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Chapter

Rainfall Trends in Humid
Temperate Climate in South
America: Possible Effects in
Ecosystems of Espinal Ecoregion
Julian Alberto Sabattini and Rafael Alberto Sabattini

Abstract

In central Argentina, the annual rainfall regime shows increasing since the 2nd
half of the 20th century. The aim of this work was to evaluate the long-term
changes in the intensity of rainfall in the central-north region of Entre Ríos between
1945 and 2019, based only on daily precipitation records aggregated at yearly,
monthly and seasonal levels. We used monthly rainfall data for the period 1945–
2019 from 6 localities in Province of Entre Rios, Argentina. The change detection
analysis has been conceded using Pettitt’s test, von Neumann ratio test, Buishand’s
range test and standard normal homogeneity (SNH) test, while non-parametric
tests including linear regression, Mann-Kendall and Spearman rho tests have been
applied for trend analysis. Like the regional results, this study observed a sustained
increase in monthly rainfall to the breaking point in the 1970s, but then the annual
rate of increase was even higher. The average annual rainfall in the region prior to
that date was 946 mm, while after the same 1150 mm, equivalent to 21.5% higher
than the 1945–1977 average and 8.5% higher according to the historical average
1945–2019.

Keywords: nonparametric trend tests, climate change, natural ecosystems,
biodiversity

1. Introduction

There was a general increase in air temperature worldwide during the twentieth
century, albeit with some differences between the hemispheres, corresponding to
global warming. Global warming affects the hydrological cycle over land, resulting
in observed changes to precipitation frequency, intensity, duration and amount
[1, 2]. Although significant attention is paid to how changes in seasonal and annual
precipitation sums affect ecosystems, relatively less is known about the ecological
impacts of heavy rainfall events [3]. The evaluation of past trends of meteorological
parameters at various spatial and temporal scales plays a crucial role in understand-
ing climate change and its impact on food security, energy security, natural
resource management, and sustainable development [4, 5]. Detailed analysis of
rainfall trend is useful to rainfall forecasting, planning water resources development
and management, designing water storage structures, irrigation practices and crop
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choices, drinking water supply, industrial development, and disaster management
for current and future climatic conditions [6, 7].

The analysis of different global rainfall databases shows a change in an anomaly
that was positive between 1950 and 1980 and became negative later [8]. While some
studies show increasing rainfall, in other regions the evaluations show the opposite
results. For instance, in Europe, the rain series show an increase in annual precipi-
tation between 1940 and 1990 [9]. The climate of Italy, in turn, seems to be warmer
and drier at the moment with a decrease in rainfall attributed to a reduction in the
number of days of rain, as rainfall intensity shows a positive trend [10]. In different
regions of South America somethings similar happens and has been studied by
several authors. More recently [11] studied summer precipitation variability over
Southeastern South America in a global warming scenario.

In central Argentina, the annual rainfall regime shows increasing rates from
approximately the 1940s until the end of the century [12–14] with statistical and
spectral analysis show that there is significant evidence that rainfall has increased in
central Argentina since the 2nd half of the 20th century [15] analyzed breakpoints
in annual rainfall trends in Córdoba, Argentina in the period 1930–2006, they
observed from negative to positive in the 1950s in the north area of the region,
while in the other areas the opposite change occurs in the 1970s. From the mid-
1970s, a sharp increase in rainfall regime provided most of the area with a supply of
moisture higher than previously reported [16–19]. Recently results in changes
annual rainfall in five sub-regions of the Argentine Pampa Region indicate that the
Western Pampas are more vulnerable to abrupt changes than the Eastern Pampas
[20]. While different indicators in central Argentina reflect a change for precipita-
tion at some sites, the intensity and variability of rainfall show significant long-term
trends [21]. The rainfall cycle hypothesis has been supported by recent studies
showing an abrupt negative change in the water regime of Pampas Region in recent
years [17, 18] as well as by studies linking changes in rainfall with regular or
recurring oceanic indices [19–21].

A strong increase in agricultural activity in central of Argentina [22] is a possible
cause that would explain the climate change. The central-north region of Entre Ríos
(Argentina) had a strong fragmentation of the landscape due to deforestation [23].
These changes are environmentally and economically important, as they have a
direct impact on hydrological and soil resources, as well as on the agricultural
potential of the region. The central-north of Entre Ríos has a humid temperature
climate, Cf in the Koppen-Geiger classification, as revised by [24]. In this way, the
Pampa Region (where the province of Entre Rios is located) receives sea winds
throughout the year, with a moisture gradient decreasing from east to west [20].

The statistical trend detection in climatic variables and precipitation time series
is one of the interesting research areas in climatology and hydrology as it impacts
spatial and temporal distribution of water availability across the globe [25]. The
parametric or non-parametric method under statistical approach is used to detect if
either a data of a given set follows a distribution or has a trend on a fixed level of
significance. Various non-parametric tests, including Mann-Kendall test and Pettit’s
test, are widely used to detect trend and change point in historical series of
climatic and hydrological variables [26–28]. To understand the magnitude of trends
many techniques have been proposed in the past, including t-tests [29, 30], Mann–
Whitney and Pettitt’s tests [31] and standard normal homogeneity test [32, 33].

The aim of this work was to evaluate the long-term changes in the intensity of
rainfall in the central-north region of Entre Ríos between 1945 and 2019, based only
on daily precipitation records aggregated at yearly, monthly and seasonal levels. In
more specific terms, the quality of the rainfall series is first analyzed in terms of its
homogeneity to assess the reliability of the meteorological information used.
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Secondly, the existence of a trend in the indicators of the intensity and variability of
rainfall is evaluated during a period showing a generalized increase in atmospheric
temperature. Finally, the occurrence of a breakpoint that expresses a long-term
trend change in the annual rainfall series in the region is assessed.

2. Material and methods

2.1 Region of study and rainfall data

We used monthly rainfall data for the period 1945–2019 from 6 localities
(Figure 1 and Table 1) in the southern of department La Paz (Province of Entre
Rios, Argentina): Hasenkamp (HAS), Las Garzas (LGA), Alcaraz Norte (ALN),
Bovril (BOV), Hernandarias (HER), El Solar (ELS). This data were collected with

Figure 1.
Location map of southern of department La Paz (province of Entre Rios, Argentina) with localities analyzed.

