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Chapter

Mycovirus Containing Aspergillus 
flavus and Acute Lymphoblastic 
Leukemia: Carcinogenesis beyond 
Mycotoxin Production
Cameron K. Tebbi, Ioly Kotta-Loizou and Robert H.A. Coutts

Abstract

Carcinogenic effects of Aspergillus spp. have been well established and generally 
attributed to a variety of mycotoxin productions, particularly aflatoxins. It is known 
that most carcinogenic mycotoxins, with the exception of fumonisins, are genotoxic 
and mutagenic, causing chromosomal aberrations, micronuclei, DNA single-
strand breaks, sister chromatid exchange, unscheduled DNA synthesis etc. Some 
Aspergillus spp. are infected with mycoviruses which can result in loss of aflatoxin 
production. The effects of mycovirus containing Aspergillus on human health have 
not been fully evaluated. Recent studies in patients with acute lymphoblastic leuke-
mia, in full remission, have revealed the existence of antibody to the products of a 
certain Aspergillus flavus isolate which harbored an unknown mycovirus. Exposure 
of blood mononuclear cells from these patients, but not controls, to the products of 
this organism had reproduced cell surface phenotypes and genetic markers, char-
acteristic of acute lymphoblastic leukemia. Carcinogenic effects of Aspergillus spp. 
may not always be mycotoxin related and this requires further investigation.

Keywords: Acute lymphoblastic leukemia, Mycovirus, Aspergillus, Cancer, Etiology, 
Leukemogenesis, Carcinogenesis, Virus, Mycotoxin

1. Introduction

With a worldwide distribution and a significant level of genetic diversity, 
fungi are of importance in both medical and agricultural fields and represent 
major health and commercial concerns. Medically, fungal organisms can be a 
part of the normal flora of humans and animals. However, these also have the 
potential to cause mild to severe life-threatening invasive infections or toxicities. 
The immune response to fungal agents is variable and complex, ranging from lack 
of recognition to severe inflammatory reactions resulting in significant morbidity 
and mortality [1–6].

There is a broad and diverse spectrum of human and animal diseases attributed 
to fungi. Major effects of fungal agents in human health include, but are not limited 
to, organ-specific and systemic infections, especially in immunocompromised 
individuals, toxicity emanating from fungal products, carcinogenicity, mutagenic-
ity, growth impairment and stimulation of allergic reactions. Common and usually 
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non-life-threatening infections caused by fungal agents affecting humans are 
well recognized and often localized on nails, skin, oral cavity, throat and vagina. 
Severe and fatal infections, however, can be caused by a variety of fungi includ-
ing Aspergillus, Blastomyces, Candida, Coccidioides, Cryptococcus, Histoplasma, 
Mucoromycetes, Pneumocystis, Talaromyces, etc. Despite the significance of fungal 
infections an understanding of their pathophysiology has lagged behind other 
human pathogens. While the immune system of healthy individuals, in general, 
can effectively prevent some fungal infections, this is not the case in immunosup-
pressed patients [7, 8].

In addition to causing direct infections, the products of some fungal organisms 
can be toxic to animals and humans. Also, the mycobiome has been implicated 
in the pathogenesis of various types of cancers. An example is the link between 
Malassezia spp. and development of pancreatic ductal adenocarcinoma (PDA) 
[9]. Based on a reported murine experiment, fungal migration from the intestinal 
lumen to the pancreas initiates the pathogenesis of PDA by driving the complement 
cascade through the activation of mannose-binding lectin (MBL) [10]. Another 
example is the carcinogenic potential of Candida spp. Some findings indicate that 
Candida albicans is capable of promoting cancer by several mechanisms, includ-
ing production of carcinogenic byproducts, inflammation, induction of T helper 
type 17 (Th17) cell response and molecular imitations [10–12]. As will be discussed 
later in this article, possible relationships between fungal agents and hematological 
malignancies have been explored.

