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Chapter

A Constant Gain Kalman Filter
for Wireless Sensor Network
and Maneuvering Target Tracking
Peeyush Awasthi, Ashwin Yadav, Naren Naik

and Mudambi Ramaswamy Ananthasayanam

Abstract

One of the well-known approaches to target tracking is the Kalman filter. The
problem of applying the Kalman Filter in practice is that in the presence of unknown
noise statistics, accurate results cannot be obtained. Hence the tuning of the noise
covariances is of paramount importance in order to employ the filter. The difficulty
involved with the tuning attracts the applicability of the concept of Constant Gain
Kalman Filter (CGKF). It has been generally observed that after an initial transient
the Kalman Filter gain and the State Error Covariance P settles down to steady state
values. This encourages one to consider working directly with steady state or constant
Kalman gain, rather than with error covariances in order to obtain efficient tracking.
Since there are no covariances in CGKF, only the state equations need to be propa-
gated and updated at a measurement, thus enormously reducing the computational
load. The current work first applies the CGKF concept to heterogeneous sensor based
wireless sensor network (WSN) target tracking problem. The paper considers the
Standard EKF and CGKF for tracking various manoeuvring targets using nonlinear
state and measurement models. Based on the numerical studies it is clearly seen that
the CGKF out performs the Standard EKF. To the best of our knowledge, such a
comprehensive study of the CGKF has not been carried out in its application to
diverse target tracking scenarios and data fusion aspects.

Keywords: Constant Gain Kalman Filter, INS, GPS, Wireless Sensor Network,
Tracking

1. Introduction

The Kalman Filter (KF) is one of the most fundamental and widely used esti-
mation schemes in tracking application. While the KF formalism is very powerful
we need to keep in mind that the solution scheme can be considered to be formal
and a fundamental prerequisite for accurate results is the a prioiri knowledge of the
initial state (X0), initial state noise covariance (P0), system noise covariance (Q),
measurement noise covariance (R). Good values of X0, P0, Q and R are imperative
for the filter to perform optimally. Tuning of the KF is defined as the process to
obtain precise values of P0,Q, and R. A detailed review of filter tuning has been given
by Ananthasayanam et al. in [1]. A main theme of filter covariance tuning schemes is
the notion of the innovation sequence being white and Gaussian for filter optimality.
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One class of schemes obtains the unknown covariances that maximize the likelihood
[2–5]. Another important class of filter covariance tuning schemes is the covariance
matching methodology [6–8]. The idea of an innovations based cost function being
minimized by the optimal covariances is also used in [7, 8] to tune process system
noise (Q) and state error covariances (P) respectively.

An alternate approach to tuning is via the direct setting of the Kalman gain as
carried out in the work of Ananthasayanam et al. [9] and Ashwin et al. [10]. It is
often observed that the Kalman gain converges to a steady state value which coin-
cides with the convergence of the state error covariance P. The premise for working
with the steady state or constant gain is well explained in the thesis work by Bohn
[11]. The work of Anil Kumar et al. [9], optimizes the innovations likelihood cost
function [5] for the (constant) Kalman gain in a space craft reentry problem. This
CGKF approach works directly with the Kalman gain and does not utilize any
knowledge of the filter covariances.

Our present work is about the application and sensitivity study of the CGKF
traget tracking scheme in sensor networks scenarios and maneuvering target track-
ing. We look at target tracking problems in wireless sensor networks using passive
infrared (PIR), acoustic and seismic sensors in stand alone (SA) and data fusion
(DF) modes as given by Raol [12] for the discrete white noise acceleration (DWNA)
traget motion model. We further demonstrate the capability of the CGKF to track
maneuvering targets [13, 14] from acquired range and direction data for a class of
coordinated turn (CT) maneuver models. The CGKF with linear measurement
model was validated in [10, 15]. The present study applies the CGKF to a non linear
measurement models and further demonstrates its robustness through sensitivity
studies. The results obtained with respect to homogeneous and heterogeneous data
fusion further demonstrate the range of applicability of the CGKF. These extensive
tracking and sensitivity studies for a wide range of state and measurement models
are to the best of our knowledge, unique to this paper and provide the reader with a
comprehensive reference. These results also provide a firm base for application of
the CGKF concept to other areas. In the sequel, Section 2 describes the CGKF
concept. Section 3 introduces the various tracking scenarios based on PIR, acoustic
and seismic measuerement models in SA and DF modes. In addition maneuvering
targets based on CT models are discussed, since these have the potential to demon-
strate the flexibility of the CGKF. Section 4 details the tracking and sensitivity
studies on the above mentioned models, and Section 5 gives the conclusion of the
present work.