Meteorological station Latitude Longitude Altitude

(m a.s.l)

Period and Entirety (%)

Hasenkamp HAS 31°30032.94”S 59°5009.37”W 88 1945–2019 (93.8%)

Las Garzas LGA 31°25043.54”S 59°44036.09”W 82 1945–2019 (100%)

Alcaraz Norte ALN 31°19037.49”S 59°45015.88”W 68 1945–2019 (98.3%)

Bovril BOV 31°20026.89”S 59°26030.97”W 79 1945–2019 (94.5%)

Hernandarias HER 31°13051.34”S 59°59010.35”W 52 1945–2019 (96.5%)

El Solar ELS 31°10032.96”S 59°43056.73”W 50 1945–2019 (99.2%)

Table 1.
Meteorological station used and the period analyzed.
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conventional rain gauges, from the official records of Hydraulic Directorate
(Direccion Hidraulica de Entre Rios, in spanish) and Cereal Bag (Bolsa de Cereales
de Entre Rios, in spanish) of the Province of Entre Rios.

The data from the 6 locations was subjected to a process of quality control for
possible errors. All data above the third quartile plus three times the interquartile
range and located more than five standard deviations from the mean was treated as
outliers. These outliers were then contrasted climatographically with readings from
nearby stations. If the same reading was labeled as out of range for more than two
seasons, the value was correct. Months classed as outliers and those without data
were treated as gaps. Both types of gaps were filled but no missing data was
completed if there were more than three gaps in one year.

Stations with missing data techniques linear regression were used. The filling of
missing data by the linear regression technique consisted in using data from neigh-
boring stations that presented coefficients of significant linear correlations with the
station to be used in the study [34, 35],

Px ¼ ao þ
X

n

i¼1

aiPi (1)

where ao and ai are the coeffcients of adjustment of the linear model, obtained in
the processing of correlation. In this case, stations that presented an R2 greater than
0.90 were included. The two techniques are widely used to fill gaps in historical
series and present low average deviations suitable for climatic studies on monthly
and seasonal scales [36].

After the treatment of the time series, the monthly values of all rainfall stations
were grouped into scales, according to the following definitions: a) autumn (March,
April, and May), b) winter (June, July, and August), c) spring (September, Octo-
ber, and November), and d) summer (December, January, and February). For
selecting the change point for a particular parameter, the method presented below
has been used [37]: a) no change point or homogeneous (HG), series may be
considered as homogeneous, if no or one test out of four tests rejects the null
hypothesis at 5% significant level; b) doubtful series (DF), series may be considered
as inhomogeneous and critically evaluated before further analysis if two out of four
tests reject the null hypothesis at 5% significant level; and c) change point or
inhomogeneous (CP) when series may has change point or be inhomogeneous in
nature, if more than two tests reject the null hypothesis at 5% significant level.

2.2 Homogeneity tests for change point detection

Homogeneity testing is very crucial in climatological studies to represent the real
variations in weather and climate. Inhomogeneity occurs in climate data due to
several reasons including instrumentation error, changes in the adjacent areas of the
instrument, and mishandling of the human. If the homogeneity is not tested prior to
trend analysis, the results will indicate erroneous trends. In this study, the absolute
homogeneity tests were performed on individual station records and calculating the
ratio of observed series to the reference series. Four widely used statistical tests
mentioned below were applied to the data to test for homogeneity. All the following
four tests used in this study assume the null hypothesis of data being homogeneous.
The change point detection is an important aspect to assess the period from where
significant change has occurred in a time series. Pettitt’s test, von Neumann ratio
test, Buishand range test and standard normal homogeneity tests have been applied
for change point detection in climatic series. The details of various change point
tests applied in the study are presented here.
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2.2.1 Pettitt’s test

The Pettitt’s test for change detection, developed by [38], is a non-parametric
test, which is useful for evaluating the occurrence of abrupt changes in climatic
records [39, 40] because its sensitivity. According to Pettitt’s test, if x1, x2, x3, … xn
is a series of observed data which has a change point at t in such a way that x1, x2 … ,
xt has a distribution function F1(x) which is different from the distribution function
F2(x) of the second part of the series xt+1, xt+2, xt+3 … , xn. The non-parametric test
statistics Ut for this test may be described as follows:

Ut ¼
X

t

i¼1

X

n

j¼tþ1

sign xt � x j

� �

(2)

sign xt � x j

� �

¼

1, if xi � x j

� �

>0

0, if xi � x j

� �

¼ 0

�1, if xi � x j

� �

<0

2

6

4

3

7

5
(3)

The test statistic K and the associated confidence level (ρ) for the sample length
(n) may be described as:

K ¼ Max Utj j (4)

ρ ¼ exp
�K

n2 þ n3

� �

(5)

When ρ is smaller than the specific confidence level, the null hypothesis is
rejected. The approximate significance probability (p) for a change-point is defined
as given below:

p ¼ 1� ρ (6)

The test statistic K can also be compared with standard values at different
confidence level for detection of change point in a series. The critical values of K at 1
and 5% confidence levels for different tests used in the analysis has been presented
in Table 2 [37].

2.2.2 von Neumann ratio test

The von Neumann ratio test has been described by [41, 42] and others. The test
statistics for change point detection in a series of observations x1, x2, x3 … xn can be
described as:

Number of observation Critical values for test statistic at different significance level

Pettit Test SNHT Buishand Range

test

Von Neumann Ratio

Test

1% 5% 1% 5% 1% 5% 1% 5%

50 293 235 11.38 8.45 1.78 1.55 1.36 1.54

70 488 393 11.89 8.80 1.81 1.59 1.45 1.61

100 841 677 12.32 9.15 1.86 1.62 1.54 1.67

Table 2.
Critical values of test statistics for different change point detections tests.
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N ¼

Pn�1
i¼1 xi � xi�1ð Þ2
Pn�1

i¼1 xi � xð Þ2
(7)

According to this test, if the sample or series is homogeneous, then the expected
value E(N) = 2 under the null hypothesis with constant mean. When the sample has
a break, then the value of N must be lower than 2, otherwise we can imply that the
sample has rapid variation in the mean. The critical values of N at 1 and 5%
confidence levels given in Table 2 can be used for identification of
non-homogeneous series with change point.

2.2.3 Buishand’s range test

The adjusted partial sum (Sk), that is the cumulative deviation from mean for
kth observation of a series x1, x2, x3.… xk.… xn with mean (x) can be computed
using following equation:

Sk ¼
X

k

i¼1

xi � xð Þ (8)

A series may be homogeneous without any change point if Sk� 0, because in
random series, the deviation from mean will be distributed on both sides of the
mean of the series. The significance of shift can be evaluated by computing rescales
adjusted range (R) using the following equation:

R ¼
Max Skð Þ �Min Skð Þ

x
(9)

The computed value of R=√n is compared with critical values given by [37, 41]
and has been used for detection of possible change (Table 2).

2.2.4 Standard normal homogeneity (SNH) test

The test statistic (Tk) is used to compare the mean of first n observations with
the mean of the remaining (n-k) observations with n data points [32].