In light of the above, here the well-established significance of mycotoxins in 
carcinogenesis is discussed and novel findings illustrating that mycovirus infections 
may also play a role in human diseases is highlighted. In particular, focus is placed 
on a mycovirus containing Aspergillus flavus and its effects on leukemogenesis.

2. Mycotoxins

The toxicity, mutagenic and carcinogenic effects of some fungi is often attrib-
uted to their production of mycotoxins. Mycotoxins are low molecular weight 
metabolites produced by yeasts and filamentous fungi. These metabolites are het-
erogeneous chemicals, toxic to vertebrates, including humans. Several mycotoxins 
also have toxicities to invertebrates, plants, and other microorganisms [13, 14].

Currently, there are over 450 known mycotoxins, which along with their second-
ary metabolites, can produce varying degrees of toxicity ranging from mild gastro-
intestinal symptoms to cancer. A large number of common mycotoxins have been 
identified that are of major concern to human health, among which are aflatoxins, 
fumonisins, ochratoxins, patulin, zearalenone and nivalenol/deoxynivalenol. Some 
organisms can produce several different mycotoxins, and many different species 
may produce the same mycotoxins. Mycotoxin producing fungi are usually found 
in improperly saved edibles and agricultural commodities. They can enter and 
contaminate human and animal food supplies. Animals fed contaminated foods can 
pass aflatoxins through their eggs, milk, and meats, thus indirectly transmitting 
aflatoxins to humans [15, 16]. While toxicity in humans is often due to ingestion of 
large doses of mycotoxins, these can also permeate through the skin [17].

Many mycotoxins are cytotoxic and suppress the functions of lymphocytes, 
granulocytes, and monocytes. Exposure to some mycotoxins inhibits interferon 
gamma producing Th1 cells and results in decreased number of these cells. 
Mycotoxins may lead to T cell polarization toward the Th2 phenotype and is a 
risk factor for the development of allergies [18–23]. The principal function of Th1 
cells is cell-mediated immunity and inflammation. In normal conditions, there is 
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a balance between Th1 and Th2 cells. A shift of such a balance results in various 
disorders. Th1 cells play an important role in the functions of immunity related cells 
such as macrophages, B cells, and cytotoxic CD8+ T lymphocytes (CTLs). The latter 
stimulate cellular immune response, participate in the inhibition of the activation 
of macrophages and invigorate B cells to produce IgM and IgG1. For instance, it is 
found that T cells of children exposed to Aspergillus have significantly lower Th1 
cytokines, including tumor necrosis factors (TNFs), interferon-γ, interleukin-2 
and -10. These cytokines are involved in the development of CTLs and natural 
killer (NK) cells which are responsible for the cell-mediated immune response 
against viruses and detection and removal of tumor cells. Thus, exposure to fungal 
agents may significantly change cellular composition and cytokine production and 
immune function [24, 25].

Exposure to aflatoxins can lead to life threatening acute poisoning (aflatoxicosis) 
[26]. In turn, acute aflatoxicosis can result in acute hepatic necrosis often mani-
fested by symptoms of liver failure [27]. This eventually may cause development of 
cirrhosis in the liver and hepatic carcinoma. Chronic low-level exposure to myco-
toxins, particularly aflatoxins and especially aflatoxin B1, is known to be associated 
with increased risk of hepatic damage, liver and gallbladder cancer and impaired 
immune activity [27–29]. Several studies have documented liver and gallbladder 
toxicity and carcinogenicity related to mycotoxins. Other organs, including bones, 
kidneys, pancreas, bladder, viscera and central nervous system, can be subject to 
carcinogenesis [30].

