
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

137,000 170M

TOP 1%154

5,600



1

Chapter
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Abstract

Use of microbial inoculants during silage making have drawn interest to silage 
producers including those who are feeding their livestock on silage produced 
from by-products (e.g. pulps). Many farmers in the developing countries rely on 
agro-industrial by-products to feed their livestock, which is limited by the high 
moisture content of the by-products. This review pertains to issues related to silage 
production from high moisture plant by-products (e.g. pulps or pomaces), chal-
lenges involved in the ensiling of these resources, the use of additives (e.g. microbial 
additives), and growth performance of the animals that are fed silage from these 
resources. This information will be helpful to better understand the key roles of 
silage production from these resources.

Keywords: additives, digestion, forages, inoculation, methane, pulps

1. Introduction

The increasing demand for sustainable animal production is driving animal 
nutritionists to explore strategies for using high moisture by-products in animal feed-
ing. Several researchers [1, 2] have reviewed the use of agro-industrial by-products as 
animal feed resources. These by-products are available during food processing and or 
beverage production, and are often produced in abundance, making it difficult to use 
them in a short period. Using these by-products in animal feeds will assist the food 
producing factories to reduce disposal costs while minimising the environmental 
impacts that these by-products would otherwise create [3].

The high moisture (>25%) content of these by-products makes it difficult to 
transport and handling during processing and storing [4]. While disposing these 
by-products might seem as a solution, such an act is associated with potential envi-
ronmental pollution [5]. Subsequently, the high moisture coupled with high sugar 
content of these by-products allows for easy contamination by foreign materials 
and unwanted microbes, which leads to spoilage [1]. Despite the negative factors 
that are linked with these by-products, they contain valuable nutritional properties 
such as crude protein, organic matter, fibre and oil [1]. These resources should be 
processed and stored for animal feeding.



Advanced Studies in the 21st Century Animal Nutrition

2

The drying of high moisture by-products to produce meals for animal feeding is 
technically feasible, but is costly and laborious [6]. Research has shown that ensil-
ing can be an alternative for processing and storing of these resources, provided all 
basic principles of ensiling are followed [7, 8]. Ensiling entails the preservation of 
plant/crop resources through anaerobic fermentation, usually by epiphytic bacteria 
that converts soluble carbohydrates to mainly lactic acid, and minor amounts of 
volatile fatty acids. The production of organic acids during ensiling reduces the pH 
to 3.8 to 4.2 for a good quality silage, which inhibits growth of undesirable microbes 
and results in an ideal preservation on the ensiled material [9]. While ensiling 
represent an appropriate preservation method for forages, crops and high moisture 
by-products, it can also result in the losses of nutrients due to undesirable fermenta-
tion process in cases where lactic acid is not adequate [10]. To overcome the nutri-
tive losses of the ensiled material, different additives are used.

Additives are constituents that contribute to the reduction of losses, stimulate fer-
mentation, and enrich nutritional value of silage [10]. Such additives include chemi-
cals, enzymes, absorbents and microbial inoculants [11]. Chemical additives such 
as propionic acid, formic acid, sulphuric acid have been applied to high moisture (> 
70% moisture) forages during ensiling for some decades. However, their use in silage 
is limited due to their toxic nature if not properly applied [10]. Enzymes such as xyla-
nase, cellulase etc. are usually added to forage at ensiling to partially degrade fibre 
to fermentable water-soluble carbohydrates (WSC) that are consumed by lactic acid 
bacteria (LAB). The LAB can use fibre as source of energy to produce lactic acid [12]. 
The use of microbial inoculants ensures rapid and efficient fermentation of WSC to 
lactic acid and further predicts the adequacy of silage fermentation [13]. Lactic acid 
bacterial inoculants have been introduced some decades as one of microbial additives 
that improve forage fermentation, aerobic stability of silage and silage utilization by 
ruminants [14]. The most commonly LAB inoculants are obligate homofermentative, 
obligate heterofermentative and facultative heterofermentative LAB [15].