Tk ¼ kZ2
1 þ n� kð ÞZ2

2 (10)

Z1and Z2 can be computed as:

Z1 ¼
1

k

X

k

i¼1

xi � xð Þ

σx
(11)

Z2 ¼
1

n� k

X

k

i¼kþ1

xi � xð Þ

σx
(12)

where, x and σx are the mean and standard deviation of the series. The year k
can be considered as change point and consist a break where the value of Tk

attains the maximum value. To reject the null hypothesis, the test statistic should be
greater than the critical value, which depends on the sample size (n) given in
Table 2.
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2.3 Test for trend analysis

All the trend tests in this section assume the null hypothesis of no trend and
the alternative hypothesis of monotonic increasing or decreasing trend existence.
When the time series are serially independent, the Mann–Kendall test [43, 44]
and Spearman’s Rho test [45, 46] were applied to test for trends. The
magnitude of the trend was estimated using Sen’s slope method [47]. Always
suggested to apply various statistical tests to analyze the trends in serially
correlated data.

2.3.1 Mann-Kendall test

The Mann–Kendall test is a nonparametric test for monotonic trend detection. It
does not assume the data to be normally distributed and is flexible to outliers in the
data. The test assumes a null hypothesis,H0, of no trend and alternate hypothesis,Ha,
of increasing or decreasing monotonic trend. For a time series Xi ¼ x1, x2, … , xn, the
Mann–Kendall test statistic S is calculated as

S ¼
X

n�1

i¼1

X

n

j¼iþ1

sign x j � xi
� �

(13)

where n is the number of data points, xi and x j are the data values in timeseries i

and j (j > i), respectively, and sign x j � xi
� �

is the sign function as

sign xi � x j

� �

¼

1, if x j � xi
� �

>0

0, if x j � xi
� �

¼ 0

�1, if x j � xi
� �

<0

2

6

6

4

3

7

7

5

(14)

Statistics S is normally distributed with parameters E(S) and variance V(S) as
given below:

E Sð Þ ¼ 0 (15)

V Sð Þ ¼
n n� 1ð Þ 2nþ 5ð Þ �

Pm
k¼1tk kð Þ k� 1ð Þ 2kþ 5ð Þ

18
(16)

where n is the number of data points, m is the number of tied groups, and tk
denotes the number of ties of extent k. Standardized test statistic Z is calculated
using the formula below.

Z ¼

S� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

var Sð Þ
p if S>0

0 if S ¼ 0

Sþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

var Sð Þ
p if S<0

8

>

>

>

>

>

<

>

>

>

>

>

:

(17)

To test for a monotonic trend at an α significance level, the alternate hypothesis
of trend is accepted if the absolute value of standardized test statistic Z is greater
than the Z1�α=2 value obtained from the standard normal cumulative distribution

Tables. A positive sign of the test statistic indicates an increasing trend and a
negative sign indicates a decreasing trend.
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2.3.2 Spearman’s rho test

The Spearman’s rho test is a non-parametric widely used for studying
populations that take on a ranked order. If there is no trend and all observations are
independent, then all rank orderings are equally likely. In this test, the difference
between order and rank (di) for all observations x1, x2, x3, … xn can be used to
compute and Spearman’s ρ, variance Var ρð Þ and test statistic Zð Þ using following
equations. The null hypothesis is tested in this test considering the statistic is
normally distributed.

ρ ¼ 1�
6
P

d2i
n n� 1ð Þ

(18)

Var ρð Þ ¼
1

n� 1ð Þ
(19)

Z ¼
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ρð Þ
p (20)

3. Results and discussion

Tables 3–8 show the results of the statistical analyzes carried out to know the
point of change in monthly, seasonal and annual rainfall in each locality. A marked
variability was observed in the months that changed significantly between the
localities, fundamentally from January to May, even though the proximity between
them does not exceed 40 km. This means, a priori and in subjective terms, that the
climatic changes reported worldwide have a direct influence on a microspatial scale,
as well as on the temporal window. However, in the region there was no heteroge-
neity in the breaking point between the localities evaluated for the months of
November and December during the study period analyzed.

In relation to the statistical tests used, it is possible to conclude that the Von
Neumman’s test is more robust when establishing the heterogeneity of the time
series, while the Standard Normal Homogeneity test a priori would require less
demand from the variability of the time series. to set a breaking point. Based on the
results of the SNH Test, it is observed that the month of May presents marked
heterogeneity in all localities, but the year that defines the point of change differs
significantly. When comparing and analyzing all the tests for each period of time,
only Las Garzas and Hernandarias present a significant, but doubtful point of
change in the year that followed.

In seasonal analysis, summer is the season of the year that presented marked
heterogeneity in the time series in all localities. The year of break point was differ-
ent by location. However, El Solar and Hernandarias presented significant modifi-
cations in the heterogeneity of the time series with breaking points during the 1970s
and 1980s, respectively. Both locations are adjacent to the Middle Paraná River, a
situation that could be influenced by local atmospheric conditions [48]. There is
even greater concern today about the future of rivers worldwide due to a multitude
of stressors that impact running waters including climate change [49]. We draw on
the growing literature related to climate change to illustrate potential impacts rivers
may experience and management options for protecting riverine ecosystems and
the goods and services they provide. Regional patterns in precipitation and temper-
ature are predicted to change and these changes have the potential to alter natural
flow regimes. One of the key ways in which climate change or other stressors affect
river ecosystems is by causing changes in river flow. Rivers vary geographically

8
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Period Standard Normal Homogeneity Test Pettitt’s test Buishand Range test von Neumann’s test

