
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

137,000 170M

TOP 1%154

5,600

Chapter

A Distributed Approach for
Autonomous Cooperative
Transportation
Amar Nath and Rajdeep Niyogi

Abstract

Autonomousmobile robots have now emerged as ameans of transportation in
several applications, such as warehouse, factory, space, and deep-sea where direct
human intervention is impossible or impractical. Since explicit communication pro-
vides a better and reliable way ofmulti-robot coordination compared to implicit
communication, so it is preferred in critical missions, such as search and rescue, where
efficient and continuous coordination between robots is required. Cooperative object
transportation is neededwhen the object is either heavy or too large or needs extra care
to handle (e.g., shifting a glass table) or has a complex shape, whichmakes it difficult
for a single robot to transport. All groupmembers need no participation in the physical
act of transport; cooperation can still be achievedwhen some robots transport the
object, and others are involved in, say, coordination and navigation along the desired
trajectory and/or clear obstacles along the path. A distributed approach for autono-
mous cooperative transportation in a dynamicmulti-robot environment is discussed.

Keywords: cooperative transportation, distributed algorithm, dynamic
environment, multi-agent coordination and cooperation

1. Introduction

Autonomous mobile robots are now used in several applications, such as ware-
house, factory, space, and deep-sea, that may be inaccessible for humans. The main
concern is to find an effective coordination mechanism among autonomous agents
to perform tasks in order to achieve high quality overall performance. Although
MAS research has received substantial attention, multi-robot coordination remains
a challenging problem since the overall performance of the system is directly
affected by the quality of coordination and control among the robots while execut-
ing cooperative tasks. Coordination in a multi-robot system can be achieved either
by explicit or by implicit communication. Since explicit communication provides a
better and reliable way of multi-robot coordination compared to implicit commu-
nication, so it is preferred in critical missions, such as search and rescue, where
efficient and continuous coordination between robots is required.

A collaborative task cannot be executed by any single agent. It requires multiple
agents at the task’s location. Execution of such tasks is quite challenging in a
dynamic environment, as the time and location of a task arrival, required skills, and
the number of robots required for its execution may not be known a priori. This
necessitates the design of a distributed algorithm for collaborative task execution

1

via runtime team/coalition formation. To form a team with a lack of global knowl-
edge, the robots need to communicate with each other to acquire relevant informa-
tion. Here, a distributed approach for collaborative task execution in a dynamic
environment is discussed. We illustrate the applicability of the approach with urban
search and rescue (USAR) domain and evaluate its performance with extensive
experiments using ARGoS, a realistic multi-robot simulator.

We now illustrate an example scenario of the problem considered as shown in
Figure 1. The environment, a grid world of size 4� 3, consists of 12 locations
marked as a, b, … , l. Robots can move to its adjacent location. Boxes arrive at the
locations at different points in time. The task is to move a box from its arrival
location to the goal location, which is marked on the box.

The snapshots of the environment at different instants of time is shown in
Figure 1. At time t1, two tasks τ1 and τ2 arrive at locations a and g respectively, 4
robots are present at the locations b, c, f and h. The robots r1 and r4 detect the tasks
τ1 and τ2 respectively. At time t2, r1 and r4 move to locations a and g to attend the
tasks. Now, r1 and r4 determine the team sizes to be 2 and 3, and the goal locations
to be h and l for the tasks τ1 and τ2 respectively. At this time, r3 exits and r5 and r6
enter at locations k and j respectively.

At t2, r1 and r4 do not know the states and locations of other robots present in the
environment, and thus with this insufficient information they cannot form their
respective teams. Thus, in order to form their teams, they invoke the algorithm given in
Section 4. At t3, r1 and r4 both form their teams successfully and themembers reach the
locations of the tasks as shown in the Figure. Finally, at time t4, execution of the tasks
are completed and the teammembers for τ1 and τ2 reach their respective goal locations.

2. Related work

In the literature, several approaches have been suggested for solving the problem
of cooperative object transportation [1–4]. The work [1] is considered as the
pioneering work, targeting a cooperative transport task by a homogeneous group of
simple robots that can only push an object. The authors [1] demonstrate that
coordinated effort is not possible without explicit communication.