2. Constant gain Kalman filtering

The KF algorithm [16] is based on the least squares principle with recursive time
updates. It is a fact that optimal filter performance needs apriori knowledge of the
filter statistics in terms of the state-error, system and measurement noise covari-
ances (P, Q and R respectively). A central theme in the optimality of the KF is the
requirement of the innovations being white at convergence [17, 18]. Mehra [17]
shows that the settling of the filter gain value to a steady state value coincides with
the state error covariance also similarly settling (Figure 1).

The observation that the gain (reflecting P,Q,R) reaches a steady state, prompts
us to consider working directly with the steady state gain rather than the tuning
dependant P,Q,Rmatrices to determine the gain. The way we accomplish this is via
an innovations cost function minimization approach. We use the whiteness of the
innovations at KF convergnce in order to construct the likelihood based function of
the innovations sequence [5].
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J K,Rð Þ ¼
1

N

X

N

t¼1

vTt Rvt þ log jRjð Þ
� �

(1)

where vt represents the innovations, R represents the innovations covariance, |.|
represents the determinant and N is the number of measurement time steps. We
obtain the steady state gain K ∗ and innovation covariance R ∗ by solving the
following optimization problem

K ∗ ,R ∗ð Þ ¼ argminK,RJ K,Rð Þ (2)

The following is the estimation scheme based on a predict and update mode.

2.1 The estimation scheme

The generic KF updates are

x̂t ¼ xt þ Ktvt (3)

where the the innovations sequence is vt ¼ yt � Cxt. C is the measurement
matrix, xt is the predicted state matrix and x̂t is the filtered state matrix. The
standard KF computes the gain matrix Kt using P, Q and R while we proceed to
estimate this constant gain K ∗ for the CGKF, by solving the optimization problem
described by (2) above. The optimization problem can be solved using local gradi-
ent based methods (such as Newton type schemes) [19] or global schemes such as
Genetic Algorithm (GA) [20] applied to problems as in [9]. As the filter tracks the
target, the gain K is seen to stabilize to a value given by the solution of the above
problem. Once we have computed the optimal filter gain Kt (denoted henceforth by
K ∗ , representative of the constant gain) for the CGKF, the KF recursions become.

Figure 1.
Gain K vs. error covariance matrix P.
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Predict

xtþ1 ¼ Ax̂tþ1 þ utþ1 (4)

Update

x̂tþ1 ¼ xtþ1 þ K ∗ ytþ1 � Cxtþ1

� �

(5)

Thus it is evident that once the optimal gain K ∗ is computed using GA to solve
the optimization problem, the filter algorithm reduces to a simple predict and
update model given by (4) and (5) above. This is obviously more compact com-
pared to the standard KF which is implemented in five steps involving computation
and propagation of the State Error Covariance P using Q and R. The advantage is
speed of operation because we circumvent the tedious calculations of the costly
covariance matrices P,Q,R and instead work directly with the optimal gain for the
set of measurements.

We observe that the typically expensive covariance time update step is not
needed in the constant gain approach.The CGKF is found to work quite well even
with state models moderately different from that for which the gains are computed
[25], suggesting a robustness of the gains calculated (Refer Tables 6 and 7). It is to
be noted that the present problem is a non linear problem, in so far as the measure-
ment model is concerned so that the filter used is the CGKF. This is one unique
advantage of the CGKF over the standard KF/EKF wherein the EKF requires line-
arization of the measurement model via use of the JacobianH. The reconstruction in
CGKF case employing the GA as the optimization tool, does not rely on the Jacobian
in computation of the optimum Constant Filter Gain K ∗ .

3. Sensor models and modes

The focus of our study is the application of the CGKF to a variety of 2D sensor
models such as those in unattended ground sensor (UGS) and Intelligence, Surveil-
lance and Reconnaissance (ISR) systems. Sensors such as passive infrared (PIR)
[21], acoustic, seismic [22] and radar have been studied. The sensor system might
consist of single or multiple data inputs as required in different scenarios. They may
consist of single type of sensor or multiple type of sensor nodes, as required in
situations. Homogeneous and heterogeneous DF aspects of certain combination of
sensors will be analyzed. We outline the regular and CGKF schemes and their
application to the above mentioned systems.