However, it should be noted that the addition of LAB inoculants to forage of 
low WSC (< 30 g/kg) content, could result to poor fermentation of the forage [16]. 
Haigh and Parker [17] concluded that WSC content as low as 30 g/kg may be suf-
ficient for a stable fermentation where an effective additive is added during ensiling. 
In many instances, a source of readily fermentable substrate for LAB is included 
with commercial bacterial inoculants.

Given that LAB inoculants have been used as silage additives for a long time, 
their utilization is however more prominent on the ensiling of forages/crops. 
However, research on the use of LAB inoculants during the ensiling of high 
moisture by-products is limited. The present study therefore reviewed the use of 
microbial inoculants on high moisture by-products with special emphasis on silage 
fermentation and aerobic stability and livestock performance.

2.  Addition of high-moisture by-products to improve the ensiling  
of forages

High moisture by-products such as those from the fruit juice processing contains 
soluble sugar that can benefit silage making from low sugar forages such as alfalfa. For 
example, sugar beet pulp [18] and apple pomace [19] contain WSC of 26% and 12% 
respectively, can be used to improve the fermentation characteristics of silage from low 
sugar forages. Ke et al. [20] ensiled wilted alfalfa with or without pomaces (i.e. grape 
and apple) and reported a reduction in silage pH, reduced proteolysis and increased 
lactic acid production compared to the untreated silage. In contrast, pomace addition 
reduced silage aerobic stability compared to the untreated silage. Fang et al. [21] added 
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By-products Absorbent Mixture (g/kg DM) Fermentation 

response

Aerobic 

stability

Animal 

performance/in vitro

Reference

DM WSC

Apple pomace Lucerne hay (Alfalfa) 345 7.8 Improved Reduced ND Ke et al. [20]

Citrus pulp Dehydrated beet pulp 212.8 ND Not improved ND ND Megias et al. [27]

Orange pulp Wheat straw 296.6 ND Improved ND IVDMD improved Paya et al. [28]

Wheat straw 210.3 ND Improved ND IVDMD reduced Denek and Can [29]

Sweet potato vines Sweet potato roots 163 ND Not improved ND IVDMD reduced Hadgu et al. [30]

Sweet potato vines Napier grass 197 ND Not improved ND ND Kabirizi et al. [31]

Potato pulp Dry rice 269.7 ND Not improved ND ND Zhang et al. [32]

Dry bean straw 276.9 ND Not improved ND ND Zhang et al. [32]

Dry maize stover 260.0 ND Not improved ND ND Zhang et al. [32]

Potato hash Poultry litter 364.0 33.8 Not improved Reduced IVOMD improved Nkosi et al. [33]

Eragrostis curvula hay 250 22 Improved Improved IVOMD improved Nkosi et al. [33]

Pineapple residue Poultry litter 234 ND Improved Improved IVOMD reduced Nhan et al. [34]

Pineapple Rice polishing 230 ND Improved Reduced Feed intake and weight 
gain improved

Nhan et al. [34]

Grape pomace Lucerne hay (alfalfa) 331 7.6 Improved Ke et al. [20]

Wet sugar beet pulp Dry pelleted beet pulp 907 ND Not Improved Reduced IVDMD improved Leupp et al. [35]

Tomato pomace Ground maize grains 363 ND Improved ND Feed intake improved Galló et al. [36]

Pumpkin chopped Dried sugar pulp 292 ND Improved ND ND Łozicki et al. [37]

Dried sugar beet pulp 289.6 57.8 Not Improved ND ND Halik et al. [38]

Banana fruit chopped Dried sugar beet pulp 267.5 ND Improved ND ND Álvarez et al. [39]

Tomato fruit chopped Dried sugar beet pulp 263 ND Improved Álvarez et al. [40]
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By-products Absorbent Mixture (g/kg DM) Fermentation 

response

Aerobic 

stability

Animal 

performance/in vitro

Reference

DM WSC

Orange pulp Dried citrus pulp 712 ND Improved Improved IVDMD improved Arbabi et al. [41]

Dried sugar beet pulp 707 ND Improved Improved IVDMD improved Arbabi et al. [41]

