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Chapter

Machine Learning, Compositional
and Fractal Models to Diagnose
Soil Quality and Plant Nutrition
Léon Etienne Parent, William Natale and Gustavo Brunetto

Abstract

Soils, nutrients and other factors support human food production. The loss of
high-quality soils and readily minable nutrient sources pose a great challenge to
present-day agriculture. A comprehensive scheme is required to make wise deci-
sions on system’s sustainability and minimize the risk of crop failure. Soil quality
provides useful indicators of its chemical, physical and biological status. Tools of
precision agriculture and high-throughput technologies allow acquiring numerous
soil and plant data at affordable costs in the perspective of customizing recommen-
dations. Large and diversified datasets must be acquired uniformly among stake-
holders to diagnose soil quality and plant nutrition at local scale, compare side-by-
side defective and successful cases, implement trustful practices and reach high
resource-use efficiency. Machine learning methods can combine numerous edaphic,
managerial and climatic yield-impacting factors to conduct nutrient diagnosis and
manage nutrients at local scale where factors interact. Compositional data analysis
are tools to run numerical analyses on interacting components. Fractal models can
describe aggregate stability tied to soil conservation practices and return site-
specific indicators for decomposition rates of organic matter in relation to soil
tillage and management. This chapter reports on machine learning, compositional
and fractal models to support wise decisions on crop fertilization and soil conserva-
tion practices.

Keywords: Datasets, factor-specific management, fractal analysis, machine
learning, nutrient balance, soil quality

1. Introduction

With the world population expected to reach more than 9� 109 people by 2050,
the food demand must increase by 70% in a situation where yield average of several
staple crops is expected to decline [1]. More than 95% of our food is produced on soil
[2]. Despite the general perception that soil is an abundant resource, the reality is that
the soil resource is degrading at fast rate as a result of salinization, erosion, compac-
tion, contamination, structure collapse, acidification, loss of organic matter and bio-
logical activities, as well as land allocation to urban and industrial development. Gains
in technology alone will not suffice to compensate the harmful agricultural practices
thought heroically to maintain soil productivity and farm viability on the long run.
Understanding comprehensively how agroecosystems build and function worries
more. Two centuries ago, German scientist Alexander von Humboldt warned that
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management of living systems must be based on the rigorous collection of contextual
facts and local knowledge [3]. His thoughts translate today into data acquisition from
diverse sources, data mining and data processing methods to assist making wise
decisions on how to manage soils properly at local scale.

The land is the basic resource for food production. There is a need to develop soil
quality criteria and implement them where it matters most. [4] attributed large
disparities in decision-making thought naively to manage soils properly to unequal,
insufficient or inadequate collection of information, widespread ignorance on how
agroecosystems function, lack of understanding on how factors interact, and the
wrong perception that buisiness-oriented economic and social values outweigh
environmental damages or beneficial ecosystem services. Indeed, high crop pro-
ductivity relies on positive interactions between climatic, managerial and edaphic
factors [5]. Data must be integrated into comprehensive decision-making models to
manage complex systems sustainably. High-quality and diversified information
reduces the risk of making wrong decisions based on regional averages rather than
at the right interaction level at field scale [6, 7]. Judicious decisions on locally
acceptable actions should rely on well-documented facts and sound knowledge of
environmental conditions. Besides traditional means to diagnose soil–plant systems,
progress on data acquisition tools includes proximate and remote sensing, high-
throughput laboratory technologies or on-the-go data acquisition kits of precision
agriculture.

Several diagnostic models support decisions on soil and nutrient management.
While soil properties and plant compositions have been addressed as separate vari-
ables in reductionist models [8], empirical-mechanistic models were developed to
synthesize more data, balancing untestable and testable concepts [9–11]. This
required not only sufficient data input, but also calibrating empirical coefficients
and validating the results in a wide variety of environments. More recently, modern
tools of artificial intelligence allowed to process large and diversified datasets in
relation with ecosystem performance based on Alexander von Humboldt’s princi-
ples of biogeography [3].