The work [2] proposed direct (explicit) communication to improve the coordina-
tion of a homogeneous group of two six-legged robots required to transport a rectan-
gular box towards a target cooperatively. The work [3] considered the problem of
cooperative box pushing where the roles of the members are pre-defined; specifically
one robot acts as a watcher and the others act as pusher. However, we consider a
more complex scenario of cooperative object transportation scenario, where the role
of each robot is not fixed in advance, rather decided at runtime. In [4], the robots are
designed to push the object across the portion of its surface, where it occludes the
direct line of sight to the goal. This simple behavior results in transporting the object
towards the goal without using any form of direct communication.

Figure 1.
Snapshots of a dynamic environment.

2

Robotics Software Design and Engineering

The problem of cooperative transportation, considered in this paper, involves team
formation of heterogeneous robots and gathering the robots to the location of the
object to be transported. The number of robots required to transport the object is not
known a priori and it is decided at runtime. For the same task, the team size is
determined by the state of the environment. So, at some point in time an object may be
transported by two robots while at some other moment in time three or more robots
are required. Few works related to coalition formation strategies are discussed below.

Auction-based approaches for team formation (task allocation) are suggested in
[3, 5]. A bidder agent has some resources (e.g., data center, CPU) [5], who may bid
for multiple auctioneers concurrently. However, when we move to physical agents,
a robot cannot be a member of multiple coalitions at any point of time simply
because the tasks may be at different locations, and a robot cannot be at two
different locations at the same time, even though a robot may have the capability to
perform multiple tasks at a time.

In our work, a non-initiator robot (bidder) will not express its willingness to
multiple initiators (auctioneers) concurrently; when more than one request mes-
sage arrives, the robot stores the requests in its local queue. Having one or more
resources specified in the auction is a sufficient condition for an agent to make a bid
[5]. Having the required skills for a task is a necessary but not a sufficient condition
for a robot to express its willingness to be part of a team, in our work. A robot’s
behavior, in our work, is determined by its current state, whereas in [3, 5] states
need not be taken into consideration.

In [6], the authors describe a framework for dynamic heterogeneous team
formation for robotic urban search and rescue. The task discovery is made by a
member of a team and it is sent to the team coordinator for assignment. The team
coordinator performs the task assignment ensuring the task will be carried out by a
robot with the necessary capabilities. However, in a distributed system, no robot
knows the states, locations, and skills of other robots. Thus, the robots should com-
municate among themselves to acquire relevant information for task execution with-
out the intervention of any central authority. This necessitates the design of a
distributed algorithm for task execution in such a dynamic environment.

In our approach, unlike [6], every robot has a similar level of priority, and each
of them can perform the task management activities, i.e., searching, team/coalition
formation by acquiring the information from the robots available in the environ-
ment at that moment in time. In this paper, the arrival time and location of a task
are not known a priori; hence, task searching and coalition formation activities are
performed by a robot at runtime.

3. Problem formalization

A formal framework of a dynamic environment and some related concepts are
presented below.

Definition 3.1. (Dynamic environment) A global view (snapshot) of an environ-

ment E, with a set of locations L, taken at time t, is given by a 3-tuple Et ¼

Rt, T t, f
� �

, where Rt is the set of robots present in the environment at time t, and

T t is the set of tasks that arrive in the environment at time t, f : Rt � ↦L, is a
function that gives the location of a robot at a discrete instant of time represented
by the set of natural numbers .

A robot has a set of skills ψ (eg., gripper, camera), and at any instant of time it
may be in any state from the set of states S ¼ Idle,Ready,Promise,Busyf g. A robot
can enter the environment E at any time, but can leave only if its state is Idle. When

3

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270

a robot attends a task, it can determine the information required to begin team
formation, from the task specification, which is given below.

Definition 3.2. (Task (cooperative transportation)) A task τ is specified by a
5-tuple τ ¼ ν, l, t, k,Ψh i where ν is the name of a task (e.g., move (carry) box B to

location l0, lift desk D), l∈L is the location where the task arrived, t is the time at
which the task arrived, k> 1 is the number of robots required to execute the task,
and Ψ is the set of skills required to execute the task.