3.1 State variable models in stand alone mode

Non Maneuvering or Discrete White Noise Acceleration (DWNA) Model.
The state model for 2D target is comprised of x and y direction displacement and

their corresponding velocities wherein the state vector is represented as Xt ¼

xt, yt, _xt, _yt
� �t

with xt, yt representing X,Y coordinates respectively of the target and
_xt, _yt representing velocities in X, Y directions.

State Equation.
The state equation for the DWNA is

Xtþ1 ¼ AXt þ Bwt (6)
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where

A ¼

1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

,B ¼

0:5T2
s 0

0 0:5T2
s

Ts 0

0 Ts

0

B

B

B

@

1

C

C

C

A

(7)

with A and B being the state - transition and acceleration matrices respectively,
wt being an uncorrelated Gaussian process.

Measurement equation: The measurement at time t of nth sensor g nð Þ
t

g
nð Þ
t ¼ h nð Þ Xt, tð Þ þ v

nð Þ
t (8)

where h nð Þ Xt, tð Þ is typically a nonlinear function of the states v nð Þ is the

corresponding measurement noise (assumed to be white Gaussian) of nth sensor.
The measurement equations for the respective sensors are given below.

Sensor Measurement model for PIR sensor [21]

g
nð Þ
t ¼ log

_x2t þ _y2t

xt � r
nð Þ
x

� �2
þ yt � r

nð Þ
y

� �2 þ v
nð Þ
t (9)

Sensor Measurement model for Acoustic sensor [22]

g
nð Þ
t ¼ tan �1 yt � r nð Þ

y =xt � r nð Þ
x

� �

þ v
nð Þ
t (10)

Sensor Measurement model for Seismic sensor [22]

g
nð Þ
t ¼

xt � r
nð Þ
x

� �2
þ yt � r

nð Þ
y

� �2
� 	0:5

þ v
nð Þ
t

tan �1 yt � r
nð Þ
y =xt � r

nð Þ
x

� �

þ v
nð Þ
t

0

B

B

B

@

1

C

C

C

A

(11)

where r nð Þ ¼ r
nð Þ
x , r nð Þ

y

h i

is the position of the nth sensor in network.

Estimation Scheme.
We now outline the estimation scheme by an EKF as well as a CGKF. The EKF

has the following steps. For t = 0,1,2......
Prediction

Xtþ1 ¼ AX̂t (12)

Ptþ1 ¼ AP̂tA
0 þ Q (13)

where Xtþ1 is the predicted estimate based on the filtered estimate X̂t, where Ptþ1

and P̂t being the state error covariances corresponding to the predicted Xtþ1 and

filtered X̂t estimates respectively. and Q ¼ BE ww0ð ÞB0.
Update/Correction: The update of the states and covariances as per the EKF

scheme are

X̂tþ1 ¼ Xtþ1 þ Ktþ1 gtþ1 � h Xtþ1, t
� �� �

(14)
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where

Ktþ1 ¼ Ptþ1Htþ1
0 Htþ1Ptþ1Htþ10 þ R
� ��1

(15)

where Htþ1 is the Jacobian corresponding to h :ð Þ at time tþ 1 and R ¼ E vv0ð Þ.

P̂tþ1 ¼ I � Ktþ1Htþ1ð ÞPtþ1 (16)

Table 1 gives measurement Jacobians for all three sensors. In the table
�

dt ¼ xt � r
nð Þ
x

� �2
þ yt � r

nð Þ
y

� �2
is used for sake of brevity of space.

The CGKF on the other hand has the following two steps.

Prediction

Xtþ1 ¼ AX̂tþ1 (17)

Update/Correction.

Once the optimized Kalman gain K has been calculated via equations - 1,2 The
following Eq. (17) updates the state parameters.

X̂tþ1 ¼ Xtþ1 þ K gtþ1 � h Xt, t
� �� �

(18)

In our work the optimized value of K is calculated via the application of the
genetic algorithm to the innovation cost function Eqs. (1) and (2).

3.2 Homogeneous data fusion

In homogeneous fusion the fusion is based on the data from multiple sensors of
similar type, at every time instant. Here in this section we have used mainly the
centralized approach to DF in respect of the KF. The data obtained from various
nodes (similar type of sensors) is combined together then applied to EKF and CGKF
for tracking the target. This approach has been used as measurement fusion [12]
approach in WSN of UGSs.