Wheat straw 606 ND Improved Improved IVDMD improved Arbabi et al. [41]

Apple pomace Maize plant 213 ND Improved ND IVOMD improved Ülger et al. [42]

Sugar beet pulp 151 ND Improved ND IVOMD improved Ülger et al. [42]

Pumpkin pulp 115 ND Not improved ND IVOMD improved Ülger et al. [42]

Sugar beet pulp Molassed beet pulp 186 249 Improved Unaffected IVDMD improved O’Keily [43]

Unmolassed beet pulp 188 75 Improved ND ND O’Keily [43]

Barley 189 18 Improved ND ND O’Keily [43]

Citrus pulp Wheat bran 124 ND Improved Reduced OMD improved Kordi and Naserian [44]

ND: Not detected; IVOMD, in vitro organic matter digestibility.

Table 1. 
Effects of the use of absorbents on fermentation characteristics, aerobic stability and in vitro/ animal performance fed silage from high moisture plant by-products.
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0, 5, 10 and 20% apple pomace in a total mixed ration that was ensiled for 90 days, 
and reported an increased silage ethanol production with the 20% inclusion of apple 
pomace. This was attributed to the increased sugar content of the silage mixture.

3.  Use of absorbents to improve the ensiling of high moisture plant 
by-products

One of the major setbacks in ensiling agro-industrial by-products is their high 
moisture contents (>25%) that requires the by-products to be dehydrated or mixed 
with absorbents to improve the dry matter contents, compaction and ensiling pro-
cess [22]. When silage DM content is less than 300 g/kg, conditions for clostridial 
activity are favourable, resulting in high losses and silage of low nutritional value 
[23]. To enhance the fermentation process and sustain nutritional quality during 
ensiling, various additives such as feedstuffs, nutrients and absorbents [24, 25], and 
non-protein nitrogen agents, chemicals and enzymes have been used [26].

High moisture by-products such as pulps and pomaces are difficult to ensile and 
may lead to seepages, causing nutrient losses. These by-products are usually ensiled 
with absorbents (i.e. dry sources) to improve both the dry matter and fermentation. 
The effects of adding various absorbents to high moisture by-products at ensiling are 
shown in Table 1. Adding absorbents to high moisture plant by-products at ensil-
ing improved the fermentation (66%), silage aerobic stability (50%) and in vitro or 
animal performance by 74% of the responses. This variation in responses depends on 
the nutritive values and WSC content of the absorbents used. Nkosi et al. [45] ensiled 
potato hash with either Eragrostis curvula hay and poultry litter as absorbents. They 
reported higher crude protein content in the silage produced with poultry litter than 
that produced with the grass hay. Migwi et al. [46] ensiled citrus pulp with either straw 
or poultry litter and reported improved silage fermentation dynamics with these two 
absorbents. The addition of straw to the beet pulp improved the DM content, WSC, 
in vitro dry matter digestibility (IVDMD) and increased the fibre fraction of the silage 
compared to the control. Megias et al. [27] and Paya et al. [28] reported that hay and 
wheat straw improved silage fermentation when used as absorbent in citrus pulp silage. 
Islam et al. [47] reported that wheat bran and wheat straw did not improve silage 
fermentation when used as absorbent in apple pomace silage. Zhang et al. [32] further 
reported that dry rice; dry beans and dry corn stover did not improve silage fermenta-
tion when used as silage absorbent when ensiling potato pulp. Khattab et al. [48] ensiled 
banana wastes mixed with wheat straw and broiler litter. The silage was treated with 
either diluted molasses or sweet whey as nutrient (sugars) additives, which improved 
growth performance of buffaloes. The addition of Eragrostis curvula hay as an absorbent 
did not improve the quality of the potato hash silage [49]. Álvarez et al. [40] ensiled 
tomato fruit mixed with either dehydrated beet pulp or cereal straw and reported 
improved nutrient content in silage mixed with dehydrated beet pulp. Hadjipanayiotou 
[50] added either poultry litter or straw to tomato pulp silage and reported greater CP 
content in silage treated with poultry littler compared to the straw treated silage.