A variety of mycotoxins have carcinogenic potential in animals and humans 
[16, 17, 26, 28, 31–35]. Certain mycotoxins, especially aflatoxins, produced by 
genetically diverse Aspergillus spp. including A. fumigatus, A. parasiticus and  
A. flavus can be genotoxic with damage to DNA, which is attributed to the devel-
opment of cancer in animals and humans. The effects of aflatoxins B1, B2, G1 and 
G2 and their metabolites such as aflatoxins M1, M2a, P1, Q1, Q2a, R0, H1; B2a, 
M2; GM1, GM2a, parasiticol (B3) and GM2, produced by the Aspergillus spp., are 
well recognized [35].

The carcinogenesis of mycotoxins is reported to be due to the intercalation of 
aflatoxin metabolites into DNA which alkylate the bases through epoxide moiety. 
This can be as a result of the mutations in the p53 gene or signaling apoptosis. 
The third base of codon 249 of the p53 gene is reported to be more susceptible to 
aflatoxin-mediated mutations. For example, in hepatocellular carcinoma, upon 
exposure to aflatoxin, mutation of p53 gene is fixed at codon 249 third base and take 
the form of G to T transversion [36, 37].

In one report, using a mammalian cell line, the mutagenicity of various mycotoxins 
and the efficiency of mutagenic mycotoxins in producing DNA single strand breaks 
and chromosome aberrations were investigated. These experiments revealed that 
aflatoxin B1, mycophenolic acid, patulin, penicillic acid, and sterigmatocystin induce 
8-azaguanine-resistant mutations. At higher concentrations, aflatoxin B1, mycopheno-
lic acid, and sterigmatocystin were found to have minimal effects on single-stranded 
DNA. In contrast, treatment with patulin and penicillic acid at higher concentrations 
had resulted in severe breaks. Chaetoglobosin B, fusarenon X, luteoskyrin, and ochra-
toxin A had not induced 8-azaguanine-resistant mutations [38].

Overall, the mutagenicity of mycotoxins varies significantly and depends on 
their efficiency in causing DNA single-strand breaks, resulting in chromosomal 
aberrations. Adults are believed to have a higher tolerance to mycotoxins but 
exposure of children, while controversial and not uniformly accepted, can lead to 
delayed development and stunted growth [16, 31–33].

In addition to laboratory-based experiments, reports regarding isolation 
of mycotoxin producing strains of fungi, including that of A. flavus, from the 
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residences of leukemia patients are available [39–42]. In many reports, except for 
recent publications, fungal carcinogenesis is attributed to mycotoxins and their 
immunosuppressive effects. One report describes examination of sera from 36 
cancer patients against an aflatoxin producing A. flavus which was isolated from the 
home of a patient with leukemia. A modified microimmunodiffiusion technique 
was used for this immunological evaluation. This study had found that 30% of 
cancer patients, 15 of whom had leukemia or lymphoid malignancy, and 6% of 
controls had shown a precipitation band indicating positive results [39]. Another 
published article reports four leukemic patients, from three families, in a resi-
dence where a mycotoxin producing fungus was isolated. The leukemogenesis was 
attributed to the immune depressive effects of mycotoxins [41]. In a house where 
a husband and wife had developed acute myelomonocytic and undifferentiated 
leukemia, respectively, fungal surveyance of the residence had been performed. 
Three fungal isolates were found, an extract of which had shown a depressive effect 
on a phytohemagglutinin skin test in guinea pigs as compared to negative findings 
using extracts isolated from a control residence [40]. As described below, a signifi-
cant amount of data regarding the correlation of a mycovirus containing A. flavus, 
isolated from the home of a patient with acute lymphoblastic leukemia, has been 
recently published.