Definition 3.3. (Condition for single task execution) A task τ ¼ ν, l, t, k,Ψh i can
be executed, if there exists a set R of k available robots, such that for all r∈R,

ψ r ⊇ Ψ at some time t0 > t, and for all r∈R, location of r, locr ¼ l at some time t00 > t0.
The first condition in the if is for team formation, and the second condition is for

ensuring that all the team members converge to the location of the task.
Definition 3.4. (Condition for multiple task execution) The tasks τ1 ¼

ν1, l1, t, k1,Ψ1h i and τ2 ¼ ν2, l2, t, k2,Ψ2h i can be executed if the following conditions
hold:

1. there exists a set R1 of k1 available robots, such that for all r∈R1, ψ r ⊇ Ψ1 at
some time t01 > t, and for all r∈R1, locr ¼ l1 at some time t001 > t10 .

2. there exists a set R2 of k2 available robots, such that for all r∈R2, ψ r ⊇ Ψ2 at
some time t02 > t, and for all r∈R2, locr ¼ l2 at some time t002 > t02.

3.R1 ∩R2 ¼ ∅.

Definition 3.5. (Utility of a team for task execution) Let Γ ¼ x1, … , xkf g be a
team that can execute a task τ ¼ ν, l, t, k,Ψh i where each member of the team was
located at locxi . The utility of a team Γ for executing τ is U Γ,τh i ¼ �cost Γ,τh i, where

cost Γ,τh i ¼
P

xi ∈Γ
μ xi,τh i and μ xi,τh i ¼ p xi, τð Þ � 1

αxi
þ d locxi , lð Þ � βxi .

where αxi , βxi ∈ 0, 1ð � denote remaining battery coefficient and battery con-
sumption rate respectively of (a robot) xi, p xi, τð Þ is the price of xi for τ, d l1, l2ð Þ is
the distance covered when moving from l1 to l2.

A robot with higher α value ensures that it will not fail due to its more remaining
battery backup. A robot with lower β value ensures that it will last for a longer
period of time.

4. Distributed algorithm for cooperative transportation

Following assumptions are made for the study. Multiple robots are required for
any task execution. A robot can execute at most one task at a time. Each robot has a
unique identifier (id). A wireless network that is lossless, message delay is finite,
data is not corrupted during transmission is considered. Messages are delivered in a
FIFO manner.

Informal description of the algorithm is given below. Let a robot i attend a task
τ ¼ ν, l, t, k,Ψh i where ψ i ⊇ τ:Ψ. To execute the task (cooperative transportation),
initiator communicates with other robots in order to form a runtime team. Here, the
i is named as an initiator, and the other robots as non-initiators.

After task detection, i broadcasts a Request message to know the current state of
the other robots present in the environment at that moment in time and waits for
some time, say Δ. The broadcast messages are delivered only to those robots who
are present in the range. Now, on receipt of Request message, a non-initiator j takes
the necessary actions. A non-initiator who has the desired skill will send a Willing
and an Engaged message if its state is other then Idle.

4

Robotics Software Design and Engineering

The counter c of initiator is increased on receipt of Willing message. The
parameter (c≥ k� 1) is checked after Δ time has elapsed. Now, if the value of
(c≥ k� 1) is true then team formation that has maximum utility is possible and
sends Confirm message to the members of the team and sends a Not-Required
message to (c� k� 1ð Þ) robots, if any. However, if the value of the condition
(c≥ k� 1) is false, i sends a Not-Requiredmessage to all c robots who expressed their
willingness to help. Also, i changes its state from state Ready to Idle The algorithm
has the non-blocking property since a timer is used. If there was no timer, an
initiator would have waited indefinitely and thereby forcing some non-initiators to
wait indefinitely as well; thus the system would be blocked.

The receive function of a robot is given in Algorithm 2. The agents take the action
based on the current state that may be Idle (line 17–21), Promise (line 22–39), Busy
(line 12–16 and 41–45), and Ready (line 1–11). Within a state, the type of message is
checked and appropriate actions are taken. For example, if an agent receives a
Request message in Idle, the identifier of the sender is enqueued, and flag is set to
true; if it has appropriate skills then it sends the Willing message to the sender
(initiator) and flag is set to false.