4.  Use of microbial inoculants during the ensiling of high moisture 
by-products

4.1 Microbial inoculants

Microbial inoculants are products that are added or inoculated to forages to 
increase the number of microbes (e.g. LAB) in the forage at ensiling and influence 
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the fermentation process of the forage in the silo [51]. The forage at ensiling is 
generally dominated by aerobic micro-organisms or facultative aerobes, with less 
population of LAB [52]. Forages are usually inoculated with homofermentative 
and facultative heterofermentative LAB to enhance LA fermentation of forages. 
Homofermentative LAB produces 2 moles of lactic acid from one mole of glucose, 
and these products contain strains species such as Lactobacillus (e.g. planturum, 
pediococcus species, and enterococcus species) [52] and the recent meta-analysis 
by Oliviera et al. [53] showed Lactobacillus planturum as the mostly used species. 
Heterofermenters produces one mole of lactic acid, one mole of carbon dioxide and 
one mole of acetic acid [52]. Homofermentative LAB are reported to yield high DM 
recovery and little energy loss from the silage while the heterofermentative LAB 
results in high DM losses, increase in silage pH and volatile fatty acids such as acetic 
and propionic acids [54]. According to Avila et al. [55] facultative heterofermenta-
tive LAB strains are not good for producing sugarcane silages due to increased DM 
losses. However, inoculation of forages with heterofermentative LAB increase the 
concentration of acetic acid or propionic acid, which are suitable for yeast control 
because of their fungicidal effect [56]. This means that heterofermentative LAB 
inoculants improve the aerobic stability of silage while it can be reduced with 
Homofermentative LAB inoculation [51, 57]. According to Muck [52] the rumen 
bacteria ferment lactic acid whereas acetic acid is a product of rumen fermentation. 
Hence there are benefits to rumen microbial growth from producing lactic acid 
from the silo during ensiling of forages. In a recent meta-analysis on the inoculation 
rates of LAB to forages, the 106 colony forming units (CFU)/g was common, and the 
105 and 106 cfu/g inoculation rates were most effective for improving silage fermen-
tation, reducing acetic acid production and improving DM recovery [53]. This study 
further reported that the recommended inoculation rate for silage inoculants varies 
by region, with 105 cfu/g being common in the United States, 106 cfu/g in Europe, 
and 104 cfu/g being common in some Asian and South American countries. The 
type of forage was the most consistent factor affecting the silage quality response to 
LAB inoculation [53]. With cereal grain forages such as corn, the lack of response 
with LAB inoculation is probably because these forages contained sufficient WSC, 
epiphytic bacterial population and low buffering capacity.

4.2 Silage fermentation characteristics

Bouillant and Crolbois first adopted the principle of microbial inoculation in 
1909 when they applied LAB inoculants to beet pulp to improve fermentation [58]. 
Later in 1934, Rushmann and Meyer (1979, were cited by [59]) documented that the 
rate of acidification during silage fermentation is dependent on epiphytic bacteria 
found on forages. Currently, there are several silage inoculants available on the 
market with inoculation rate that ranges between 104 and 106 colony forming unit 
(CFU)/g [60]. Most commercially available inoculants contain homofermentative 
LABs, which are fast and efficient producers of lactic acid, and thus improve the 
silage fermentation. However, these LAB inoculants are mostly designed/produced 
to be used in the ensiling of forages to ensure enough LAB inoculation at ensiling. 
Most studies (e.g. [61, 62]) showed an increased in LAB population when LAB 
inoculants were applied to forages at ensiling. The response to LAB and enzyme 
inoculation to various high moisture by-products at ensiling are presented in  
Table 2. Literature shows that the response to LAB inoculation to forage varies a lot. 
Some reported positive effects in the terms of fermentation dynamics while some 
reported lack of response. LAB inoculation to high moisture by-products at ensil-
ing have underwent the same pattern as with the forages. For instance, Parigi-Bini 
et al. [68] found that the inoculation of lactobacilli (Lactobacillus plantarum and 
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By-Product Treatment Fermentation LAB type Inoculation rate Ensiling 

days

Reference

Parameter Control Inoculant

Sugar beet 
pulp

pH 3.91 3.95 Not improved L. fermentum nrrl b-4524 - 90 Zheng et al. [63]

