech-
nologies such as aviation, automotive industry, building construction, electronics, to 
name a few, thanks to their unique combination of properties not available from any 
other known materials [3]. Polymers are lightweight, durable, easy to process, elec-
trically insulative and corrosion resistant [4]. Common polymers are also thermally 
insulative [5]. However, polymers are combustible because of their chemical struc-
tures that are made up by carbon and hydrogen atoms [6–8]. To meet flammability 
standards, flame retardants for fireproof polymers have been developed [9, 10].

To protect human life and property, flame retardant polymers are generally 
made by adding flame retardants into polymers [11, 12]. There are drawbacks 
in common halogenated flame retardants, which associate with the release 
of toxic or corrosive by-products [13–18]. There are environment and health 
concerns caused by these released toxic gases [19]. Therefore, developing high- 
performance, non-toxic, low-cost, and environmentally friendly flame retardants 
are needed [19, 20]. Understanding mechanisms for fire retardancy is essential 
for developing new effective flame retardants. Improving fire retardant behaviors 
of polymers play key roles in future industrial applications such as furnishings, 
transportation products and building construction materials [9, 21–25].

Over the past decades, different flame retardants for polymers have been devel-
oped [20]. Mechanisms of polymer flame retardancy have been further investigated 
[9, 20, 26, 27]. Flame retardants have been generally broken into categories based on 
chemical compositions, which are grouped based on whether they contain bromine, 
chlorine, phosphorus, nitrogen, boron, or inorganic fillers (metals, etc.) [28]. It is 
widely recognized that all categories of flame retardants act either in vapor phase or 
condensed phase to inhibit or to stop combustion processes through a chemical and/
or physical mechanism [29]. Flame retardants can interfere with combustion during 
a particular stage, e.g., during heating, pyrolysis, ignition, or flame spread [9, 20, 
27, 30]. Flame retardants can either act chemically (reaction in the condensed or 
gas phase) and/or physically (by cooling, formation of a protective layer or fuel 
dilution) [17]. The polymer flammability properties have been investigated by their 
ignitability, flame spread and heat release characterizations [20]. Depending on the 
targeted application of polymers, one or more of specific flammability criteria (e.g. 
ASTM’s fire and flammability standards) need to be satisfied [31].

In addition to flame retardancy, thermal insulation property of polymers can 
be another significant function that can defend targets against heat damage and 
save lives [32–35]. Fully understanding the flame retardance and thermal insulation 
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mechanisms in polymers remain challenging. Advanced polymers with combined 
properties of flame retardancy, mechanical strength and heat insulation are needed. 
Such polymers will provide broader prospect in civil applications than single-
function polymers, for example, building insulation applications [36–38].

This introductory chapter not only aims to present the current landscape flame 
retardant and thermally insulative polymers, but also highlights next generation of 
flame retardant and thermally insulative polymers for fire protections applications. 
This introductory chapter summarize fundamental interests and technological 
importance of flame retardant and thermally insulative polymers, which include 
principles of polymer flammability, theory of flame retardance, thermally insula-
tive and fire-retardant polymers, and critical discussion and outlook.

2.  History and perspective of flame retardant and thermally insulative 
polymers

2.1 Principles of polymer flammability

Three ingredients — heat, oxygen, and fuel — are required to initiate and 
continue a fire [12]. Polymer starts to degrade, when it is heated by external ignition 
sources and reaches a characteristic temperature [39]. The surrounding oxygen 
amount plays key roles on polymer surface decompositions (e.g., thermo-oxidative 
degradation of polymers and/or thermal degradation of polymers). The amount 
of oxygen for polymer decomposition depends on the specific polymer used. 
Combustible gases as fuels may be produced at a rate dependent upon polymer 
decomposition rate and diffuse to the flame front [12]. After ignition and removal 
of the ignition source, combustion could be self-propagating if there is sufficient 
heat generated and polymer can absorb enough heat to sustain its decomposition 
processes. Polymer combustion processes could involve vapor phase and condensed 
phase reactions [39].

2.2 Theory of flame retardance

2.2.1 Vapor phase flame inhibition

The combustion process of premixed methane-oxygen flame is well investigated 
[40, 41]. The methane oxygen system can be used as a model for studying more 
complex polymer flames [41, 42]. Methane combustion is a free-radical chain 
reaction, which mainly consists of propagation, chain branching, and termination 
processes [43]. Any flame-retardant material which either decreases the concentra-
tion of these chain carrying radicals or increases the rate of termination will inhibit 
the flame reaction. This is thought to be mechanisms by which vapor phase flame 
inhibitors [39, 44].