On the other hand, soil and plant analytical data are inherently multivariate
compositional data constrained to the measurement unit, posing a serious numerical
problem of “resonance” within the constrained space of compositions, such as
100% or the unit of measurement [12]. Ternary diagrams were the first representa-
tions of the closed space of three interrelated variables [13]. [14] related tissue N, P
and K concentrations in a ternary NPK diagram to delineate the space of successful
tissue compositions. It was not until [12] that ternary diagrams formed the basis of
an emerging and appealing field of mathematics called “Compositional Data Anal-
ysis” (CoDa). CoDa rely on log ratio transformations. [15] developed means to
project compositions as coordinates in the Euclidean space. The CoDa concepts
corrected computational errors and fallacies in earlier plant and soil diagnostic
models [16, 17].

On the other hand, the fractal theory has been useful to address the geometry of
soil aggregation [18] and the kinetics of carbon decomposition in soils [19]. Fractal
kinetics assigned to time a coefficient between 0 and 1 to explain the reduction in
decomposition rate due to reduced contact between organic matter particles and
their immediate environment resulting from aggregate buildup with time [19].
Fractal coefficients also provided a description of aggregate fragmentation patterns
upon mechanical stress and avoided computational errors reported in classical
synthetic measures of aggretation [20].

Machine learning, compositional and fractal modeling tools can process large
and diversified soil–plant datasets that allow conducting side-by-side comparisons
between failure and success. We hypothesized that well-informed models can assist
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making wise decisions on soil and nutrient management at local scale. In this
chapter, we address carbon sequestration and factor-specific fertilization to sustain
soil productivity and support resource conservation actions.

2. Datasets

2.1 Growth-limiting factors

Field trials to document practices are conducted under the assumption that all
factors but the ones being varied are equal or at optimum levels. Liebscher’s law of
the optimum stated that “a production factor which is in minimum supply contrib-
utes more to production, the closer other production factors are to their optimum”

[8]. The law of the maximum aimed to optimize controllable factors given the
impossibility to modify factors that are not controllable in the present state of
knowledge and technology [21]. A provisionary list of growth-impacting factors is
provided in Table 1.

Noncontrollable factors under field

conditions (more than 20)

Partially controllable factors under field conditions (more

than 40)

1.Day-night temperatures
2.Precipitations
3.Radiation
4.Wind
5. Slope of the land
6.Altitude and latitude
7.Number of frost-free days
8.Number of chilling hours
9.Photoperiod

10.Light intensity
11.Percent sunshine
12.Radiation
13.Relative humidity
14.Precipitations
15.Air contamination
16. Soil texture
17.Cation exchange capacity
18.Phosphorus sorption capacity
19.Micronutrient sorption capacity
20.Carbon dioxide level
21. Soil genesis and stratification
22. Soil profile thickness
23. Soil rockiness and stoniness
24.Etc.

1. Soil available essential and beneficial nutrients: N, P, K, Ca,
Mg, S, Fe, Zn, Mn, Cu, Mo, B, Na, Ni, Se, Si…

2. Soil salinity and sodicity (Na leaching)
3.Soil pH
4.Soil organic matter and carbon sequestration
5.Soil texture
6. Surface crusting potential
7. Soil tillage
8.Plowing depth
9. Soil aggregation

10.Fertilization
11.Liming
12. Irrigation
13.Gypsum amendment
14.Water table level
15. Soil moisture
16.Serpentine characteristics
17.Pest management (insects, rodents, birds, other wild

animals, plant diseases, soil-borne diseases, weeds, … )
18.NH4:NO3 ratio
19.Water and wind erosion
20.Plant population
21.Planting date
22. Soil aeration
23. Soil water permeability
24.Cultivar
25.Crop rotation
26.Toxicity from trace elements
27.Evapotranspiration
28. Seed bed preparation
29.Crop residues
30.Pesticide residues
31.Growth regulators
32.Date of harvest
33.Quality of irrigation water
34.Fertilizer placement, source, rate, timing

Table 1.
Partial list of noncontrollable and partially controllable growth-limiting factors [21, 22].
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Nutrient interactions impact crop yield through synergism, antagonism, dilu-
tion, excess, toxicity or crosstalks. Nutrient interactions are addressed as pairwise
ratios [23]. Nutrient crosstalks occur where change in sulfur availability alter tissue
compositions of micronutrients [24]. An extreme case of nutrient excess is toxicity
where vital processes are affected. In field experiments, synergism is also viewed as
positive interaction occurring where plant response is greater by combining two
nutrients than from individual effects [25]. A list of nutrient interactions is
presented in Table 2.