LA 33 28.92 Not Improved -

AA 34.69 35.07 Not Improved -

Tomato 
pomace

pH 4.97 4.57 Not Improved Sill All 105 CFU g−1 diluted with 
2L water

70 Galló et al. [36]

LA 17.9 20.5 Not Improved

AA 9.16 14.2 Not Improved

Sweet potato 
vines

pH 4.06 3.84 Improved (Lactobacillus buchneri, Lactobacillus 
plantarum and Entrococcus faecium)

1.1 × 1011 CFU/g Yacout et al. [64]

LA 47.1 51.3 Improved

AA 31.7 33.2 Improved

Orange pulp pH 3.8 3.5 Improved Lactobacillus Plantarum 1 g/kg diluted with 50 ml 
water (700000 U/kg)

90 Paya et al. [28]

LA 36.4 47.2 Improved

AA 9.5 6.85 Not Improved

Potato hash pH 3.5 3.14 Improved Viscozyme® (hemicellulose and 
pectinase from Aspergillus spp)

100 ml enzyme diluted 
with 1 l of water

90 Nkosi et al. [45]
Mutavhatsindi  

et al. [65]
LA 58.3 71.7 Improved

AA 6.3 3.4 Improved

pH 3.8 3.7 Improved Enzymes (celluclast) -

LA 36.42 41.25 Improved

AA 9.50 14.47 Improved
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By-Product Treatment Fermentation LAB type Inoculation rate Ensiling 

days

Reference

Parameter Control Inoculant

Potato pulp pH 3.97 3.94 Improved Rhizopus oryzae 1×106 CFU g−1 40 Okine et al. [66]

LA 24.6 26.8 Improved

AA 10.6 12.6 Improved

pH 3.97 3.95 Improved Amylomyces rouxii 1×106 CFU g−1

LA 24.6 24.8 Improved

AA 10.6 10.0 Improved

Peach 
pomace 
TMR

pH 4.29 4.24 Not Improved Pediococcus acidilactici, Lactobacillus 
buchneri

-
3 x 105 CFU g−1

56 Hu et al. [18]

LA 71.1 62.1 Not Improved

AA 13.8 9.0 Not Improved

Potato hash 
TMR

pH 4.3 4.1 Improved Lalsil fresh - 90 Nkosi et al. [67]

LA 61.0 69.8 Improved -

AA 31.8 36.3 Improved

Pumpkin 
chopped

pH 3.96 3.78 Improved Bacterial-enzyme- Lactobacillus 
plantarum

2 × 109 CFU g−1 70 Łozicki et al. [37]

LA 56.4 64.3 Improved

Table 2. 
Effects of LAB inoculation on fermentation of high moisture plant by-products silage.
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Streptococcus) to pressed sugar beet pulp did not affect the nutritional value and fer-
mentation of the silage. Similarly, Okine et al. [66] ensiled a daikon by-product with 
or without L. plantarum and reported no effect on fermentation characteristics of 
the silage. In contrast, Okine et al. [69] ensiled potato pulp with bacterial inoculants 
(Lactobacillus rhamnosus) alone, Rhizopus oryzae alone and their combinations, and 
reported reduced content of the main carbohydrates, starch and pectin in the pulp 
with bacterial inoculation. Table 2 shows that 63% of the responses in this review 
were positive towards LAB inoculation to high moisture by-products at ensiling.