Measurement fusion techniques combine the raw measurements of the target
obtained from the Individual Sensor Node (ISN) at the Cluster Head Node (CHN)
Level. The ISN is a tier 1 node while the CHN is a tier 2 node which is capable of
running a complex fusion algorithm based on KF framework. So ISNs are considered
to have minimal computation capability compared to the CHNs. The two approaches
which have been implemented in our work with respect to the CGKF under the

Sensors

Type

Measurement Equation Jacobian H

PIR
h ¼ log

_x
2

tþ _y
2

t

xt�r
nð Þ
xð Þ

2
þ yt�r

nð Þ
yð Þ

2. H ¼
�2 xt�r

nð Þ
xð Þ

d
2
t

,




�2 yt�r
nð Þ
yð Þ

dt
2 , 2 _xt

_x
2

tþ _y
2

t

,
2 _yt

_x
2

t þ _y
2

t

�

ACO-

USTIC
h ¼ tan �1 yk � r nð Þ

y =xk � r nð Þ
x

� �

H ¼
r
nð Þ
y �ytð Þ
dt




, xt�r
nð Þ
x

dt
, 0, 0

�

SEISMIC

h ¼
xt � r

nð Þ
x

� �2
þ yt � r

nð Þ
y

� �2
� 	0:5

þ v
nð Þ
t

tan �1 yt � r
nð Þ
y =xt � r

nð Þ
x

� �

þ v
nð Þ
t

0

B

B

@

1

C

C

A

H ¼ xt�r
nð Þ
x

d
0:5

t




,
yt�r

nð Þ
y

d
0:5

t

, 0, 0;

r
nð Þ
y �ytð Þ
dt

,
r
nð Þ
x �xtð Þ
dt

, 0, 0

�

Table 1.
Jacobians for sensors measurement models.
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homogeneous DF are Maximal Kalman filter (MKF) [12] and Weighted fusion (WF)
[12] approaches. The state model is the DWNAmodel of the previous sub section.

3.2.1 Maximal Kalman filter (MKF) method

This method is based on fusing all measurements of the ISN by incorporating
them in a fused measurement vector and the corresponding measurement noise
covariance and measurement matrices as described below

g
f
t ¼ g1t , g

2
t , :… … gmt

� �

(19)

H
f
t ¼ H1

t ,H
2
t , :… …Hm

t

� �

(20)

R
f
t ¼ diag R1

t ,R
2
t , :… …Rm

t

� �

(21)

where g
f
t in (16) is the fused measurement vector, by combining the measure-

ments of m sensors (ISNs) at time instant t. Similarly H
f
t is the corresponding value

of the Jacobian of the respective ISNs. In (21) R
f
t is the measurement error covari-

ance. Note that no modification measurements of the ISNs is carried out here and
pure measurements of the target are being fused at the CHN to obtain the final state
vector and state error covariance.

3.2.2 WF method

This method is based on combining the m measurements in a different manner
than MKF. A weighing factor ϖ is allotted to each of the corresponding measure-
ments of the ISNs, which represents the degree of correctness or confidence that
one has regarding the measurement obtained from a specific ISN. The weight factor
has been applied to Eqs. (19)–(21) as follows

gt ¼

PN
m¼1 ϖ

m
t g

m
t

� �

PN
m¼1w

m
t

(22)

Ht ¼

PN
m¼1 ϖ

m
t H

m
t

� �

PN
m¼1w

m
t

(23)

Rt ¼

PN
m¼1 ϖ

m
t R

m
t

� �

PN
m¼1ϖ

m
t

(24)

where gt, Ht and Rt are the composite measurement vector, measurement-
matrix/Jacobian and measurement noise covariance matrix respectively obtained by
combining respective components from the m sensors sensing the target at that

specific time instant. The ϖm
t is the weight alotted to the mth sensor at tth time

instant. Possible choices for the weights are

ϖ
m
t ¼

1

Rm
t

(25)

ϖ
m
t ¼

1

dmt
� �r (26)

where Rm
t represents the measurement noise of the mthsensor, dmt the distance of

the mth sensor from the target and r represents the path loss exponent. In our
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simulations we have used Eq. (25). We utilize the above weighted - fused quantities
in the EKF and the CGKF.