The behavior of the agent is captured with communicating automata (CA) [7] as
shown in Figures 2 and 3. Moreover, this communicating automata is helpful in
understanding and designing the algorithm.

Transitions in CA are very general form χ : γ, where χ can either be an input a
(send message !m, receive message ?m), or a state condition g, or a, gð Þ, and γ can

Figure 2.
Finite state machine for an initiator agent.

Figure 3.
Finite state machine for a non-initiator agent.

5

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270

either be a sequence of actions seq, or a sequence of actions that is to be performed
atomically seqh i, or empty. Similarly, semantics are defined.

4.1 Analysis of the algorithm

4.1.1 Message complexity

Let there be I initiators at some instant of time, say t. Each initiator broadcasts a
Request message, which is sent to N � 1ð Þ robots, where N is the total number of
robots present at time t. So, the total number of such messages would be N � 1ð Þ � I
which is O N � Ið Þ. The total number of replies obtained from non-initiators would be
at most N � 1ð Þ � I which is O N � Ið Þ. An initiator sends c number of Confirm and
Not-Requiredmessages, which is O Nð Þ. Thus total messages send by all the initiators
would be O N � Ið Þ. Thus the total number of messages would be the sum of these
messages, and this becomes O N � Ið Þ þO N � Ið Þ þ O N � Ið Þ, which is O N � Ið Þ. When
the number of initiators is relatively small compared to the total number of robots
present at time t, the message complexity would be O Nð Þ.

4.1.2 Handling multiple initiators

Let us consider the snapshot of the environment at t2 in Figure 1, where r1, r4
invoke the send function (Algorithm 1) simultaneously; r1, r4 need one, two other
robots respectively. The initiators r1, r4 broadcast Request messages corresponding
to their respective tasks. Let all the other robots be in Idle state initially and they can
satisfy the requirements of both the tasks. Eventually r2 becomes part of the team
with r1 because it received the Requestmessage from r1 before it received the Request
message from r4. Similarly, eventually r5 and r6 become part of the team with r4.

6

Robotics Software Design and Engineering

The complete execution trace of algorithms 1,2 is shown in Figure 4 using
message sequence chart (MSC).

7

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270

5. Implementation in ARGoS

We consider a road clearance scenario to illustrate the proposed distributed
algorithm (Section 4), where a road may be blocked by several obstacles. A team of
robots should jointly move each obstacle to one side of the road. The algorithm is
implemented using ARGoS (Autonomous Robots Go Swarming) [8], a multirobot
simulator using the 3.0.0-beta47 version on Intel⊕ Core™ i5 Processor, 4-GB of
RAM and macOS Sierra operating system. The code run in ARGoS can be directly
deployed on a real robot system.

An example scenario is shown in Figure 5, where the shaded portion in gray is
the road (10 m� 5 m), obstacles are simulated by green movable cylinders of radius
0.2 m with a blue light on top. The robots are shown in blue. The overall process of
removing an obstacle from the road is shown in Figure 5. The robots in ARGoS use
the inbuilt range and bearing sensor (rab) to communicate among themselves.

Figure 4.
Execution trace of the algorithms for multiple initiators.

8

Robotics Software Design and Engineering

The broadcast of the messages to all other robots is done by rab actuator. The
broadcast of message is done within a certain range and in line of sight. We have
used the 3 bytes for message within the range of 15 meters. The message is received
by rab receiver within in the same network sent by rab sensors. Along with sending
and receiving the message within range, rab sensors do the work of identifying the
direction and distance from where the message is being sent. As the rab actuator
allows the only broadcast, the address of the sender and that of the receiver needs to
be specified in every message. Every robot in the simulation has a unique id of size 1
byte. Several sensors and actuators are used to control the movement and position-
ing of the robots. For example, proximity sensors are used to stay on the road and
avoiding collisions with other robots, the omni-directional sensor is used to detect
obstacles, gripper actuator is used to grip an obstacle, and turret actuator is used to
turn the gripper actuator towards the direction of the obstacle.