Face to the formidable task to optimize tens of growth-limiting factors and
myriads of factor interactions, most of them being unknown, each case under study
could rather be viewed as unique combinations of factors. For successful cases in
the neighborhood, most factors are equal except those impacting the performance
of defective specimens, facilitating side-by-side comparisons.

Nutrient Interaction

N Positive: NH4 with NO3, P, Fe, Mn, Zn; NO3 with Ca, Mg, K; P, K ↑ if (NH4)2SO4

Negative: NH4 with Ca, Mg, K; NO3 with Fe, Mn, Zn; Ca, Mg, Cu, Mn, Zn↓ if
(NH4)2HPO4

Concentration ↑ if N deficient: P, K, Ca, Mg, S, B, Fe, Mn

P Concentration ↓ if P deficient: N, P, K, Ca, Mg
Concentration ↑ if P in excess: N, P, Ca, Mg, B, Mo
Concentration ↓ if P in excess: K, Cu, Fe, Mn, Zn, Se

K, Ca,
Mg

•
P

K þ CaþMg≈ constant, hence competition at absorption sites
• Antagonisms: K ↑, Ca and Mg ↓; Mg ↑, K ↓ more than Ca ↑, K ↓

• Effect on soil aggregation: Ca >Mg where [Mg] is low
• Effect on soil degradation: Na> > K >Mg

K • Synergism: K-NO3

• Competition for plant absorption and in clay minerals: K-NH4

• Antagonism: P reduces negative K effect on Mg; if K ↑, Na, B, Mn, Mo,Zn ↓

Ca • Synergism: N ↑, Ca ↑, especially if NO3-N
• Antagonism: NH4, K, Na, Mg ↑ if Ca ↓;
• Ca demand ↓ if Cd, Al, Cu, Fe, Mn, Zn ↓

• Ca(CO3)2 ↑ pH, CaSO4 pH !; CaSO4 could neutralize Al3+ in the subsoil
• Ca(OH)2: formation of “pouzzolane” cementing clayey soils

Mg • Synergism: if Mg ↑, P, B, Fe, Mn, Mo, Na, Si ↑
• Antagonism: NH4 ↑, Mg ↓

S • Crosstalks with Mo, Cu, Fe, Zn, B
• N:S, P:S ratios for protein synthesis

B • Dilution: if N, K ↑, B ↓

• If P deficiency, B ↑; if Ca deficiency, B↑; if B toxicity, Ca ↑

Cu • Organic matter increases Cu fixation
• If N, P, K ↑, Cu ↓; if Cu ↑, Fe, Mn, Zn ↓

Fe • High pH, P, Ca, Cu, Zn, Mn ↑, Fe ↓
• If NH4 ↑, Fe ↑

Mo • Mo-N: reduction of NO3

• If Mo ↑, P, Mn ↑, K, S ↓; if Mo ↓, Fe ↓

Zn • If NH4 ↑, Zn ↑; if P ↑, Zn ↓; if Zn ↑, K, Ca, Mg, S ↓

Mn • If NH4 ↑, Mn ↑; if Mn ↑, B, Mo ↑; if Mn ↑, Ni ↓

Table 2.
Nutrient interactions in soils and plant tissues [23–29].
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2.2 Soil quality indicators

In Canada and Brazil as well as in other countries, soil mismanagement led to soil
degradation [30, 31]. There is a great challenge to address soil problems and opti-
mize resource-use efficiency to sustain soil productivity [32]. Soil quality impacts
nutrient supply and resistance to erosion [33, 34]. [4] provided a list of biological,
chemical and physical indicators of soil quality measurable at various scales of
agroecosystems (Table 3). Biological indicators are presently the least documented
but technologies of metagenomics will fill this gap in years to come [35]. Point-scale
indicators can be integrated into maps to guide precision agriculture at field or
subfield level. It is still difficult to evaluate soil quality uniformly among
stakeholders with respect to soil threats, soil multifunctionality and ecosystem
services [36].