3.3 Heterogeneous DF

Heterogeneous DF differs from the homogeneous variety in that we fuse data
from different types of sensors in combinations: such as, PIR and acoustic or PIR
and seismic or PIR, acoustic and seismic together [12]. We have tried the architec-
tures of centralized (measurement fusion) as well as decentralized (state fusion)
data fusion. There are several methods in practice for DF but for nonlinear mea-
surement models, it has been found that only a few models have been able to
maintain the accuracy against catastrophic fusion [23]. The state model applied is
the DWNA (Eq. (6)) of the subsection A.

3.3.1 Centralized DF

This architecture mainly follows the measurement fusion. The
measurements (data) are obtained from all ISNs and then fused at cluster head
node CHNs. In our case the data obtained is nonlinear from all three sensors
with different size of measurement models. The only possible approach to
collate data effectively is the MKF since weighted fusion applies only to sensors
based on similar measurement model. The method has been applied to both EKF
and CGKF.

The MKF is an effective way to combine data from dissimilar type of sensor
measurement models. At the cost of computational complexity owing to matrix size
this is overall an effective method considering WF can combine data from only
similar group of sensors.

3.3.2 Decentralized data fusion

The method has been explicitly used to bring out the fact the CGKF did
perform better as against any of these methods of combining state parameters
and covariances. This method has been cited as state fusion concept [12] or
hierarchical data fusion. This is based on a two tier system wherein state
estimation of the target is carried out at ISNs which forms tier 1 and these states are
then fused at tier 2 in the CHNs. The global state estimate and global state error
covariance calculated at CHNs and these are then fed to ISNs. The KF algorithm
runs in the ISN to obtain fresh state and error covariance estimates, which are again
fed at the CHN and the cycle continues. There are mainly two approaches of track
to track fusion as given by Raol [12] in Eq. (27) and (28) and Durrant whyte [24] in
Eqs. (29) and (30). Most of the methods surveyed in this category feature a scheme
where in we have to combine error covariances and state vectors to produce new
covariance and state vectors. The only difference between the two methods below is
the way state estimates and error covariances are used to compute fused global

values of state estimate X
f
tþ1 and state error covariance P

f
tþ1 at tþ 1 time instant.

The symbols used in the equations below P1and P2 are the covariances with

respect to two different sensors. X̂
1

t and X̂
2

t are the target state vector as

computed by the EKF at ISNs. X
f
tþ1 and P

f
tþ1 are the finally computed target state

vector and state error covariances respectively at CHNs. This is fed back to every
ISN after every iteration. In the present work we use the Global fusion method of
Raol [12].
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Global Fusion

X
f
tþ1 ¼ X̂

1

t þ P̂
1

t P̂
1

t þ P̂
2

t

� ��1
X̂

2

t � X̂
1

t

� �

(27)

P
f
tþ1 ¼ P1

t � P1
t P̂

1

t þ P̂
2

t

� ��1
P1T
t (28)

Track to Track Fusion

P
f
tþ1 ¼

X

N

i¼1

P�1
it

" #�1

(29)

X
f
tþ1 ¼ P

f
tþ1

X

N

i¼1

P�1
it
Xit (30)

3.4 Maneuvering target

The class of maneuvering targets yield particularly challenging tracking prob-
lems. The challenges include choosing a system model close to the actual target
maneuvers in addition to often having to give real time solutions. In our work we
now aim to demonstarate the efficacy of the CGKF framework to RADAR- mea-
surement based coordinated turn (CT) models. We reiterate that the non necessity
of prior knowledge of the system and measurement noise characteristics (often
representing the nature of maneuver) make the CGKF particularly attractive. The
present work builds on [15] where the CGKF algorithm has been applied to a variety
of maneuvering targets based on a linear measurement model. Currently a non
linear measurement model (RADAR based) has been employed in order to move a
step closer to a more realistic scenario. We have applied the CGKF to the highly
maneuvering class of CT models with known as well as unknown turn rates [13, 14].
In the simulation studies the turn rate is represented by ω.

The present part is divided into the following parts.

3.4.1 CT state variable model

A two dimensional model for the target tracking problem (maneuver in
horizontal 2D plane) is described as follows.

State Equation: CT known ω.

Xtþ1 ¼ AXt þ Bwt (31)

where state vector is Xt ¼ x tð Þ _x tð Þ y tð Þ _y tð Þð ÞT, state transition matrix

A ¼
A1 �A2

A2 A1

� 	

, B ¼
B1 B2

B2 B1

� 	

.

where A1 ¼
1 Sin ωΔtð Þ=ω

0 Cos ωΔtð Þ

� 	

, A2 ¼
0 1� Cos ωΔtð Þð Þ=ω

0 Sin ωΔtð Þ

� 	

,

B1 ¼
Δt2=2 0

Δt 0

� 	

, B2 ¼
0

0

� 	

and wt represents system noise which is Gaussian

and Δt is a time step. Here we have considered the state vector to include X and Y
coordinates of the target as well as the speed in the two coordinates.