4.3 Aerobic stability of silage

The aerobic stability is a term that nutritionists have used to define the length of 
time that silage remains cool and does not spoil after it is exposed to air [70]. The 
aerobic deterioration of silage may increase the risk of proliferation of potential 
pathogenic or undesirable microorganisms thus affecting the performance of animals 
fed the silage. In most cases, aerobic deterioration of silage happens with silages that 
contain high residual sugars [14]. It is noteworthy that Lactobacillus buchneri (LB), 
a heterofermentative LAB inoculant [51, 57] have been reported to improve the 
aerobic stability of silages due to increased acetic acid production. Previous research 
with potato hash silage [49, 71] showed improved aerobic stability of silage with LB 
inoculation. Li et al. [72] ensiled a mixture of corn steep liquor with wheat straw and 
treated with either heterofermentative or homofermentative LAB. They reported 
an increase in acetic acid content and improved aerobic stability of silage with 
heterofermentative LAB compared to untreated silage. The inoculation of LB during 
the ensiling of forages is often criticised due to increase in silage pH, acetic acid and 
losses in DM and energy [12, 15, 56, 73–80]. However, if aerobic stability is improved, 
the loss of nutrients incurred by the addition of LB may be moderate in comparison 
with what might have been lost at feed out through aerobic deterioration [71].

5.  Effects of microbial inoculation to ensiled totally mixed rations 
(TMRs) on fermentation and aerobic stability

Due to the high moisture content in fresh high moisture by-products, it is more 
advantageous to mix them with other dry feed materials before ensiling. This tech-
nique helps to omit the time of mixing before feeding, minimize the risk of effluent 
production and avoids self-selection of feeds by animals [81, 82]. In some studies, 
TMRs that contained high moisture by-products (e.g. [83]) [49] were formulated 
and ensiled. Nkosi and Meeske [71] reported an improved silage fermentation, 
aerobic stability and animal growth performance when TMR that contained potato 
hash was treated with LAB inoculant. However, Nishino and Hattori [83] reported 
improved silage fermentation but LAB inoculation was not worth in the aerobic 
stability of TMR silage. This might be attributed to the addition of various feed 
ingredients that might have helped to stabilize the TMR silage.

6. Animal performance

The production of silage will not be worth if it is rejected by animals during 
the feeding out phase. Animal performance includes feed intake, feed palatability, 
nutrient digestion, daily gains, milk and meat production. The results on the 
performance of animals fed plant by-product silage treated with LAB varies like 
when animals are fed LAB treated silages from plants/forages. According to Table 3, 
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By-products LAB type Inoculation rate Animal 

species/in vitro
Response Reference

Potato hash Bonsilage forte (Lactobacillus paracasei, Lactobacillus 
lactis, Pediococcus acidilactici and Lalsil Fresh LB 

(Lactobacillus buchneri)

2.5 × 105 CFU g−1 Mutton Merino 
rams

Improved gross energy, crude protein 
and fibre digestibility.

Improved nitrogen intake and 
retention.

Nkosi et al. [49]

Spent mushroom 
substrate

Mixture of Enterobacter ludwigii KU201-3, Bacillus 
cereus KU206-3, Bacillus subtilis KU3, Bacillus subtilis 
KU201-7, Saccharomyces cerevisiae, and Lactobacillus 

plantarum

1 × 109 CFU g−1 Cross bred 
rams

Improved EE digestibility and 
nitrogen retention.

Seok et al. [84]

Spent mushroom 
substrate

Enterobacter ludwigii KU201-3, Bacillus cereus KU206-
3, Bacillus subtilis KU3, Saccharomyces cerevisiae, and 

Lactobacillus plantarum

Each strain at 
0.12% v/w

Hanwoo steers Improved ADG, FCR and FI Kim et al. [85]

Tomato pomace Sil All 4x4 (Enterococcus faecium, Pediococcus 
acidilactici, Lactobacillus plantarum, Lactobacillus 

salivarius)

1 x 105 CFU g−1 Game Improved Galló et al. [36]

Sugar beet pulp Sil add (Lactobacillus plantarum, Pediococcus 
acidilactici, Streptococcus bovis and Selenomonas 

ruminantium)

0.5 g/kg FM basis Hereford and 
Friesian steers

Unaffected O’Keily [43]

Lactobacillus plantarum 5 mg/kg FM basis In vitro Increased DM digestibility. Cao et al. [7]

Chinese cabbage

Cabbage waste Silobac® (lactobacillus plantarum and Pediococcus 
pentosaceus)