Biological Chemical Physical

Point-scale indicators

• Microbial biomass
• Potential N

mineralization
• Particulate organic

matter
• Respiration
• Earthworm counting
• Microbial communities
• Biological diversity
• Fatty acid profiles
• Mycorrhiza

populations
• Potential rooting depth
• Root development

• pH
• Organic C and N
• Labile organic magttger
• Soil test nutrients
• Electrical conductivity
• Heavy metals
• CEC and base saturation
• Cesium-137 distribution
• Xenobiotic loadings
• Soil tests
• Tissue tests

• Aggregate stability
• Aggregate-size

distribution
• Soil porosity and

compaction
• Bulk density and porosity
• Penetration resistance
• Shear strength
• Slaking/dispersion
• Water-filled pore space
• Available water
• Crust formation/strength
• Infiltration, surface

ponding
• Soil structure,

consistency
• Profile depth
• Soil stratification
• Soil color, mottles

Field-, farm-, watershed-scale indicators

• Crop yield
• Weed infestation
• Disease and insect

pressure
• Wild animal pressure
• Nutrient deficiencies
• Growth characteristics

• Soil organic matter change
• Nutrient loading or mining
• Heavy metal accumulation
• Changes in salinity
• Leaching or runoff losses
• Drainage, irrigation water

• Topsoil thickness and
color

• Compaction/ease of
tillage

• Ponding (infiltration)
• Rill and gully erosion
• Surface residue cover

Regional-, national-, international-scale indicators

• Productivity, yield
stability

• Species richness,
diversity

• Keystone species
• Ecosystem engineering
• Biomass density,

abundance

• Acidification
• Salinization
• Water quality changes
• Air quality changes (dust and chemical

transport)

• Desertification
• Loss of vegetative cover
• Wind and water erosion
• Siltation of rivers and

lakes

Table 3.
Indicators of soil quality [4, 35].
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3. Diagnostic methods

3.1 Soil test diagnosis

The sufficiency level of available nutrients (SLAN), the basic cation saturation
ratio (BCSR), and soil test buildup and maintenance (STBM) are the main soil test
interpretation philosophies [34]. The SLAN and BCSR addressed the relatively
immobile nutrients (P, K). The STBM was used to manage N, P, and K. Critical and
maintenance soil test levels were delineated from field trials.

Bray (1963) [22] assumed that (1) for nutrients relatively immobile in soils such
as P and K, soils and fertilizers have nutrient-supply coefficients specific to plant
species, planting patterns and rates, provided that soil and climatic conditons are
similar and (2) response patterns can be described by the Mitscherlich equation.
The SLAN related soil test P and K to percentage yield using the Mitscherlich-Bray
equation. Alternatively, the relationship was partitioned into soil fertility classes
each given a probability of response to fertilization [34, 37]. Compared to actual
yield, percentage yield showed higher correlation with soil test level. Percentage
yields have been first expressed as yield at 0-level of nutrient, other factors assumed
to be at adequate levels, divided by yield where all factors were assumed to be at
adequate levels. Percentage yields were also expressed as response ratios, i.e.,
ln Y treatment=Ycontrolð Þ, i.e. yield gain of treatment over that of control, to run
metaanalysis at regional scale [38]. Using yield percentage and probability of
response, the SLAN concept assumed random effects across factors not being varied
and thus hid the effects of local factors that impact crop yield.

The BCSR postulated, without proper calibration, that “ideal” cationic ratios and
saturation levels should be maintained on soil cation exchange capacity to maximize
yield [28]. The application of such concept to fertilization decisions failed under
field conditions, most often leading to overfertilization [39]. Nevertheless, BCSR
may assist making decisions on liming and lime sources to neutralize soil acidity,
provide proper cementing agents bridging soil particles and improve soil aggrega-
tion [24]. In comparison, compositional data analysis methods proved to be a more
appropriate approach to run statistical analysis on results of soil tests for cations and
other cementing agents [29, 40].