State Equation: CT with unknown ω

Xtþ1 ¼ A Xtð ÞXt þ Bwt (32)
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A two dimensional model for the target tracking problem (maneuver in
horizontal 2D plane) is described as follows.

where state vector is Xt ¼ x tð Þ _x tð Þ y tð Þ _y tð Þ ω tð Þð ÞT, state transition

matrix A Xtð Þ ¼

A1 �A2 B2

A2 A1 B2

B3 B3 1

0

B

@

1

C

A
, B ¼

Δt2=2 0 0

Δt 0 0

0 Δt2=2 0

0 0 Δt

0 0 Δt

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

where B3 ¼ 0 0ð Þ,

A1,A2,B2,B3 are as described above and wt represents system noise which is white
Gaussian. Inclusion of the angular speed ω in the state vector makes the state
equation non linear for thecase of CT with unknown ω.

Measurement Equation:

gt ¼
x tð Þ2 þ y tð Þ2

� �:5

tan �1 y tð Þ=x tð Þð Þ

0

@

1

Aþ vt (33)

where gt is the measurement vector and vt is measurement noise which is
assumed to be white Gaussian.

4. Results and sensitivity studies

4.1 Stand alone mode

The tabulated result of all sensors for EKF and CGKF are given below with their

respective PFE (Percentage Fit Error). The error metric PFE ¼ ∣Xt�Xt∣

∣Xt∣
� 100 which

represents the normalized difference between the estimated and actual track,
achieved by CGKF and EKF. The PIR sensor gives the least error with CGKF. All the
results in this section and subsequent sections are out of a minimum of 500
Montecarlo runs. The plots for EKF (Left) and CGKF (Right) have been combined
together. The figures appear as top and bottom, top one is the true trajectory and
bottom one is the true trajectory super imposed with estimated trajectory. The PFE
is also mentioned on the graph itself for every case. This is same for all the cases
given below.Where ever the error is negligible, the estimated track (green)
completely takes over the actual track (black). Following are the deductions based
on the simulation results. It is to be noted that the plots are based on one of the 500
runs used to compute the PFE metric (refer Table 2). This applies to the present
and all subsequent sections also.One example of each sensor performance is
displayed in the Figures 2–4 respectively. The PFE, RMSPE metric (representative
of the error in range calculation based on x, y coordinates of the target and
expresssed as) in the plots correspond to that of the CGKF for a particular run.

Sensor Type No of Sensors EKF (PFE) % CGKF (PFE) %

PIR 1 3.77076 1.03723

Acoustic 1 2.497723 1.9393

Seismic 1 4.622587 2.614668

Table 2.
Stand alone mode.
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4.2 Homogeneous fusion mode of sensors

The results from both, MKF and Weighted fusion have been tabulated
seperately as shown in the first six enteries of Table 3. Settings of the simulations

Figure 3.
Stand alone mode:-acoustic sensor.

Figure 2.
Stand alone mode:-PIR sensor.
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including the number of Monte Carlo runs is same as that for the Stand Alone method
described above. An example of the method is illustrated in Figures 5 and 6. The PFE,
RMSPE metrics (as defined in Section 4.1) metric in the plots correspond to that of
the CGKF for the coresponding run.

4.3 Heterogeneous fusion mode of sensors

The results in last three entries of Table 3, are those corresponding to the
measurement fusion based method of heterogeneous fusion. Settings of the
simulations including the number of Monte Carlo runs is same as that for the
Stand Alone and homogeneous fusion method described above. One example each

Sensor Type EKF (PFE) % CGKF (PFE)% Fusion Type

PIR 6.32816 2.81109 Maximal

Acoustic 5.76208 5.61651 Maximal

Seismic 5.54418 2.38094 Maximal

PIR 0.580869 0.579842 Homogeneous Weighted

Acoustic 1.47602 1.33768 Homogeneous Weighted

Seismic 1.7170850 1.0956019 Homogeneous Weighted

PIR & Acoustic 18.5708 9.3724 Maximal

PIR, Acoustic & Seismic 19.9958 1.34023 Maximal

PIR & Seismic 10.9576 3.42436 Maximal

Table 3.
Measurement fusion:-4 sensor set.

