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and Na Li

1. Introduction

The center of multiomics is being moved from genomics to phenomics (Figure 1) 
[1]. Proteome and metabolome are two main components of phenome, and are equally 
important. The concept and development of proteoforms significantly enrich the con-
tent of a proteome. A book entitled “Proteoforms: Concept and Applications in Medical 
Sciences” has been published focusing on proteomics at the proteoform level [3]. It 
is driving the editor to edit another book focusing on metabolomics to discuss (i) the 
methodology of metabolomics, including sample preparation, targeted metabolomics, 
and untargeted metabolomics based on nuclear magnetic resonance (NMR) or mass 
spectrometry (MS), and (ii) applications of metabolomics in the research and practice 
of life science and medical science.

Metabolomics is an important aspect of phenomics, which is the theory and 
methodology to study metabolome, including identification of biochemical and 
molecular characteristics of metabolome, characterization of interactions among 

Figure 1. 
The imbalance contribution of multiomics to clinical practice. RNAome includes messenger RNAs (mRNAs) 
and non-coding RNAs (ncRNA). Multiple modifications extensively occur at three different levels of 
DNAs, RNAs, and proteins to systematically regulate physiological and pathological processes. The center of 
multiomics is being moved from genomics to phenomics, especially proteomics and metabolomics. PTMs = post-
translational modifications. PPPM = predictive, preventive and personalized medicine (3P medicine). 
Modified and upgraded from Zhan et al. [1], with permission from Elsevier publisher, copyright 2018; and 
reproduced from Li et al. [2], with permission from Wiley publisher, copyright 2021.
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different metabolites or between metabolites and genetic/environmental factors, 
and evaluation of biochemical mechanisms related to a given condition such as 
different pathophysiological processes [1]. Metabolome contains all metabolites 
derived from nucleic acids, proteins, lipids, and sugars in a given cell, tissue, 
biological system, or body-fluid. The metabolites in a metabolome interact mutually 
in enzymatic reaction systems to form metabolic network systems. The metabolo-
mic variation is associated with multiple factors, including genetic, environmental, 
internal, external, drug, or dietary factors [1]. Currently the studies on metabolo-
mic variations are much insufficient in the width and depth of metabolomics. It is 
necessary to develop high-sensitivity, high-throughput, and high-reproducibility 
methodology for maximizing the coverage of metabolomic variations. The studies 
on metabolomic variations directly result in the discovery of effective biomarkers to 
clarify molecular mechanisms of a disease, determine reliable therapeutic targets, 
and discover reliable biomarkers for precise prediction, diagnosis, and prognostic 
assessment in the context of predictive, preventive and personalized medicine  
(3P medicine, PPPM).

2. Importance of metabolomic variations in medical science

Metabolome contains all metabolites derived from nucleic acids, proteins, lip-
ids, and sugars in a given cell, tissue, biological system, or body-fluid [4–6]. The 
metabolites in a metabolome interact mutually in enzymatic reaction systems 
to form metabolic network systems [5]. The change of metabolites is associated 
with multiple factors, including internal, external, genetic, environmental, 
drug, or dietary factors. Metabolomics is the theory and methodology to study 
metabolome, including identifying biochemical and molecular characteristics of 
metabolome, characterizing interactions among different metabolites or between 
metabolites and genetic/environmental factors, and evaluating biochemical 
mechanisms related to a given condition such as different pathophysiological 
processes [7]. Metabolomic variations can reflect the status of physiological and 
pathological processes, monitor the progression of a disease, and predict and 
assess the drug effects compared to the baseline of metabolic profiles, which 
benefits for disease stratification, and personalized/precise medicine in the 
context of PPPM [8].