The STBM concept has been elaborated from nutrient budgets, nutrient-use
efficiency and soil P-fixing capacity as an attempt to adjust fertilization to local
conditions. Expected yield and plant- and soil-specific coefficients were assessed
from field observations and pot trials [41]. Soil P fixing capacity has been assessed
in priority in Brazil, but coefficients estimated from literature often proved to be
unrealistic, leading to overfertilization at local scale, especially for P [42].

Transferring SLAN, BCSR and STBM regional models to the local scale cannot be
a straightforward operation. Growers’ heuristics is traditionally to look for success-
ful practices developed under comparable environmental and managerial condi-
tions as reported in their neighborhood. Alternatively, large and diversified datasets
can be documented and synthesized into a diagnostic kit of features easy-to-acquire
by stakeholders at reasonable cost and effort among those presented in Tables 1 and
3. The minimum package of facts, factors and local knowledge supporting fertiliza-
tion decisions can be handled by machine learning models to diagnose growth-
limiting factors and predict crop yields after correction. Thereafter, compositional
data analysis can rank dianosed components in the order of their limitations to yield
to support nutrient management [43–46]. Yield can be predicted in regression
mode. Besides, the classification mode can provide a list of high-yielding and bal-
anced specimens as benchmarks for use at local scale, as well as the probability to
yield more than some yield target.
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3.2 Soil quality diagnosis

The interpretation of soil quality indicators requires well defined values, other-
wise, the indicators cannot be used in practice to support management decisions
[35]. Benchmarks could be native soil, reference sites, or successful combinations of
comparable factors for agronomically or environmentally performing soils. Scores
could have thresholds for (1) more than is better, (2) optimum range, (3) less than
is better, or (4) undesirable range [47]. Principal component analysis (PCA),
redundancy analysis (RDA), discriminant analysis and multiple regression have
been used to process data.

Soil aggregation is a key indicator of soil quality. Mean weight diameter (MWD)
is a common indicator of soil aggregation computed as follows:

MWD ¼
X

D

i¼1

xiwi (1)

Where x is aggregate diameter and wi is the mass of the ith aggregate fraction.
Mean particle diameter is assessed as average sieve size between successive sieves
rather measured as average particle size. The contribution of the largest fractions is
inflated artificially by multiplying the fraction by its diameter.

The MWD is numerically biased, unevenly weighted, and computed from
aggregate-size fractions that vary widely among studies [40]. Alternatively, pat-
terns of aggregate fragmentation can be synthesized into fractal dimensions. It is
assumed that aggregates collapse following mechanical stress into smaller fragments
of similar shape. Aggregates left on each sieve are counted after subtracting the sand
fraction (> 53 μm) on each sieve [40] as follows:

N dið Þ ¼ M dið Þ= d3
i ρici

� �

(2)

Where N dið Þ is the number of particles, M dið Þ is the mass of aggregates of the ith

aggregate-size fraction, di is mean diameter and ρi is bulk density. Note that ρi must
differ between the stronger and denser micro- and the more friable macro-
aggregates. The shape coefficient ci refers to a cube. Particle volume can be com-
puted as x3, x being the average opening between two successive sieves.

The fractal dimension D f is estimated as follows:

S dkð Þ ¼
X

k

i

N dið Þ ¼ αd�Df
k (3)

Where S dkð Þ is the cumulated number of particles with diameter ≤ dk, N dið Þ is
the number of particles in the ith size fraction, α is a proportionality parameter, and
D f , the fragmentation fractal dimension, is a scaling factor derived from the log–log
relationship between S dkð Þ and dk.

The fractal model for soil aggregation is presented in Table 4 and Figure 1. The
fractal was found to be 2.51 (slope), indicating well aggregated soil. Fractal dimen-
sionality is generally between 2 and 3 for the 3-D soil aggregates, but may exceed
even 3, a result difficult to interpret physically. Aggregate-size fragments have
contrasting friability, often showing several fractal patterns. However, the fractal
dimensions have the disadvantage of being assessed from a limited number of
sieves.