Figure 4.
Stand alone mode:- Sesimic sensor.
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of the two sensor (PIR and seismic case) and three sensor (all three combined) is
illustrated in Figures 7 and 8 repectively. The PFE, RMSPE metrics (as defined in
Section 4.1) in the plots correspond to that of the CGKF for the coresponding run
(refer Table 4).

Figure 5.
Homogeneous fusion (MKF):- seismic sensor.

Figure 6.
Homogeneous fusion (weighted):- acoustic sensor.
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4.4 Maneuvering target

The 2-D frame work study has been carried out on a set of seventy data points in
order to generate a smooth trajectory. The following system and measurement
covariances matrices are used to generate the simulated track Q ¼ :01I, R ¼ :1I for

Figure 7.
Heterogeneous fusion (maximal):-PIR and seismic sensors.

Figure 8.
Heterogeneous fusion (maximal):- PIR, seismic and acoustic sensors.
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all models, choice of the initial value of ω in the CT model has been obtained by via
standard fighter aircraft (eg F-16) data available on the internet. This value of ω has
been set to .5, which corresponds to approx 28.6 degrees/s (which happens to be the
maximum instantaneous turn rate of any current generation fighter aircraft). Here
the PFE is based on sum total PFE obtained along X and Y coordinates respectively.
The error metric shown in tables is the average value computed over 500 runs while
the plots correspond to one specific run wherein results are presented in the form of
2D plots of the simulated target trajectory, simulated measurements and the esti-
mated track against time. Table 5 shows the typical constant gain average values
computed using GA over 500 runs corresponding to each of the models.
Corresponding to a certain gain there is a transient and steady state behavior. If the
gain is large the transient is short with the steady state fluctuating error being large.
When the gain is small as in the present case there is a large transient with small
steady state error. If the filter is run backwards from the end then the whole actual
trajectory will be wrapped around by the estimated values. In a nutshell the filter
gain values K, can be tuned manually to provide optimal tracking results in a
constant gain framework. The filter gain values will be of typical nature as per
Table 5 corresponding to specific target state models. Figures 9 and 10 illustrate the
performance of the CGKF versus the standard KF model. The PFE, RMSPE metrics
(as defined in Section 4.1) in the plots correspond to that of the CGKF for a
particular run.

4.5 Sensitivity studies on constant gain in case of maneuvering targets
(CT (known ω))

Under this heading we demonstrate the robustness of the constant gain in so far
as the application of gain variations to the maneuvering target tracking scenario for

MODEL EKF % CGKF % K matrix

CT(known ω) 56.75 10.11 :0005 :0013

:0013 :0013

:0013 :0013

:0013 :0013

0

B

B

B

@

1

C

C

C

A

CT(unknown ω) 24 14.78 :0013 :00007

:0012 0

0 :0013

:00007 :0013

:0013 :0004

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Table 5.
Percentage fit error comparison:-non linear case and typical K matrix values.

Sensor Type Fusion Type(State-Fusion) EKF (PFE)%

PIR & Acoustic Global Fusion [12] 2.29092

PIR, Acoustic & Seismic Global Fusion [12] NaN(Not a Number)*

PIR, Acoustic & Seismic Whyte Method [24] 1.1158

*:- Due to lack of convergence.

Table 4.
Heterogeneous fusion (state fusion).
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the CT (known ω) is concerned. In the tables below are mentioned different PFE/
RMSPE metrics achieved as per specified variation in the constant gain values are
concerned. In Table 6 we show variation as per additive increments to the constant
gain while in Table 7we show variation as per fractional values to the constant gain.

Figure 9.
CT(known ω).

Figure 10.
CT(unknown ω).
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The tables show that the constant gain is robust to minor additive and fractional
increments, thereby demonstrative of the fact that the achieved constant gain
provides good tracking results as far as achieved PFE values indicate.

5. Conclusion

We believe that these are the only studies of a CGKF applied to tracking targets
in WSN environments and maneuvering target models based on non linear mea-
surement models. As seen the EKF is unable to effectively track the targets in WSN
and for the maneuvering target case compared to the CGKF. This is a significant
finding and supports the fact that CGKF effectively circumvents, or in other words
trades the gains with the filter statistics which are more difficult to obtain and
therein gives optimal tracking results by working directly with the Kalman Gain.
The present results prove that the CGKF is successful in target tracking applications
wherein the constant gain approach overcomes uncertainty regarding noise statis-
tics that exist in the framework of the problem. The CGKF has been employed for
tracking maneuvering targets and those in a WSN. The present work firmly estab-
lishes the CGKF framework thereby enabling its applicability to a wider variety of
problems as deemed fit by the reader.