3. Samples used to measure metabolomic variations

The biological samples are very intricate that are used to measure metabolo-
mic variations, including extracts from different cells, tissues, and body-fluids 
(Table 1). Urine and serum/plasma [6, 17, 18] are the most commonly used 
body-fluids to analyze metabolome for different diseases because these samples 
are very easily available and are easy to be prepared, without any injury. In addi-
tion, tears [19] are the good samples for analyzing metabolome of an eye disease, 
exhaled air [20, 21] for pulmonary and airway diseases or other diseases, saliva 
[22] for oral diseases, synovial fluid [23] for arthritis, and cerebrospinal fluid 
(CSF) [24] for neurological systems disease. Generally speaking, there are many 
biological samples that are suitable for metabolomics analysis of a disease. The 
metabolomics studies based on these different samples can directly or indirectly 
reflect the status of a disease, which may use to understand the molecular 
mechanism of a disease, and discover therapeutic targets and reliable biomarkers 
to predict, diagnose, and prognostically evaluate a disease.
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4. Methods used to measure metabolomic variations

The appropriate analytical methods for metabolomics are important to detect, 
identify, and quantify metabolomic variations in a given condition; for example, a dis-
ease status versus control, which are mainly classified into targeted metabolomics [25] 
and untargeted metabolomics [26]. (i) The targeted metabolomics [25] is to mainly 
quantify hypothesis-driven known metabolite variations in a metabolome (such as 

Biological 

sample

Methods Main results References

HeLa cells Gas cluster 
ion beam- 
secondary 
ion MS 
(GCIB-SIMS)

Purinosomes comprise nine enzymes that 
act synergistically, channeling the pathway 
intermediates to synthesize purine nucleotides, 
increasing the pathway flux, and influencing 
the adenosine monophosphate/guanosine 
monophosphate ratio.

[9]

Carcinoma and 
adjacent normal 
tissues

UHPLC-
Orbitrap MS

This method enables targeted profiling of over 
400 biologically important metabolites covering 
92 metabolic pathways

[10]

Sweat GC–MS and 
LC–MS/MS

As most of the identified metabolites are 
involved in key biochemical pathways, this 
study opens interesting possibilities to the use of 
dry sweat as a source of metabolite markers for 
specific disorders.

[11]

Urine and 
plasma

HPLC-ESI-
qTOF-MS

A total of 31 and 38 metabolites in plasma 
and urine, respectively, showed significant 
differences between healthy volunteers and 
Sjögren’s Syndrome patients and were proposed 
for their identification.

[12]

Cerebrospinal 
fluid (CSF)

GC–MS and 
LC–MS/MS

A total of 274 CSF-derived metabolites were 
common to the discovery and replication cohorts 
in cancer-related fatigue.

[13]

Saliva UHPLC-
qTOF-MS

The study identified and classified a total of 211 
endogenous and exogenous salivary metabolites. 
The results reveal a distinct metabolite profile 
of dog and human saliva as 25 lipid compounds 
were identified only in canine saliva and eight 
dipeptides only in human saliva.

[14]

Sputum LC–MS/MS The KEGG analysis revealed that the 
glycerophospholipid metabolism pathway 
was downregulated in severe COPD. Due 
to the critical role of glycerophospholipid 
metabolism in oxidative stress, significant 
negative correlations were discovered between 
glycerophospholipid metabolites and three 
oxidative stress products (SOD, MPO, and 8-iso-
PGF2α). The diagnostic values of SOD, MPO, 
and 8-iso-PGF2α in induced sputum were found 
to exhibit high sensitivities and specificities in 
the prediction of COPD severity.

[15]

Blood 1D 1H NMR 
spectroscopy 
methods

This has led to the absolute quantitation of 
nearly 70 metabolites in serum and plasma and 
nearly 80 in whole blood.

[16]