In Figure 5a, the initial position of the robots and blocks is shown. Three robots
detect the three obstacles and they start the formation for the same is shown in
Figure 5b. We assume that all the obstacles require two robots to move. In Figure 5c,
two initiator robots are able to form their teams. In Figure 5d, it is depicted that
robots have reached to the location of obstacles and they are ready to move the
obstacles. Figure 5e, clearly shows that both the obstacles have been shifted to one
side of the road. After dropping the obstacles, the robots again visit the road and
search for other obstacles if any. Finally, in Figure 5f, the third obstacle is also
detected and removed. In this way, all the obstacles are removed from the road.

Figure 5.
Illustration of multiple task execution in ARGoS.

9

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270

For the implementation we have written the required functions in Lua (a C-like
language). These are: (i) to control the movement of a robot to avoid obstacle or
another robot based on proximity sensor data, where the sensor detects an obstacle
or another robot, (ii) control speed and velocity, (iii) synchronizing the robots for
task execution, (iv) to control the movement of a robot when boundaries are
detected using motor-ground sensors, (v) communication among robots based on
the line of sight.

The implementation is carried out by writing the required function in Lua
language. The different functions that are identified are as follows: (i) control of
velocity and speed of the robot, (ii) control the movement of a robot so that
obstacles and other robots could be avoided, (iii) synchronizing the robots in order
to task execution, and (iv) communication among robots based on the line of sight.

6. Summary

Now, research in the field of robotics is going with a rapid rate. In many
applications such as search and rescue, space, and automated warehouse, intelligent
robots are being used. With the advancement of artificial intelligence domain,
robots are becoming the good choice. A plenty of work has been carried out in the
field of single robot. However, this chapter discuss the different aspects of work
where multiple robots act on the same object at the same time. This problem
becomes tough and different from normal multi-agent problem.

Cooperative transportation is common task in many challenging domains, i.e.,
rescue, mars and space, and autonomous warehouse etc. In this way the proposed
framework becomes very much essential and important in such domains where
multiple robots are required to execute a task.

The proposed approach also takes care of multiple task execution simulta-
neously, i.e., if multiple robots detect multiple different obstacles at the same time,
the coalition formation process for each obstacle can be started. Each robot who
detects the obstacle, starts the coalition formation, by executing the instance of the
algorithms.

Author details

Amar Nath1,2*† and Rajdeep Niyogi2†

1 Sant Longowal Institute of Engineering and Technology, Punjab, India

2 Indian Institute of Engineering and Technology, Roorkee, India

*Address all correspondence to: amarnath@sliet.ac.in

†These authors contributed equally.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

10

Robotics Software Design and Engineering

References

[1] Kube, C. R., & Zhang, H. (1993).
Collective robotics: From social insects
to robots. Adaptive behavior, 2(2),
189-218

[2]Mataric, M. J., Nilsson, M., &
Simsarin, K. T. (1995, August).
Cooperative multi-robot box-pushing.
In Proceedings 1995 IEEE/RSJ
International Conference on Intelligent
Robots and Systems. Human Robot
Interaction and Cooperative Robots,
Vol. 3, pp. 556-561

[3]Gerkey, B. P., & Mataric, M. J.
(2002). Sold!: Auction methods for
multirobot coordination. IEEE
transactions on robotics and
automation, 18(5), 758-768

[4] Chen, J., Gauci, M., Li, W., Kolling,
A., & Gro, R. (2015). Occlusion-based
cooperative transport with a swarm of
miniature mobile robots. IEEE
Transactions on Robotics, 31(2), 307-321

[5] Kong, Y., Zhang, M., & Ye, D.
(2016). An auction-based approach for
group task allocation in an open
network environment. The Computer
Journal, 59(3), 403-422

[6] Gunn, T., & Anderson, J. (2015).
Dynamic heterogeneous team formation
for robotic urban search and rescue.
Journal of Computer and System
Sciences, 81(3), 553-567

[7] Brard, B., Bidoit, M., Finkel, A.,
Laroussinie, F., Petit, A., Petrucci, L., &
Schnoebelen, P. (2013). Systems and
software verification: model-checking
techniques and tools. Springer Science
& Business Media

[8] Pinciroli, C., Trianni, V., OGrady, R.,
Pini, G., Brutschy, A., Brambilla, M.,
Dorigo, M. (2012). ARGoS: a modular,
parallel, multi-engine simulator for
multi-robot systems. Swarm
intelligence, 6(4), 271-295

11

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270