T p sig k U* p sig k R/sqrt(n) p sig k Statistic p sig

JAN 13.94 0.003 ** 2018 241 0.885 ns 1958 1.047 0.591 ns 1958 1.374 0.170 ns

FEB 7.55 0.104 ns 1976 504 0.057 ** 1976 1.513 0.082 *** 1976 �0.373 0.795 ns

MAR 4.44 0.427 ns 1949 218 1.026 ns 1990 0.713 0.969 ns 2007 0.704 0.482 ns

APR 5.23 0.309 ns 1978 500 0.060 ** 1978 1.233 0.319 ns 1978 �0.457 0.648 ns

MAY 15.32 0.002 ** 2009 448 0.120 ns 1980 1.565 0.061 *** 1980 0.311 0.756 ns

JUN 2.42 0.843 ns 2006 316 0.493 ns 1986 0.844 0.871 ns 1974 �1.098 0.272 ns

JUL 1.59 0.968 ns 1968 238 0.903 ns 1987 0.876 0.833 ns 1968 �0.589 0.556 ns

AUG 11.01 0.018 ** 2014 198 1.154 ns 2014 0.873 0.845 ns 2014 1.208 0.227 ns

SEP 1.77 0.949 ns 1988 257 0.792 ns 1988 1.036 0.608 ns 1985 �0.039 0.969 ns

OCT 3.49 0.613 ns 1955 526 0.041 ** 1982 0.953 0.737 ns 1983 �1.414 0.157 ns

NOV 13.17 0.005 ** 1976 740 0.001 ** 1976 1.964 0.003 ** 1976 �1.993 0.046 **

DEC 8.73 0.056 * 1988 494 0.065 ** 1986 1.455 0.116 ns 1988 �0.116 0.908 ns

Summer 10.78 0.020 * 1976 564 0.023 ** 1976 1.624 0.044 * 1976 �0.592 0.554 ns

Autumn 6.37 0.186 ns 1997 465 0.096 ns 1974 1.348 0.196 ns 1974 1.519 0.129 ns

Winter 2.74 0.775 ns 2016 172 1.320 ns 1986 0.896 0.814 ns 1986 �0.219 0.826 ns

Spring 4.40 0.438 ns 1977 520 0.045 ** 1977 1.106 0.498 ns 1977 �0.404 0.686 ns

Annual 12.92 0.006 ** 1977 668 0.004 ** 1976 1.784 0.016 * 1977 �0.959 0.338 ns

References: k: year to shift, sig: * 0.05%, ** 0.01%, *** 0,1%, ns: no signification.

Table 3.
Results of change point analysis with all test used in Las Garzas location.
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Period Standard Normal Homogeneity Test Pettitt’s test Buishand Range test von Neumann’s test

T p sig k U* p sig k R/sqrt(n) p sig k Statistic p sig

JAN 16.42 0.000 ** 2018 192 1.192 ns 1959 1.009 0.646 ns 1994 1.121 0.262 ns

FEB 5.42 0.282 ns 2006 416 0.176 ns 2002 1.208 0.349 ns 1980 0.709 0.478 ns

MAR 4.11 0.487 ns 2019 221 1.008 ns 1993 0.633 0.993 ns 2007 2.081 0.037 *

APR 5.07 0.333 ns 2015 524 0.042 ** 1978 0.965 0.713 ns 1978 �0.526 0.599 ns

MAY 10.37 0.002 ** 2017 460 0.103 ns 1973 1.452 0.119 ns 1982 0.849 0.396 ns

JUN 3.11 0.695 ns 2006 320 0.475 ns 1986 1.059 0.572 ns 1975 �1.320 0.187 ns

JUL 1.74 0.949 ns 1948 357 0.334 ns 1988 0.903 0.805 ns 1987 �0.568 0.570 ns

AUG 10.54 0.020 ** 2014 172 1.320 ns 2014 0.868 0.847 ns 2014 0.682 0.495 ns

SEP 2.08 0.901 ns 1988 267 0.730 ns 2006 1.036 0.610 ns 1988 0.365 0.715 ns

OCT 2.85 0.754 ns 2010 331 0.430 ns 1999 1.273 0.269 ns 2000 �0.135 0.892 ns

NOV 14.39 0.003 ** 1976 718 0.001 ** 1976 2.098 0.001 ** 1976 �1.983 0.047 *

DEC 7.65 0.101 ns 1976 453 0.112 ns 1976 1.368 0.179 ns 1976 �1.802 0.072 ***

Summer 8.85 0.532 * 2004 518 0.046 ** 1976 1.464 0.110 ns 1976 �0.357 0.721 ns

Autumn 4.73 0.386 ns 1979 391 0.234 ns 1979 1.143 0.442 ns 1979 1.833 0.067 ***

Winter 2.92 0.732 ns 1948 200 1.141 ns 1955 0.880 0.831 ns 1955 �1.339 0.181 ns

Spring 6.93 0.143 ns 2010 400 0.212 ns 1977 1.049 0.591 ns 1999 �0.273 0.785 ns

Annual 10.05 0.003 ** 1977 582 0.017 ** 1977 1.574 0.057 * 1977 �0.373 0.709 ns

References: k: year to shift, sig: * 0.05%, ** 0.01%, *** 0,1%, ns: no signification.

Table 4.
Results of change point analysis with all test used in Alcaraz Norte location.
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Period Standard Normal Homogeneity Test Pettitt’s test Buishand Range test von Neumann’s test

T p sig k U* p sig k R/sqrt(n) p sig k Statistic p sig

JAN 11.30 0.015 ** 2016 199 1.147 ns 1958 0.958 0.721 ns 1958 2.039 0.041 **

FEB 7.17 0.125 ns 2009 477 0.082 *** 1999 1.291 0.248 ns 1980 �0.577 0.564 ns

MAR 3.80 0.547 ns 1949 199 1.147 ns 1980 0.721 0.968 ns 1949 2.246 0.025 *

APR 3.56 0.595 ns 1998 442 0.128 ** 1978 1.138 0.447 ns 1978 �1.101 0.271 ns

MAY 10.85 0.019 ** 2017 392 0.231 ns 1979 1.195 0.366 ns 1979 0.061 0.952 ns

JUN 2.66 0.792 ns 2006 253 0.815 ns 2006 0.959 0.723 ns 1973 �1.321 0.186 ns

JUL 4.19 0.468 ns 1978 400 0.212 ns 1987 1.265 0.283 ns 1978 �0.339 0.735 ns

AUG 12.68 0.006 ** 2014 248 0.844 ns 1982 0.927 0.765 ns 2013 1.756 0.079 ***

SEP 2.27 0.868 ns 1956 358 0.331 ns 1985 1.192 0.366 ns 1985 �0.926 0.354 ns

OCT 3.19 0.678 ns 1989 447 0.121 ns 1983 1.253 0.291 ns 1989 �1.270 0.204 ns

NOV 9.08 0.051 ** 1992 586 0.015 ** 1992 1.592 0.051 ** 1977 �1.745 0.081 ***

DEC 8.09 0.080 *** 1989 496 0.063 *** 1989 1.394 0.155 ns 1989 �0.765 0.444 ns

Summer 7.58 0.103 * 2008 516 0.048 ** 1995 1.236 0.319 ns 1989 �0.248 0.808 ns

Autumn 4.04 0.510 ns 1997 452 0.114 ns 1989 1.040 0.596 ns 1989 0.275 0.784 ns

Winter 3.08 0.711 ns 1968 234 0.927 ns 1968 1.250 0.302 ns 1970 �0.259 0.796 ns

Spring 5.61 0.258 ns 1999 480 0.079 *** 1992 1.305 0.232 ns 1922 �1.277 0.202 ns

Annual 10.24 0.026 ** 1999 598 0.013 ** 1997 1.453 0.118 ns 1997 �0.766 0.443 ns

References: k: year to shift, sig: * 0.05%, ** 0.01%, *** 0,1%, ns: no signification.