Table 1. 
Examples of different types of biological samples used for metabolomics analysis.
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metabolites derived from one or more unknown metabolism pathways) between or 
among research groups, and then use multivariate statistical analysis to establish math-
ematical models [27]. This mathematical model then is used to discriminate Diseases 
from healthy controls, treatment from untreatment, or different stages of diseases. 
The often used methods for targeted metabolomics are the selected/multiple reaction 
monitoring (SRM/MRM) analysis with an optimized sample extraction and liquid 
chromatography-mass spectrometry (LC–MS) conditions using the triple quadrupole 
mass spectrometry (QqQ-MS) [28]. (ii) The untargeted metabolomics [26] is an none 
hypothesis-driven approach to globally detect, identify, and quantify metabolite 
variations in a metabolome in a biological system without any bias, which will benefit 
the understanding molecular mechanism of a disease, discover new therapeutic 
targets/drugs and metabolite biomarkers for effective prediction, diagnosis, and 
prognosis. The often used methods for untargeted metabolomics are the mass spec-
trometry (MS)-based methods [6, 29], and nuclear magnetic resonance (NMR)-based 
methods [30, 31] (Figure 2). (a) MS-based methods have ion mobility coupled with 
MS (IM-MS) that can measure time, mass-to-charge (m/z) and intensity variables 
[1], capillary electrophoresis coupled with MS (CE-MS) that can measure time, m/z 
and intensity variables [29, 32, 33], gas chromatography coupled with MS (GC–MS) 
that can measure time, m/z and intensity variables [29, 34], liquid chromatography 
coupled with MS (LC–MS) that can measure retention time (RT), m/z and intensity 
variables [26, 29, 35], and direct injection coupled with MS (DI-MS) that can measure 
m/z and intensity variables [1]. IM-MS is to use a buffer gas and a uniform or periodic 
electric field for separation of ions based on size and shape of the ions, followed by 
MS analysis. This is a very high throughput and high selectivity method, which can 
easily separate isomeric and isobaric compounds. CE-MS is to use electro kinetics for 

Figure 2. 
The main metabolomic strategies for identification of metabolite profiling and discovery of biomarkers. 
Reproduced from Zhan et al. [1], with permission from Elsevier Publisher, copyright 2018.
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separation of polar molecules, followed by MS analysis. This is a very good method to 
analyze polar molecules in aqueous samples for measurement of inorganic and organic 
anions, with low running costs and relatively low throughput. GC–MS is to use gas 
chromatography for separation of molecules, followed by MS analysis. This method is 
suitable for a polar and volatiles compounds, whose advantages are availability of uni-
versal database for identification, high sensitivity, and high reproducibility; and whose 
disadvantages are only detection of a polar and volatile compounds, requirement of 
derivatization of polar compounds, low ionization discrimination, and requirement  
of higher amount of samples. LC–MS is to use liquid chromatography for separation of 
molecules, followed by MS analysis. This method is suitable for polar to hydrophobic 
compounds, whose advantages are requirement of minimal amount of samples, high 
sensitivity, high throughput, and flexibility in column chemistry widening the range 
of detectable compounds; and whose disadvantages are requirement of high ionization 
discrimination, lack of large metabolite databases, and requirement of specific chro-
matographic conditions for very polar molecules. DI-MS is to use the nanospray source 
directly coupled with MS, which does not require chromatography separation, whose 
advantages are low sample volume requirement, high sensitivity, high-throughput, 
and low cost; and whose disadvantages are requirement of high ionization discrimina-
tion, significant ion suppression phenomenon, and inability to separate isomers and 
isbaric species. (b) NMR-based methods have one-dimensional, two-dimensional, and 
three-dimensional NMR methods (1D-NMR, 2D-NMR, and 3D-NMR) [31], which is 
to use the interaction of spin active nuclei (13C, 1H, 31P, 19F) in the electromagnetic 
fields for obtaining structural, chemical, and molecular environment information  
[30, 31], whose advantages are non-destruction of sample, minimal sample prepara-
tion, high reproducibility, relative high throughput, availability of molecular dynamic 
and compartmental information with diffusional methods, and availability of 
databases; and whose disadvantages are low sensitivity, overlapping of metabolites, 
and high instrumentation cost [36]. MS-based methods and NMR-based methods are 
complimentary for metabolomics analysis, and both will produce very complex data. 
The processing, analysis, and annotation of data are very important and crucial steps 
to discover the potential and important metabolic biomarkers [37, 38]. However, com-
pared to the NMR-based metabolomics, MS-based metabolomics has a relatively low 
cost, high sensitivity and resolution, and very good analytical performance to measure 
the metabolomic variations for PPPM or PM practice [39].