5 x 105 CFU g−1 In vitro Increased DM digestibility. De Rezende et al. 
[86]

Yacon (Smallanthus 
sonchifolius)

Chikuso-1 (lactobacillus plantarum) 5 mg/kg FM basis In vitro Increased DM digestibility. Wang et al. [82]

Avocado pulp Emsilage® and Sil-All® 3.5 x 105 CFU g−1 In Vitro Improved silage degradation Nkosi et al. [87]

Table 3. 
Effects of microbial inoculation to high moisture plant by-product silage on animal growth performance.
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LAB inoculation to high moisture plant by-products improved animal performance 
in almost all the literature consulted, except for the sugar beet pulp silage reported 
by O’Keily [43]. It is well known that improved performance by animals fed LAB 
treated silages are difficult to explain [26]. However, Weinberg et al. [88] suggested 
that the interaction of LAB and rumen microbes and the alteration of LAB and 
rumen fermentation might be attributed to the improvement of animal perfor-
mance with LAB treated silages.

Inoculation of potato hash silage with L. buchneri did not change the DM or 
organic matter (OM), but bonsilage forte inoculation improved digestibility of ether 
extract and increased nitrogen (N) intake and retention in sheep fed the silage [49]. 
Further, Thomas et al. [89] compared the effects of two bacterial inoculants on digest-
ibility, growth performance and carcass characteristics of growing pigs fed the ensiled 
potato hash, and reported no improvement with LAB inoculation on the growth 
performance and meat characteristics of growing pigs. Okine et al. [69] ensiled potato 
pulp with L. rhamnosus and Rhizopus oryzae, and reported lack of influence from LAB 
inoculation on the digestibility of the silage by ruminants. In contrast, Li et al. [72] 
treated corn steep liquor silage with LAB and reported improved DM digestibility, 
which resulted in less methane production compared to untreated silage. Further, a 
study by Pulido et al. [90] showed an improvement in the nutritive value of sugar beef 
pulp silage with LAB inoculation, which increased milk production from dairy cows 
by 2%, though milk composition was not affected by the inoculation.

Methane, a greenhouse gas produced from enteric fermentation in the rumen, 
is a major concern in ruminant production globally. It is well indicated that by 
improving forage quality and digestibility, this gas production can be reduced. In 
terms of reduction gas production with LAB inoculation, very few studies have 
tested this effect in silages from high moisture by-products. Cao et al. [7] reported 
a reduced gas production with L. plantarum inoculated to vegetable residue silage, 
which suggest that LAB inoculation can be effective in reducing gas emission in 
silages. However, Ellis et al. [91] have cautioned that LAB inoculation to forage will 
not always give positive response. They mentioned that the strain and dose differ-
ences, different basal silages and ensiling conditions might be responsible for the 
variability in responses from LAB inoculation.

7.  Properties required in high moisture plant by-products for efficient 
silage fermentation

As indicated earlier, the low DM content in high moisture plant by-products is 
a concern since it can promote a clostridial type of fermentation if not improved 
prior to ensiling. According to Muck [52], most silages are produced at DM content 
that ranges from 300 to 500 g/kg, hence the DM of these by-products should be 
increased. This can be achieved by mixing with absorbents/dry forages. Also, the 
success of ensiling is determined by various factors that include the anaerobic con-
ditions in the silo, WSC content, the buffering capacity of the pre-ensiled forage, 
and the epiphytic bacteria. Bacterial inoculation will be worthless if the by-products 
contain insufficient sugars, which should be consumed by LAB to produce lactic 
acid, which will reduce silage pH and preserve the crop [23].

8. Conclusion

Good quality silage can be produced from high moisture plant by-products with 
or without LAB inoculation. Increasing the DM content of high moisture plant 
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by-products to >30% is required for efficient fermentation. It should be noted that 
there are no specific LAB inoculants designed for inoculation to high moisture plant 
by-products. The efficacy of LAB inoculation to forages depends highly on the type 
of crop/by-product, the strain and different doses and the ensiling management.
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by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
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