Carbon sequestration plays a key role to enhance soil quality and abate green-
house gases. Because aggregates reduce the contact between the organic substrate
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and its immediate environment as they build up in soils, the decomposition rates of
organic particles decrease with time, allowing organic matter to accumulate [19].
First-order kinetics of organic matter decomposition in soils k tð Þ is controlled by
fractal coefficient h as follows:

k tð Þ ¼ k1t�h (4)

Where k1 is decomposition rate at time t = 1 and h is fractal coefficient. If h! 0,
k is non-fractal and the reaction proceeds at maximum rate; if h! 1, decomposition
rate is fractal, indicating that protection mechanisms control reaction rate during
soil agradation or degradation. [19] found fractal coefficient of 0.71 for well-
aggregated soils under pasture compared to 0.45 for annual cropping and 0.25 for a
degraded soil under fallow. Hence, the fractal coefficient is a measure of carbon
protection mechanisms developing as soil quality increases or of loss in protection
mechanisms leading to soil degradation.

The soil aggregation has also been expressed in terms of isometric log ratios (ilr)
or coordinates [40]. The ilr is computed as a balance between two groups of
aggregate fractions, as follows:

Sieve Class Diameter (x) Mass Bulk density N(di) N(dk) log(x) log N(dk)

mm kg g cm�3

2.00–1.40 1.70 0.0813 1.287 0.013 0.013 0.230 �1.891

1.40–1.00 1.20 0.0659 1.326 0.029 0.042 0.079 �1.380

1.00–0.50 0.75 0.0787 1.398 0.133 0.175 �0.125 �0.757

0.50–0.425 0.4625 0.0242 1.397 0.175 0.350 �0.335 �0.456

0.425–0.25 0.3375 0.0171 1.416 0.313 0.663 �0.472 �0.178

< 0.25–0 0.125 0.0332 1.477 11.498 12.161 �0.903 1.085

Table 4.
Computation of variables log(x) and log N(dk) to derive the fractal dimension of soil aggregates.

Figure 1.
Fractal dimension of that soil aggregation pattern is 2.51.
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ilr ¼
ffiffiffiffiffiffiffiffiffiffi

rs
rþ s

r

ln
G1

G2

� �

(5)

Where r and s are numbers of aggregate-size fractions at numerator and
denominator, respectively, and G1 and G2 are geometric means of aggregate-size
fractions at numerator and denominator, respectively. The balance dendrogram in
Figure 2 is a system of balances among five aggregate-size fractions starting with a
general balance between micro- (< 0.25 mm) and macro- (> 0.25 mm) aggregates
where r = 4 (the number of macro-aggregate fractions) and s = 1 (the micro-
aggregate fraction). The balance between micro- and macro-agregates in Table 4 is
computed as follows:

ilr microaggregatesnmacroaggregates½ � ¼

ffiffiffiffiffiffiffiffiffiffiffi

5� 1
5þ 1

r

ln
0:0813� 0:0659� 0:787 � 0:0242� 0:0171ð Þ1=5

0:0332ð Þ1

 !

¼ 0:268

(6)

Because ilr transformation allows projecting compositions into the Euclidean
space, Euclidean distance ε can be computed between two soil aggregation states
across ilr dimensions to indicate whether the soil is degrading or agrading, as
follows [40]:

ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD�1

j¼1
ilrj � ilr ∗j
� �2

r

(7)

Where j is a compositional dimension. Because computations are made on a
mass basis rather than particle counts as for fractal dimensions, there is no need to
make assumptions about ρi and ci. The benchmark aggregation state could be
defined as ultimate aggregation state where all aggregates pass through the smallest
sieve size.

Figure 2.
Balance dendogram contrasting micro- and macro-aggregates and macro-aggregates.
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3.3 Tissue nutrient diagnosis

Early workers proposed to classify the results of tissue tests, that are continuous
variables, using concentration ranges and critical values such as poverty adjustment
(deficiency), critical percentage, and nutrient sufficiency, luxury consumption or
excess (including antagonism and toxicity) [48–50]. The critical percentage was the
tipping point on the response curve, located at 90–95% maximum yield. Nutrients
were diagnosed separately rather than as unique combinations of interactive nutri-
ents. Although the reject/accept dichotomania led to considerable interpretation
uncertainties [17], the one-nutrient-at-the-time approach is still commonly used
today. [51] suggested using methods of multivariate analysis to handle tissue com-
positions as a whole rather than as separate components, ignoring the numerical
pathologies of using inherently interrelated raw concentration values.