Table 5.
Results of change point analysis with all test used in Bovril location.
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Period Standard Normal Homogeneity Test Pettitt’s test Buishand Range test von Neumann’s test

T p sig k U* p sig k R/sqrt(n) p sig k Statistic p sig

JAN 11.12 0.015 ** 2018 254 0.809 ns 1961 1.085 0.532 ns 1958 1.501 0.133 ns

FEB 6.49 0.176 ns 1976 466 0.095 ns 1976 1.422 0.138 ns 1976 �0.291 0.771 ns

MAR 3.77 0.559 ns 2014 273 0.703 ns 1980 0.846 0.875 ns 2007 1.047 0.295 ns

APR 5.16 0.319 ns 1980 481 0.078 *** 1978 1.302 0.237 ns 1980 �0.112 0.911 ns

MAY 14.09 0.003 ** 2012 318 0.484 ns 1973 1.154 0.421 ns 2009 0.180 0.858 ns

JUN 2.55 0.815 ns 2006 416 0.176 ns 1982 0.939 0.750 ns 1982 �0.378 0.705 ns

JUL 1.34 0.985 ns 1958 195 1.173 ns 1988 0.984 0.692 ns 1968 0.160 0.873 ns

AUG 9.86 0.037 * 2014 177 1.288 ns 2014 0.841 0.877 ns 2014 1.410 0.159 ns

SEP 1.68 0.955 ns 1985 220 1.014 ns 1988 0.945 0.746 ns 1985 0.190 0.849 ns

OCT 3.90 0.537 ns 1988 504 0.057 *** 1988 1.023 0.623 ns 1988 �1.550 0.121 ns

NOV 8.98 0.049 * 1975 581 0.018 ** 1975 1.710 0.024 * 1976 �1.842 0.065 *

DEC 7.58 0.102 ns 2001 403 0.205 ns 1986 1.353 0.197 ns 1988 0.281 0.779 ns

Summer 7.74 0.098 *** 2004 492 0.067 * 1995 1.252 0.295 ns 1980 0.302 0.763 ns

Autumn 5.24 0.309 ns 1969 435 0.141 ns 1969 1.162 0.412 ns 1969 0.943 0.346 ns

Winter 2.21 0.880 ns 2016 177 1.289 ns 1986 0.901 0.808 ns 1986 �0.193 0.847 ns

Spring 4.18 0.480 ns 1955 468 0.092 *** 1988 1.001 0.664 ns 1976 �0.874 0.382 ns

Annual 12.83 0.006 ** 1997 652 0.005 ** 1997 1.635 0.041 * 1997 �1.063 0.288 ns

References: k: year to shift, sig: * 0.05%, ** 0.01%, *** 0,1%, ns: no signification.

Table 6.
Results of change point analysis with all test used in Hasenkamp location.
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Period Standard Normal Homogeneity Test Pettitt’s test Buishand Range test von Neumann’s test

T p sig k U* p sig k R/sqrt(n) p sig k Statistic p sig

JAN 19.16 0.000 ** 2018 214 1.052 ns 2006 1.148 0.440 ns 2006 0.643 0.520 ns

FEB 9.30 0.044 * 2009 401 0.209 ns 2004 1.200 0.368 ns 2004 �0.187 0.852 ns

MAR 3.85 0.539 ns 1949 190 1.205 ns 1949 0.851 0.866 ns 2007 0.688 0.491 ns

APR 8.29 0.071 *** 1980 610 0.011 ** 1978 1.501 0.087 *** 1980 �0.832 0.405 ns

MAY 12.21 0.010 ** 2017 418 0.172 ns 1973 1.279 0.264 ns 1973 0.895 0.371 ns

JUN 2.49 0.827 ns 2006 255 0.803 ns 2006 1.036 0.612 ns 2006 �1.626 0.104 ns

JUL 2.89 0.738 ns 2002 291 0.609 ns 1987 1.045 0.596 ns 2002 �0.234 0.815 ns

AUG 13.44 0.004 ** 2014 234 0.927 ns 1984 1.096 0.509 ns 1999 0.561 0.575 ns

SEP 2.36 0.853 ns 1986 295 0.590 ns 1988 1.097 0.509 ns 1986 �1.232 0.218 ns

OCT 3.98 0.516 ns 2000 422 0.164 ns 1982 1.179 0.387 ns 2000 �0.719 0.472 ns

NOV 8.75 0.059 * 1985 560 0.025 * 1985 1.657 0.034 * 1985 �1.415 0.157 ns

DEC 15.81 0.001 ** 1989 689 0.003 ** 1989 1.948 0.004 ** 1989 �1.264 0.206 ns

Summer 15.53 0.001 ** 2004 528 0.040 * 1995 1.636 0.042 * 2004 �0.684 0.494 ns

Autumn 8.14 0.081 *** 1979 568 0.022 * 1979 1.453 0.114 ns 1979 0.138 0.890 ns

Winter 2.65 0.794 ns 1997 249 0.838 ns 1997 0.977 0.699 ns 1997 �0.841 0.400 ns

Spring 5.89 0.232 ns 1999 481 0.078 ns 1982 1.198 0.356 ns 1983 0.204 0.839 ns

Annual 18.45 0.000 ** 1999 767 0.001 ** 1982 1.976 0.002 ** 1982 �2.087 0.037 *

References: k: year to shift, sig: * 0.05%, ** 0.01%, *** 0,1%, ns: no signification.

Table 7.
Results of change point analysis with all test used in El solar location.
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Period Standard Normal Homogeneity Test Pettitt’s test Buishand Range test von Neumann’s test