5. Applications of metabolomics in life science and medical science

Metabolome is the important content of phenome. Metabolomics conducts 
qualitative and quantitative analysis of all small molecule metabolites in organisms, 
and searches for the relative relationship between metabolites and physiological 
and pathological changes. The subjects are mostly small molecules with molecular 
weights of less than 1,000. With the development of high throughput technology, the 
study of living organisms has developed from single small molecule to multi-omics; 
such as genomics, transcriptomics, proteomics, metabolomics. Multiomics reflects 
molecular changes in a disease or biological process, and molecules that can be 
identified can be used as valuable biomarkers. Metabolites are substances produced 
or consumed through the metabolic process. Metabolites are the final expression 
products subject to genetic control and environmental influence. Imprints with 
genomic, transcriptomic, epigenetic and environmental effects are called “associa-
tions between genotypes and phenotypes” [40]. Metabolomics has been extensively 
applied in fields of medical science and life science (Table 2). It has important appli-
cations in medicine and life sciences, agriculture, food safety and so on. Metabolites, 
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Metabolomics 

methods

Biological samples Main discoveries References

1D-NMR Plasma samples 
from SARS-CoV-2 
rRT-PCR-positive 
patients (n = 15, with 
multiple sampling 
timepoints) and 
age-matched healthy 
controls (n = 34, 
confirmed rRT-PCR 
negative), together 
with patients 
with COVID-19/
influenza-like clinical 
symptoms who tested 
SARS-CoV-2 negative 
(n = 35).

The study observed four plasma cytokine 
clusters that expressed complex differential 
statistical relationships with multiple 
lipoproteins and metabolites. These included 
the following: cluster 1, comprising MIP-1β, 
SDF-1α, IL-22, and IL-1α, which correlated 
with multiple increased LDL and VLDL 
subfractions; cluster 2, including IL-10 
and IL-17A, which was only weakly linked 
to the lipoprotein profile; cluster 3, which 
included IL-8 and MCP-1 and were inversely 
correlated with multiple lipoproteins. 
IL-18, IL-6, and IFN-γ together with IP-10 
and RANTES exhibited strong positive 
correlations with LDL1–4 subfractions and 
negative correlations with multiple HDL 
subfractions.

[41]

2D-NMR Different aging 
regimes (crust from 
dry-aged beef, 
inner edible flesh 
of dry-aged beef, 
and wet-aged beef 
striploin)

NMR-based multivariable analyses could be 
used to distinguish the method, degree, and 
doneness of beef aging.

[42]

3D-NMR E. coli cell lysate For 19 of the 25 model metabolites, 
“Structure of unknown metabolomic 
mixture components by MS/NMR” yielded 
complete structures that matched those 
in the mixture independent of database 
information.

[43]

DI-MS A parasite–host cell 
system

The study applied a metabolic fingerprinting 
approach to evaluate metabolic changes 
induced by six different (candidate) drugs in 
a parasite–host cell system.

[44]

LC–MS P. aeruginosa (35 
clinical strains)

Those clinical strains that differed in 
their virulence and biofilm phenotype 
also had pronounced divergence in their 
metabolomes, as underlined by 332 features 
that were significantly differentially 
abundant with fold changes greater than 1.5 
in both directions.

[45]

GC–MS Embryonic zebrafish A total of 87 important endogenous 
metabolites such as citric acid and 
hypoxanthine were identified by universal 
databases or standards among 270 extracted 
metabolites, which consisted of sugars, 
amines, amino acids, nucleotides, fatty 
acids, and sterols.

[46]

CE-MS Plasma samples of 
acute corneal seizure 
mouse model.

Both electrically induced seizures showed 
decreased values of methionine, lysine, 
glycine, phenylalanine, citrulline, 
3-methyladenine and histidine in mice 
plasma. However, a second provoked 
seizure, 13 days later, showed a less 
pronounced decrease of the mean 
concentrations of these plasma metabolites, 
demonstrated by higher fold change ratios.