3. Viruses and human cancer

A vast amount of data on several viruses and their possible association with 
cancer development has been published [43–52]. While not the focus of this article, 
a brief review of the subject reveals the importance of the study of viral agents and 
their relation to occurrence of malignant disorders. Both DNA and RNA viruses 
are capable of causing cancer in humans. Some of the known DNA viruses that 
are capable of causing human cancers are Epstein-Barr (EB) virus, human papil-
loma virus, hepatitis B virus, and human herpes virus 8. The relationship of EB 
virus to the development of Burkitt’s lymphoma and nasopharyngeal carcinoma 
is well established [53–59]. Likewise, the relation of human papilloma virus and 
the development of cervical cancer and retention of HPV viral oncoproteins E6 
and E7 for their continued expression and proliferation has been demonstrated 
[60–63]. Human T lymphotropic virus type 1, human immunodeficiency virus 
(HIV) and hepatitis C viruse are some of the RNA viruses that contribute to 
human cancers. It appears that viruses have diverse biological pathways to malig-
nant disorders. The presence of viral gene products in cancer and precancerous 
cells are known. Despite the well-known carcinogenic role of viruses, little data 
regarding any possible health effects of mycoviruses alone, or in conjunction with 
their host, are available. This area needs to be further explored.

4. Mycoviruses

Viruses that infect fungi, also known as mycoviruses (myco = ‘fungus’ in Greek), 
are widespread geographically and are expected to infect all fungal taxa, from early 
divergent lineages to the most well-studied ascomycetes (sac fungi) and basid-
iomycetes (mushrooms). Mycovirus infection is persistent but does not result in 
disease or death of the host fungus, and often does not lead to obvious alterations 
in its phenotype under controlled laboratory conditions; therefore, mycovirology is 
an underappreciated and understudied field, similar to all non-disease associated 
virology [64].
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Mycoviruses are currently classified in 22 taxa (21 families and one genus) by 
the International Committee on Taxonomy of Viruses (ICTV; https://talk.ictvon-
line.org/) (Figure 1). Some of these taxa exclusively accommodate viruses infect-
ing fungi, such as the families Hypoviridae and Polymycoviridae. Other taxa also 
accommodate viruses infecting protozoa, plants, insects and mammals, such as the 
families Botourmiaviridae, Chrysoviridae, Partitiviridae, Reoviridae and Totiviridae. 
Members of the DNA-containing Genomoviridae family have been discovered 
in sequencing data from a variety of samples, including plant and insect tissue, 
animal blood, serum and feces, human blood, plasma, cerebrospinal fluid, cervical 
biopsies, and feces, and sewage [65]. Mycoviruses may be closely related to viruses 
pathogenic for humans. For instance, family Mymonaviridae belongs to the order 
Mononegavirales, as are viruses that cause Ebola, measles, mumps, rabies and respi-
ratory diseases. Families Metaviridae and Pseudoviridae belong to order Ortervirales, 
together with human immunodeficiency virus (HIV), cause of acquired immuno-
deficiency syndrome (AIDS), and other retroviruses.

Classification of exemplar mycoviruses known to infect Aspergillus spp is shown 
in Figure 2.

Almost all known mycoviruses have double stranded (ds) RNA genomes or 
single stranded (ss) RNA genomes, either positive sense or negative sense, with one 
family of mycoviruses having circular ssDNA genomes. Virions are often protein-
aceous in nature, composed of virus capsid proteins and their structure may range 
from spherical, to bacilliform in the case of barnaviruses, to filamentous in the case 
of flexiviruses and mymonaviruses. The absence of true virions is also common: 
narnaviruses and mitoviruses exist as naked RNA molecules respectively in the 
cytoplasm and mitochondria, hypoviruses are encapsulated in host derived lipid 
vesicles, polymycoviruses are non-conventionally encapsidated by a viral protein 
[66, 67]. Mycoviruses move intracellularly within the infected fungus and spread 
in mycelia during cell division and growth. Almost all known mycoviruses lack an 
extracellular phase in their replication cycle; they are transmitted vertically during 
asexual and/or sexual spore production and horizontally between fungal strains 
following cell fusion. The absence of an extracellular phase explains the general lack 
of lipid envelopes in virions.