T p sig k U* p sig k R/sqrt(n) p sig k Statistic p sig

JAN 23.28 0.001 ** 2018 186 1.231 ns 1985 1.036 0.604 ns 2018 0.577 0.564 ns

FEB 7.11 0.129 ns 2009 326 0.450 ns 2004 1.101 0.506 ns 2006 �0.253 0.800 ns

MAR 4.03 0.505 ns 1949 198 1.154 ns 1949 0.943 0.739 ns 1949 1.060 0.289 ns

APR 8.36 0.071 *** 1978 614 0.010 ** 1978 1.474 0.103 ns 1978 �1.744 0.081 ***

MAY 13.67 0.004 ** 2017 488 0.071 *** 1973 1.421 0.136 ns 1980 �0.274 0.784 ns

JUN 2.75 0.773 ns 2006 341 0.391 ns 1986 0.914 0.776 ns 1974 �1.571 0.116 ns

JUL 2.18 0.086 *** 1948 331 0.430 ns 1988 1.024 0.624 ns 1988 �0.425 0.671 ns

AUG 9.98 0.028 * 2014 241 0.885 ns 1966 0.900 0.804 ns 1966 0.447 0.655 ns

SEP 1.24 0.989 ns 1988 307 0.533 ns 1999 0.982 0.683 ns 1988 �1.191 0.234 ns

OCT 4.58 0.407 ns 1983 527 0.041 * 1982 1.343 0.201 ns 1983 �1.700 0.089 ***

NOV 13.09 0.004 ** 1977 712 0.002 ** 1977 2.001 0.002 ** 1977 �2.878 0.004 **

DEC 10.00 0.030 * 1996 525 0.042 * 1989 1.542 0.068 *** 1989 �0.550 0.583 ns

Summer 10.85 0.018 * 2018 408 0.193 ns 1995 1.193 0.377 ns 1975 0.212 0.832 ns

Autumn 9.16 0.048 * 1985 629 0.008 ** 1985 1.535 0.073 *** 1985 �0.357 0.721 ns

Winter 2.61 0.803 ns 1948 219 1.020 ns 1992 0.870 0.842 ns 1992 0.009 0.993 ns

Spring 7.36 0.117 ns 1999 562 0.024 * 1977 1.384 0.165 ns 1977 �1.459 0.145 ns

Annual 13.77 0.004 ** 1999 636 0.007 ** 1989 1.699 0.024 * 1977 �1.476 0.140 ns

References: k: year to shift, sig: * 0.05%, ** 0.01%, *** 0,1%, ns: no signification.

Table 8.
Results of change point analysis with all test used in Hernandarias location.
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with respect to their natural flow regime and this variation is critical to the ecolog-
ical integrity and health of streams and rivers and thus a great deal has been written
on the topic [50, 51]. The ecological consequences and the required management
responses for any given river will depend not only on the direct impacts of
increased temperature. Otherwise how extensively the magnitude, frequency,
timing, and duration of runoff events change relative to the historical and recent
flow regime for that river, and how adaptable the aquatic and riparian species are to
different degrees of alteration.

The results resume depicting the homogeneity state of different series have been
presented in Table 9 (See Supplementary Appendix with results of Test’s trend).
The change point analysis on long-term series in all localities has indicated that a
significant change point in the annual rainfall. The breaking point occurred in 1977
for the LGA, ALC and HER locations; year 1997 for BOV and HAS; and 1982 for the
ELS locality. Figure 2 shows the average annual precipitation of all the localities
evaluated in each year for the region, as well as the historical annual during the
period. On the other hand, since the breaking point occurred in 1977 for most of the
localities, it was established that the average annual rainfall in the region prior to
that date was 946 mm, while after the same 1150 mm, equivalent to 21.5% higher
than the 1945–1977 average and 8.5% higher according to the historical average
1945–2019. In addition, an important piece of information results from the linear
model that made it possible to establish that the region’s average rainfall increased
4.9 mm per year from 1945 to 2019.

These results are consistent with those obtained in the north of the country
where the rainfall change was concentrated in a step change during the 1970s [52].
In this region, half or more of the annual rainfall trend occurred in the months of El
Niño phase, with less contribution from La Niña and the neutral phases. However,
in the rest of subtropical Argentina and especially south of 30°S, increased precip-
itation occurred mostly during months of the neutral phase of El Niño/Southern
Oscillation (ENSO), with only small trends during months of El Niño and La Niña
phases [53]. Accordingly, most of the annual precipitation trends since 1960 in
subtropical Argentina can be accounted for by two modes. The first mode, which is
positively correlated with precipitation in northern Argentina and with ENSO indi-
ces, had a steep increase in precipitation at the end of the 1970s. The second mode,
which has a maximum positive correlation with annual precipitation between 30
and 40°S, had a regular positive trend starting in the early 1960s and it is correlated
with the southward displacement of the South Atlantic high [53, 54]. In addition,
several researchers analyzed the changes in the isohyets, showing that the rainfall
regime in Argentina is subject to a positive fluctuation in the 1950s and that it
reached maximum values in the 1970s [55], data that coincide with this manuscript.

Average rainfall increased, favoring the expansion of agriculture [16, 22]. This
conclusion is obtained primarily because the studies of the time have been ham-
pered by the low significance shown by statistical tests when applied to climatic
data, especially precipitation. In the study region mention that one of the factors of
change in precipitation is agrarian transformation and claim that the technological
innovation of the sector was accompanied by a process of change in the water
regime [16]. Furthermore, confirm that the expansion of agricultural structure of
Entre Rios, is favored by increased precipitation, generating crops of the marginal
territory.

The behavior of historical series of monthly rainfall confirm that November and
December, as and summer season, have significant change point in all localities. The
annual rainfall in all localities showed a significant increase such as summer season
(Table 9). November and December showed and significant rise in contrast to the
rest of months.
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Period LGA ALN BOV HAS ELS HER

a b c a b c a b c a b c a b c a b c

JAN HG — � HG — � DF 2016 � HG — � HG — � HG — �

FEB DF 1976 ↑ HG — � HG — ↑ HG — ↑ HG — � HG — �

MAR HG — � HG — � HG — � HG — � HG — � HG — �

APR HG — ¿? HG — � HG — � HG — � CP 1978

1980

↑ CP 1978 ↑

MAY DF 1980

2009

↑ HG — ↑ HG — � HG — � HG — ↑ DF 1973

2017

↑

JUN HG — � HG — � HG — � HG — � HG — � HG — �

JUL HG — � HG — � HG — � HG — � HG — � HG — �

AUG HG — � HG — � DF 2014 � HG — � HG — � HG — �

SEP HG — � HG — � HG — � HG — � HG — � HG — �

OCT HG — ↑ HG — � HG — � HG — ↑ HG — � DF 1982 ↑

NOV CP 1976 ↑ CP 1976 ↑ CP 1992

1997

↑ CP 1975

1976

↑ CP 1985 ↑ CP 1977 ↑

DEC DF 1986

1988

↑ HG — ↑ DF 1989 ↑ HG — ↑ CP 1989 ↑ CP 1989

1996

↑

Summer CP 1976 ↑ DF 2004

1976

↑ DF 1995 2008 ↑ DF 1995 2004 ↑ CP 1995 2004 ↑ HG — ↑

Autumn HG — ↑ HG — � HG — ¿? HG — ↑ DF 1979 ↑ CP 1985 ↑

Winter HG — � HG — � HG — � HG — � HG — � HG — �

Spring HG — ↑ HG — � HG — ¿? HG — ↑ HG — ↑ HG — ↑

Annual CP 1977 ↑ CP 1977 ↑ DF 1997

1999

↑ CP 1997 ↑ CP 1982 ↑ CP 1977

1989

1999

↑

Reference: homogeneous series (HG), change point (CP), doubtful point (DF). Trends: � none, ↑ increase, ↓ decrease, ¿? Doubtful.
Reference: a- Nature Serie, b- Year shift, c- Trend, LGA- Las Garzas, ALN- Alcaraz Norte, BOV- Bovril, HAS- Hasenkamp ELS- El Solar, HER- Hernandarias.