2.2.2 Condensed phase flame inhibition

Cooling and char barrier formation are two main modes in solid phase flame 
inhibition [39, 44, 45]. We discuss cooling mode first. One important cooling mode 
used in condensed phase flame inhibition is the use of materials which decompose 
endothermically in the pyrolysis zone of the burning polymer [39]. For example, 
due to polyvinyl alcohol’s ability to endothermically form water molecules, polyvi-
nyl alcohol is less flammable than the isomeric polyethylene oxide [39, 46]. During 
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polymer burning processes, cooling mode can be also achieved by adding thermally 
conductive fillers into polymers [39]. Fillers have higher thermal conductivities 
than that of polymers. Fillers conduct heat better than polymers. Fillers conduct 
heat away from hot regions more efficiently than unfilled polymers. Fillers enable 
polymer-filler composites difficult to burn. However, fillers at high volume frac-
tion loadings are needed for good cooling effect, which might lead to limited use 
[39, 47]. Dripping is another cooling mechanism [39, 48]. Polymers that drip easily 
during burning processes are more difficult to burn. For example, a regular candle 
will not burn with no wick, due to its high dripping tendency. This is because heat is 
dissipated from flaming areas. However, dripping could be a hazard by resulting in 
the spreading of a fire and thus of limited use [39, 49].

2.3 Thermally insulative polymers with high flame retardancy

Thermally insulative polymer-based materials with high flame retardancy are 
attracting significant attention [50]. This is because thermally insulative materi-
als can protect overheating damage from burn injuries and save lives [34, 51–58]. 
There are drawbacks for available fire-resistant polymers. Some flame retardant 
polymers could be expensive [57]. Some flame retardant polymers have relatively 
low decomposition temperatures and decompose nearby 400°C [57]. Thus, highly 
thermally insulative, thermally stable and flame retardant polymer-based materials 
are desired for advanced thermal management applications [17, 50, 57].

Flame retardant and thermally insulative polymer-based composites have 
been developed [50, 56, 59–62]. For example, PC–PDMS copolymers have flame-
retardant behaviors. Chars can prevent more volatile fuel production and serve as 
a thermal insulator preventing the temperature from rising [59]. When a specimen 
of PC–PDMS was in combustion, a lot of fine bubbles and char were formed. These 
fine bubbles are good for thermal insulation [59]. Moreover, silica particles in situ 
produced by thermal decomposition of PDMS mostly stay in char layers, which 
improve the quantity of oxidation-resistant char coatings [59]. The resulting bubble 
structures and silica materials in the char layer prevented volatile and flammable 
fuel production, which served as an effective thermal insulator [59]. Although there 
are progresses on developing flame retardant and thermally insulative polymer-
based materials, further understanding flame retardancy and thermal insulation 
mechanisms will play key roles increating next generation of thermally insula-
tive and flame retardant polymers with outstanding performance. With unique 
combined properties including simple manufacturing process, low cost, excellent 
thermal insulation, flame retardancy, superior physical and mechanical properties, 
thermally insulative and flame retardant polymers will provide new opportunities 
for existing and unforeseen applications.

2.4 Critical discussion and outlook

To achieve the high-performance fire retardancy of polymers, different strate-
gies have been developed [63]. Followings are selected strategies.

1. By modifying the reaction scheme of pyrolysis of polymers to produce  
non-combustible, and/or non-volatile products that dilute the supply of  
oxygen [40, 63].

2. By stopping the combustion through dilution of the combustible gases, or the 
formation of a char which suppress the oxygen supply [63, 64].
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3. By introducing active radical-trapping effects both in the gaseous phase and/or 
in the condensed phase [63, 65].

4. By reducing the thermal conductivity of the material to limit heat transfer 
[34, 63].

The different types of flame retardants in polymers based on halogens, heavy 
phosphorus-organic compounds and/or transition metals have shown good flame 
retardance performance [26]. However, toxic gases and smoke are formed during 
burning processes [66]. Environmental safety of flame retardants in polymers is 
a major issue [22, 63]. Fire-retardant polymer-based materials are desired to have 
high resistance to ignition, low combustion rate, retention of low flammability, 
acceptability in properties and appearance, no health safety and environmental 
issues, and little (or no) economic penalty.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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