Early reports focused on the mycovirus-mediated alterations on fungal pheno-
type, including morphology, pigmentation, asexual and sexual sporulation, and 
growth. Production of viral toxins conferring a competitive advantage to the fungal 
host [68], clearly illustrate that viral infection can be beneficial to the host and 
viruses are undeserving of their name, derived from the Latin word for ‘poison’ or 
‘venom’. These killer yeast systems have been primarily studied in the eukaryotic 
model organism Saccharomyces cerevisiae [69], extensively used in biotechnological 
applications such as baking, brewing and winemaking. However, interest in myco-
viruses stems mainly from their effects on the interaction between their host fungus 
and the plant, insect or mammalian/human host of the fungus.

An increasing number of studies clearly illustrate the importance of mycoviruses 
in host-microbe interactions. The discovery of ‘transmissible hypovirulence’, i.e., 
mycovirus-mediated decrease in fungal pathogenicity represents a major advance 
in the field and the first mycovirus-based biological control application to combat 
chestnut blight caused by the plant pathogen Cryphonectria parasitica [70, 71]. The 
opposite phenomenon called hypervirulence, i.e., mycovirus-mediated increase in 
fungal pathogenicity, has also been noted. For instance, two variants of Aspergillus 
fumigatus polymycovirus 1 (AfuPmV-1), the first virus demonstrated to be infec-
tious as dsRNA [66], respectively cause hypovirulence in an immunosuppressed 
mouse infection model [72] and hypervirulence in the greater wax moth G. mel-
lonella infection model [73]. Additionally, AfuPmV-1 renders its fungal host more 
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sensitive to the bacterium Pseudomonas aeruginosa [74]. Furthermore, partitivirus 
infection of Talaromyces marneffei leads to hypervirulence in a BALB/c mouse model 
[75]. Mycoviruses dsRNA genomes or replication intermediates are recognized by 
Toll-like receptor 3 (TLR-3) [76] and may induce an interferon immune response 

Figure 1. 
Current classification of mycoviruses according to the International Committee on Taxonomy of Viruses. 
The realms Riboviria and Monodnaviria accommodate viruses with respectively RNA and DNA genomes. 
Underlying family names accommodate mycoviruses known to infect Aspergillus spp. Next to family/genus 
names, (+)SS, (−)SS and DS indicate respectively, positive-sense single-stranded, negative-sense single-
stranded and double-stranded genomes; hexagons indicate the presence of true virions, either isometric, 
bacilliform of filamentous.
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in a TLR-3 dependent or independent manner, as illustrated with totivirus infected 
Malassezia [77, 78]. A link between azole resistance and mycovirus infection has 
been noted in Penicillium digitatum [79]. Finally, mycovirus infection is known to be 
responsible for modulation of fungal toxins and this phenomenon has been studied 
mainly in Aspergillus spp [80]. Carcinogenic aflatoxin production may be repressed 
by the presence of a mycovirus in A. flavus [81–84], while ochratoxin A is enhanced 
by the presence of a partitivirus in A. ochraceus [85].

Currently most mycovirus studies are focused on economically important phy-
topathogenic fungi, while scant data regarding fungi containing mycoviruses and 
human disorders are available. Since mycoviruses do exist in fungi, and humans are 
exposed to them, further research on these organisms may expand our knowledge 
of their possible role and effects of their interaction with humans.

5. Studies of mycovirus containing Aspergillus flavus

A report describing plasma of patients with acute lymphoblastic leukemia 
(ALL) having a positive reaction to an A. flavus isolate containing an unknown 
mycovirus is available [86]. Exposure of the peripheral blood mononuclear cells 