Table 9.
Results of change point detection analysis and trends of rainfall for all localities.
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In the last decade, a substantial change in the average climate conditions was
observed in many regions of Argentina, particularly in the southern region of
Mesopotamian Pampa that showed two abrupt shifts [20]. The first of these was
positive, with annual average rainfall increasing from 1062.9 mm during the
1941–1999 sub-period to 1568.9 mm during a short sub-period between 2000 and
2003. The second abrupt change, which began in 2004, was negative, with average
annual rainfall dropping to 1108.0 mm, only slightly higher than what it had been in
the initial 1941–1999 sub-period (Figure 3).

Like the regional results, this study observed a sustained increase in monthly
rainfall to the breaking point in the 1970s, but then the annual rate of increase was
even higher. In South America [56], observed increasing trends in total annual
precipitation values in Ecuador, Paraguay, Uruguay, northern Peru, southern
Brazil, and northern and central Argentina. Qualitatively there was a change that
indicated a significant increase in summer precipitation, and a decrease in the
number of annual frosts, concentrating the winter season (July and August),
assuming a “tropicalization of the region”. Rainfall tropicalization can be under-
stood as local and regional processes and impacts of climate change, which can be
observed mainly by changes in the precipitation regime and the intensification of
tropical climatic characteristics [57]. This process is not exclusive of Espinal
Ecorregion. It has been observed in other contexts and scales in tropical and sub-
tropical regions that show an important increase in precipitation during the rainy
season in tropical regions [58, 59].

Climate change can also indirectly affect organisms by altering biotic interac-
tions, which can have profound consequences for populations, community compo-
sition and ecosystem functions [60]. Other aspects of biodiversity management will
be affected by global change and will need adapting, including wildlife exploitation,
e.g. forestry [61], pest and invasive species control [62] or human and wildlife
disease management [63]. Indirect effects may occur: (i) via generation of new
biotic interactions, as range-shifted species appear for the first time in naive com-
munities [64]; (ii) by removing existing interactions when species shift out of their
existing range [65]; or (iii) by modulating key behavioral, physiological or other
traits that mediate species interactions [66]. When climate-driven changes in biotic
interactions involve keystone or foundation species, impacts can cascade through

Figure 2.
Variation in the average annual rainfall of all the localities of the analyzed region.

17

Rainfall Trends in Humid Temperate Climate in South America: Possible Effects…
DOI: http://dx.doi.org/10.5772/intechopen.99080



the associated community [61]. In this region, studies that have not yet been
published for the province of Entre Ríos are showing indications of changes in the
productivity of natural grasslands in native forests. Recently reports show that
change the growth cycle has change in this ecosystem [67, 68], and mainly attrib-
uted to changes in precipitation regimes. These observations are like yields changes
of the main crops, were the frequency of extreme weather events constitutes a
growing risk.
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Figure 3.
Variation in the average annual rainfall in each locality of the analyzed region. Reference: Black dash line
(��) show historical rainfall (1945–2019), black solid line (—) the average rainfall before and after the
break point and gray dash line (��) show a linear model annual rainfall.
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Supplementary Appendix

Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

JAN 121 70352 �0.001 0.995 0.041 0.008 1.000 0.967 0.004

FEB 131 50419 0.283 0.014* 2.470 1.000 541.000 0.014* 0.195

MAR 142 76056 �0.081 0.485 �0.686 �0.245 �0.015 0.493 �0.054

APR 110 54132 0.230 0.047* 1.880 0.761 0.041 0.060 0.148

MAY 68 51235 0.271 0.019* 2.360 0.576 0.057 0.018* 0.186

JUN 49 76397 �0.087 0.459 �0.778 �0.117 �0.017 0.436 �0.062

JUL 35 72477 �0.031 0.792 �0.357 �0.024 �0.790 0.721 �0.028

AUG 42 66369 0.056 0.634 0.357 0.050 0.790 0.721 0.028

SEP 69 73918 �0.051 0.661 �0.439 �0.108 �0.970 0.661 �0.349

OCT 108 52579 0.252 0.029* 2.140 0.800 0.047 0.033* 0.169

NOV 109 46105 0.344 0.002* 2.946 0.800 0.065 0.032* 0.232

DEC 106 50439 0.283 0.014* 2.402 0.891 0.526 0.016* 0.190

Summer 358 48743 0.307 0.007* 2.657 2.285 0.058 0.008* 0.209

Autumn 320 51593 0.266 0.021* 2.260 1.730 0.050 0.024* 0.178

Winter 126 69514 0.011 0.924 0.069 0.038 1.600 0.945 0.006

Spring 286 50059 0.288 0.012* 2.452 1.355 0.054 0.014* 0.193

Annual 1091 40638 0.422 0.000* 3.449 5.133 0.076 0.001* 0.272

References: (*) test with significant differences of 0.05%.

Table 1A.
Result of trend analysis rainfall at Las Garzas locality.

Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

JAN 112 68775 0.022 0.853 0.297 0.154 0.660 0.766 0.024

FEB 119 56223 0.200 0.085 1.729 0.684 0.038 0.084 0.137

MAR 139 77544 �0.103 0.379 �0.883 �0.391 �0.019 0.377 �0.699

APR 102 54987 0.218 0.060 1.866 0.650 409.000 0.062 0.148

MAY 61 50832 0.277 0.016* 2.384 0.557 522.000 0.017* 0.189

JUN 41 78357 �0.115 0.328 �0.915 �0.120 �0.020 0.360 �0.073

JUL 36 76383 �0.087 0.460 �0.679 �0.056 �0.015 0.497 �0.054

AUG 45 65950 0.014 0.598 0.545 0.082 0.012 0.586 0.044

SEP 63 69320 0.103 0.906 0.087 0.007 0.200 0.931 0.007
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Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

OCT 101 63028 0.103 0.377 0.883 0.313 0.019 0.377 0.071

NOV 108 48056 0.316 0.006* 2.713 0.931 0.059 0.007* 0.214

DEC 99 52013 0.260 0.024* 2.093 0.833 0.046 0.036* 0.166

Summer 330 51074 0.273 0.018* 2.223 2.008 0.049 0.026* 0.175

Autumn 302 56165 0.201 0.084 1.670 1.216 0.037 0.095 0.132

Winter 123 69288 0.014 0.902 �0.091 �0.040 �0.210 0.927 �0.008

Spring 273 55183 0.215 0.064 1.715 1.107 0.038 0.086 0.136

Annual 1029 45357 0.355 0.002* 2.887 4.322 632.000 0.004* 0.228

Table 2A.
Result of trend analysis rainfall at Alcaraz Norte locality.

Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

JAN 113 69650 0.009 0.937 0.128 0.043 0.290 0.898 0.010

FEB 119 51962 0.261 0.024* 2.347 0.920 0.051 0.019* 0.186

MAR 117 75068 �0.068 0.563 �0.677 �0.284 �0.015 0.498 �0.054

APR 136 58350 0.170 0.145 1.533 0.729 0.034 0.125 0.121

MAY 61 58123 0.173 0.137 1.491 0.350 0.033 0.136 0.118

JUN 43 76302 �0.085 0.466 �0.750 �0.118 �0.017 0.453 �0.060

JUL 44 82282 �0.170 0.144 �1.611 �0.263 �353 0.107 �0.128

AUG 50 61718 0.122 0.297 1.131 0.184 0.025 0.258 0.090

SEP 70 77711 �0.105 0.368 �0.860 �0.226 �0.019 0.390 �0.068

OCT 114 56116 0.202 0.083 1.752 0.655 0.038 0.080 0.139

NOV 105 49986 0.289 0.012* 2.265 0.804 0.050 0.024* 0.179

DEC 107 53477 0.239 0.039* 2.091 0.923 0.046 0.037* 0.165

Summer 339 51398 0.269 0.020* 2.306 2.054 0.051 0.021* 0.182

Autumn 314 54902 0.219 0.059* 1.876 1.431 0.041 0.061 0.141

Winter 148 74374 �0.058 0.621 �0.572 �0.204 �0.013 0.568 �0.045

Spring 289 55044 0.217 0.061* 1.715 1.215 0.038 0.086 0.136

Annual 1090 49195 0.300 0.009* 2.438 4.451 0.053 0.015* 0.192

Table 3A.
Result of trend analysis rainfall at Bovril locality.
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Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

JAN 114 71802 �0.021 0.856 �0.156 �0.010 �0.350 0.876 �0.013

FEB 129 51202 0.272 0.018* 2.424 1.029 0.053 0.015* 0.191

MAR 141 77861 �0.108 0.258 �0.910 �0.380 �0.020 0.363 �0.072

APR 114 55361 0.212 0.067 1.784 0.794 0.039 0.074 0.141

MAY 72 58926 0.162 0.166 1.409 0.431 0.031 0.159 0.116

JUN 43 82218 �0.169 0.146 �1.281 �0.184 �281 0.200 �0.102

JUL 33 71809 �0.021 0.856 �0.188 �0.013 �0.420 0.851 �1.523

AUG 41 67234 0.044 0.710 0.334 0.048 0.740 0.738 0.027

SEP 65 73176 �0.041 0.727 �0.371 �0.098 �0.820 0.711 �0.030

OCT 113 52731 0.250 0.031* 2.100 0.822 0.046 0.036* 0.166

NOV 110 50320 0.284 0.013* 2.447 0.840 0.054 0.014* 0.192

DEC 97 54742 0.221 0.056* 1.875 0.724 0.041 0.061* 0.148

Summer 340 50482 0.282 0.014* 2.502 2.032 0.058 0.012* 0.198

Autumn 327 54775 0.221 0.059* 1.844 1.279 0.040 0.063* 0.146

Winter 117 71460 �0.017 0.883 �0.238 �0.075 �0.530 0.812 �0.019

Spring 287 51115 0.273 0.018* 2.250 1.272 0.049 0.024* 0.178

Annual 1071 41184 0.414 0.000* 3.531 4.625 0.077 0.000* 0.279

Table 4A.
Result of trend analysis rainfall at Hasenkamp locality.

Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

JAN 119 66804 0.050 0.672 0.435 0.207 0.960 0.664 0.035

FEB 118 58492 0.168 0.150 1.565 0.548 0.034 0.118 0.124

MAR 128 72232 �0.024 0.815 �0.165 �0.083 �0.370 0.869 0.013

APR 107 52121 0.259 0.025* 2.342 0.929 0.051 0.019* 0.185

MAY 56 53917 0.233 0.044* 1.982 0.462 0.043 0.048* 0.158

JUN 52 74096 �0.054 0.645 �0.224 �0.030 �1 0.823 �0.018

JUL 35 77632 �0.104 0.373 �0.865 �0.103 �0.019 0.387 �0.069

AUG 39 63108 0.102 0.382 0.948 0.146 0.021 0.343 0.076

SEP 58 71122 �0.012 0.921 �0.160 �0.026 �0.360 0.873 �0.013

OCT 105 59335 0.156 0.182 1.322 0.460 0.029 0.186 0.105

NOV 98 52646 0.251 0.030* 2.319 0.760 0.051 0.020* 0.184

DEC 95 43704 0.378 0.001* 3.208 1.105 0.070 0.001* 0.253

Summer 332 50288 0.284 0.013* 2.575 2.344 0.056 0.010* 0.203
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Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

JAN 125 60702 0.009 0.942 0.102 0.050 0.240 0.916 0.009

FEB 130 61884 0.120 0.306 1.240 0.547 0.027 0.215 0.098

MAR 135 72915 �0.037 0.751 �0.421 �0.179 �93.000 0.674 �0.034

APR 112 50504 0.282 0.014* 2.314 0.957 0.051 0.031* 0.183

MAY 60 49393 0.297 0.010* 2.571 0.593 563.000 0.010* 0.203

JUN 47 79615 �0.133 0.257 �1.075 �0.125 �0.024 0.282 �0.085

JUL 34 73537 �0.046 0.695 �0.412 �0.041 �0.910 0.680 �0.033

AUG 42 65897 0.063 0.594 0.490 0.066 0.011 0.624 0.039

SEP 62 65597 0.067 0.569 0.590 0.143 0.013 0.555 0.047

OCT 104 56327 0.199 0.087* 1.766 0.608 0.039 0.077* 0.140

NOV 114 45954 0.346 0.002* 2.978 1.067 0.065 0.003* 0.235

DEC 108 50090 0.287 0.012* 2.280 0.939 0.050 0.023* 0.181

Summer 363 54028 0.231 0.046* 1.985 1.888 0.044 0.047* 0.157

Autumn 307 47158 0.329 0.004* 2.763 1.805 0.061 0.006* 0.219

Winter 123 70554 �0.004 0.976 0.009 0.000 3.000 0.993 0.001

Spring 280 48297 0.313 0.006* 2.722 1.700 596.000 0.006* 0.215

Annual 1073 40694 0.421 0.000* 3.778 6.420 827.000 0.000* 0.298

Table 6A.
Result of trend analysis rainfall at Hernandarias locality.

Period Average

rainfall

Spearman’s Rank Rho

Test

Mann-Kendall Test

S rho p z-

value

Sen’s

slope

S p tau

Autumn 291 50852 0.277 0.017* 2.278 1.541 0.050 0.023* 0.180

Winter 126 66250 0.058 0.624 0.526 0.250 0.012 0.599 0.042

Spring 260 54160 0.230 0.048* 1.972 1.195 0.043 0.049* 0.156

Annual 1009 38960 0.446 0.000* 3.925 6.126 0.086 0.000* 0.309

Table 5A.
Result of trend analysis rainfall at El solar locality.
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