[47]
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as the end products of gene expression, have been implicated in many diseases. For 
example, metabolomics has great potential for diabetes research, metabolic markers 
hold the potential to detect diabetes-related complications already under subclini-
cal conditions in the general population [49]. Metabolomics is used to identify key 
disease-related metabolic changes and disease-progression-related changes, and 
defining metabolic changes during AD disease trajectory and its relationship to 
clinical phenotypes provided a powerful roadmap for drug and biomarker discovery 
[50]. Carmen Peña-Bautista’s work shows that the untargeted analysis carried out in 
human plasma samples from early Alzheimer’s disease patients and healthy individu-
als, and the use of sophisticated statistical tools, identified some metabolic pathways 
and plasma biomarkers [51]. Nina P Paynter’s work shows metabolomics also has 
important applications in cancer. The processes of life accompany metabolism, such 
as glycolysis, protein synthesis and metabolism. These fundamental features of cellu-
lar metabolism are reprogrammed in cancer cells to support their pathological levels 
of growth and proliferation. Metabolic reprogramming in malignant cells is likely the 
result of the multifactorial effects of genomic alterations (i.e. mutations of onco-
genes and tumor suppressors), the tumor microenvironment (which imposes meta-
bolic stress caused by compromised nutrients and oxygen availability), and other 
influences [52]. These changes may be the result of changes in the genome or envi-
ronmental impacts and a variety of other factors. We need to understand the com-
plete breadth of metabolic abnormalities in cancer because some metabolic changes 
provide opportunities to develop novel therapeutic targets and predictive biomarkers 
[52]. As mentioned in Yousra Ahmed-Salim’s study, generally, combinations of more 
than one significant metabolite as a panel, in different studies, achieved a higher 
sensitivity and specificity for diagnosis than a single metabolite [53]. Metabolomics 
has become the most powerful platform for studying tissue samples. A common 
application of metabolomics is the discovery of biomarkers for diagnosis or predic-
tion of treatment sensitivity and prognosis. For example, Yousra Ahmed-Salim et al. 
conducted a systematic review of the application of metabolomics in the treatment 
of ovarian cancer. The most frequently described metabolite difference between 
the biological fluids and tissues of patients with ovarian cancer and those of healthy 
controls have been in phospholipids [53]. Su et al. interrogated metabolomics and 
gene-expression from the NCI-60 cell lines to study relationships between metabolite 
and transcripts [54]. They observed that the metabolome can distinguish cancer 
subtypes and that metabolite levels correlate well with gene expression under strong 
correlation models [54]. In conclusion, metabolomics can more accurately determine 
pathophysiological changes of diseases and identify effective biomarkers through 

Metabolomics 

methods

Biological samples Main discoveries References

IM-MS Breast cancer plasma 
samples

Analysis of the resulting data showed that 
phosphatidylcholines, triglycerides and 
diglycerides exhibited lower expression 
and phosphatidylserine showed increased 
expression in the breast cancer samples 
compared to those of healthy subjects. 
The coefficients of variation, determined 
by reference to the QC data, for all of the 
features identified as potential markers of 
disease, were 6% or less.

[48]

Table 2. 
Examples of different metabolomics applied in life science and medical science.
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the high-throughput study of metabolites in organisms with abundant sources of 
samples, so as to further understand the molecular mechanism of diseases. Thus, it is 
beneficial to the prevention, diagnosis and treatment of diseases.

6. Conclusion

Metabolomics as the important aspect of phenomics is emerging as the frontier 
field in life science and medical science. Many biological samples have been used 
to measure metabolomic variations, including extracts from different cells, tissues, 
organisms, and body-fluids (for example, urine, serum/plasma, tear, exhaled air, 
saliva, synovial fluid, CSF, and sputum). Metabolomics is classified into targeted 
metabolomics and untargeted metabolomics. Targeted metabolomics is used to 
analyze the known metabolite profiling with SRM/MRM methods. Untargeted 
metabolomics is used to globally analyze the unknown metabolite profiling with 
NMR-based methods (1D-NMR, 2D-NMR, and 3D-NMR) and MS-based methods 
(DI-MS, LC–MS, GC–MS, CE-MS, and IM-MS). Metabolomics has been extensively 
applied in the research and practice of life science and medical science. However, 
currently the studies on metabolomic variations are much insufficient in the width 
and depth. The development of high-sensitivity, high-throughput, and high-
reproducibility methodology is needed to maximize the coverage of metabolomic 
variations for clarification of molecular mechanism of a disease, determination of 
effective therapeutic targets, and discovery of reliable biomarkers for prediction, 
diagnosis, and prognostic assessment in the context of PPPM practice.
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