Figure 2. 
Classification of exemplar mycoviruses known to infect Aspergillus spp. Not all known mycoviruses found in 
Aspergillus spp. are officially assigned to recognized taxa. The phenotypes and effects of the majority of these 
mycoviruses on their Aspergillus host is unknown.
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(PBMCs) obtained from a group of ALL patients who were in a complete remission 
to the culture of this organism was reported to reproduce genetic and cell surface 
phenotypes, characteristic of active ALL [87]. Conversely, this was not observed in 
the control group of patients [87]. To describe these findings (which are patented) 
in more detail, in a series of experiments, a mycovirus infected A. flavus separated 
from the home of a patient with B-cell ALL was found to contain unknown mycovi-
rus particles. These mycovirus particles were found within the body of the organism 
and culture supernatant. Chemical analysis of the isolated mycovirus containing 
A. flavus had revealed a lack of aflatoxin production [86]. The latter may be due to 
the influence of the unknown mycovirus which may have caused suppression of 
the production of aflatoxin as described previously [80–84]. Utilizing fast protein 
liquid chromatography (FPLC) for the analysis of the supernatant of the culture 
of this isolate, three separate peaks were identified. As noted above, in controlled 
experiments using plasma of patients with ALL in complete remission, with no 
evidence of the disease, using crude supernatant of the culture of the mycovirus 
containing A. flavus and enzyme-linked immunosorbent assay (ELISA) for the 
detection of antibodies, plasma of patients with ALL had reacted positively. The 
plasma obtained from three separate groups of controls, including normal individu-
als, patients with sickle cell disease and individuals with various solid tumors, had 
been negative. In a separate study evaluating peaks obtained by fractionation using 
FPLC, of the three peaks which were found, peak 1 had the strongest positive effect 
[86]. The authors suggest that this technique can be used for screening for ALL or a 
test to identify patients who have had this disease [86].

As noted before, in a related publication, exposure of PBMCs obtained from 
ALL patients in complete remission, and long-term survivors of this disease, to the 
supernatant of the culture of the mycovirus containing A. flavus resulted in the 
re-development of the genetic and cell surface phenotypes, characteristic of ALL. 
The cell surface phenotypes examined were CD10/CD19, CD19/CD34 and CD34/
CD117. The redevelopment of the ALL cell surface phenotypes was reported to be 
gradual, completed in 24 hours, and remained stable thereafter. Following exposure 
to the supernatant of the mycovirus containing A. flavus, alterations in gene expres-
sion were evaluated using microarray technique. Some of these alterations were 
reported to be upregulation of JAK1 (12.87-fold), JAK2 (1.5-fold), JAK3 (2.73-fold), 
IKZF1 (10.12-fold), MCL1 (59.37-fold), MYC (14.19-fold), HDAC1 (26.39-fold) and 
downregulation of PAX5 (3.05-fold). Following incubation, a significant and robust 
activation of transcription factor NF-ϰB p65 was reported by immunoblotting in 
ALL patients without any changes in the controls. The supernatant of the culture of 
Mycocladus corymbifer, which was used as a negative control, was reported to have 
no effects on PBMCs either from the ALL or control patients [87]. The above studies 
suggest a possible role for the mycovirus containing A. flavus in the process of 
leukemogenesis and opens a venue for vaccination and prevention of this disease.

6. Conclusion

It is apparent that fungal spp. are important in human and animal health. The 
mechanism of the effects of fungal agents in the development of human diseases 
appears to be multifaceted. Fungi are widespread in nature and inevitably, humans 
encounter these organisms. Many fungi contain mycoviruses. Although a signifi-
cant amount of data regarding the carcinogenic effects of mycotoxins in the devel-
opment of malignant disorders are available, possible pathogenicity and role of 
the mycoviruses in fungi, if any, in human and animal health, including malignant 
disorders, are not known. Recent reports describing in vitro effects of a mycovirus 
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containing A. flavus isolate in redeveloping characteristic ALL cell surface and 
genetic phenotypes in the PMBCs of acute lymphoblastic leukemia patients in com-
plete remission is of interest. The existence of antibody to this organism in plasma 
of these patients is intriguing and further indicates its possible role in leukemogen-
esis. This area needs to be further investigated.
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of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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