5.1 Analysis of results and future work

5.1.1 Stand alone mode

Following are the deductions based on the simulation studies as summarized in
Table 2.

1.The results and plots bring out clearly the novelty of CGKF, the overall
performance of which is better than the EKF as per the PFE values.

Additive variations (K) PFE% RMSPE%

K(1 + .1 randn) 10.9506 13.3848

K(1 + .2 randn) 9.02807 9.8478

K(1 + .3 randn) 11.4343 13.3211

K(1 + .4 randn) 11.4565 13.77

K(1 + .5randn) 8.68005 9.92213

K(1 + .6 randn) 10.3575 10.5219

K(1 + .7 randn) 13.1419 18.0384

K(1 + .8 randn) 10.4037 12.4931

Table 6.
Constant gain robustness to additive variations (CT(known ω)).

Fractional Variations (K) K/8 K/4 K/2 2 K 4 K 8 K

PFE% 11.1569 9.34031 12.7851 13.0054 11.6087 9.11502

RMSPE% 14.2031 11.0111 15.2803 15.1227 13.0654 10.1699

Table 7.
Constant gain robustness to fractional variations (CT(known ω)).
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2.In the case of the EKF the Acoustic sensor performs the best.

3. In case of the CGKF the PIR performs the best.

5.1.2 Homogeneous fusion mode

Following are deductions based on the simulation studies as summarized in
Table 3 [16].

1.The overall performance of the CGKF is better than the EKF for both the MKF
and Weighted methods.

2.Considering the CGKF case the PIR and seismic sensors peroform better than
the acoustic sensor, with the PIR performing the best overall.

3.Amongst the various fusion methods the overall performance of the weighted
fusion is better compared to the MKF, for all types of sensors.

5.1.3 Heterogeneous Fusion mode

Following are the deductions based on the simulation studies as summarized in
Table 4.

1.Overall the CGKF performance is better than the EKF for heterogeneous
fusion method.

2.With reference to heterogeneous fusion of PIR, acoustic and seismic sensors
the Durrand Whyte method [24] gives better results compared to Global
fusion method [12]. Here we note that a comparison with the CGKF is not
possible since the CGKF works with purely measurements and not by
propagation of state error covariances which is fundamental to these
techniques. The Global fusion method [16] does not provide convergence in
tracking when using PIR, acoustic and seismic sensors together.

3.The CGKF heterogeneous fusion model of PIR, Acoustic and seismic sensors
gives optimum performance better than its EKF counterpart.

4.PIR based weighted fusion gives better results than the heterogeneous fusion.
However we must keep in mind the fact that the simulations for heterogeneous
fusion are based only one sensor of each type unlike the homogeneous fusion
case where four sensor of each type are considered. The plots and result have
been mentioned under. All the result has been obtained through Montecarlo
simulation with runs of average of 500.

5.1.4 Maneuvering target

Following are the deductions of the simulations.

1.Figures 9 and 10 and Table 5, clearly show that the performance of the CGKF
is very much better than that of the EKF.

2.The results obtained show the CGKF performing better than the EKF in three
models (ie. DWPA and both CT models).
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3.The results obtained for the CT models including those of sensitivity analysis
(Refer Tables 6 and 7) demonstrates the viability of applying the CGKF to this
category of problems.

5.2 Conclusions and Suggestions for Further Studies

The efficacy of the CGKF has been demonstrated wherein a single approach yields
optimal results for a varierty of linear [10] as well as non linear models in WSN and
maneuvering target scenarios [15]. The extensive numerical studies establish the fact
that the CGKF performs better that the conventional EKF.

Actual implementation of a target tracking application in the WSN environment
shall require optimal routing, deployment, design, communication protocols and
other such associated integral characteristics mentioned in the introduction.
Though not directly within the purview of the scope of the work, these aspects are
very important.

It would be very useful to apply this CGKF to variants of the Kalman Filter such
as particle filter, ensemble filter and other formulations.

Finally CGKF could be tried out for massive data based problems like numerical
weather prediction. The constant gains can be pre computed using earlier data and
since the gains are robust they can be expected to handle newer data quiet
efficiently similar to space debris as in [1].
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