Dual ratios were thought to account for nutrient interactions [52]. The Diagnosis
and Recommendation Integrated System (DRIS) has been elaborated to handle nutri-
ent ratios [53, 54]. The DRIS required computing the mean and variance of dual ratios
but did not fit into any method of multivariate analysis. Much earlier, [14] already
developed a concept of optimum combinations of interactive nutrients within a
ternary diagram (Figure 3). Because plants show various degrees of plasticity in
response to growing conditions [55–57], they can adjust nutrient acquisition to nutri-
ent stress [58–61]. This fits perfectly into the realm of Composition Data Analysis.

Because compositional vectors convey relative information, one should first ‘think
ratios’ but, realizing that quotients are more difficult to handle than sums or differ-
ences, ‘think logratios’ [62]. Log ratios are log contrasts between components at
numerator and denominator, respectively. While compositional data are constrained
to the compositional space (e.g., 100%), log ratios can scan the real space, allowing to
conduct statistical analyses and return confidence intervals without constraints. It was
not until [12] developed the theory of Compositional data Analysis (CoDa) that
ternary diagram could be expanded to more than three nutrients.

The Compositional Nutrient Diagnosis (CND) avoided several computational
pathologies in DRIS such using different measurement units for macro- and micro-
nutrients, pairwise rather than multivariate ratios, non-normal distribution, use of a
dry matter basis as a separating component, assumed additivity of nutrient
functions, non-symmetrical functions between dual ratios and their inverse, and
non-symmetrical nutrient ratio and product functions. The CoDa also allowed

Figure 3.
Area of optimum balances between N, P and K is plant tissues uncentered (left) or centered (right) within a
ternary diagram using the Codapack 2.01 freeware (ellipses with p = 0.10, 0.05, and 0.01, respecrtively).
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diagnosing multinutrient ratios in the Euclidean space [16] and conducting
multivariate analyses in plant ionomics [58].

In CoDa, the simplex is closed to measurement unit using a filling value
computed as follows:

Fv ¼ 1000�
X

D

i¼1

ci (8)

Where Fv is the filling value for unit g kg�1, D is the number of quantified
components in the D-part composition, and ci is concentration of each quantified
part. The filling value is required to back-transform log ratio means into original
concentration values. The centered log ratio [clr ¼ ln xi=Gð Þ] integrates all pairwise
ratios into a single multinutrient expression, as follows for N:

clrN ¼ ln
N
G

� �

¼ ln
N
N
,
N
P
, … ,

N
Fv

� �1=D

(9)

Where clr is centered log ratio, xi is a component of the compositional simplex,
and G is geometric mean across components including the filling value, expressed in
exactly the same measurement unit. For plant tissue analysis showing 4% N, 0.325%
P and 5% K, the filling value is 100% - (4% + 0.25% + 5%) = 90.75%. The clr value
for N in that 4-part composition is computed as follows:

clrN ¼ ln
4

4� 0:25� 5� 90:75ð Þ0:25

 !

¼ �0:143 (10)

Euclidean distance ε can be computed between two tissue states, one being diag-
nosed and another being used as benchmark composition, using clr or ilr as follows:

ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD

k¼1
clrk � clr ∗k
� �2

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD�1

k¼1
ilrk � ilr ∗k
� �2

r

(11)

The ilr has the advantage over clr that Euclidean distances can be computed
across the selected Euclidean dimensions (Figure 4). Micronutrients can be bal-
anced separately to avoid large variations due to tissue contamination. Moreover,
macronutrients with concentrations moving in the same direction with time (N, P,
K vs. Ca, Mg) [63, 64] can be set apart to address timlessness (Figure 5).

The CND based on clr aimed initially to replace DRIS for regional diagnosis
[16, 42, 65–80]. Thereafter, a website service was made available to Brazilian
growers (https://www.registro.unesp.br/#!/sites/cnd/). The standardized clr differ-
ences between clr values of the diagnosed (clr j) and that of the reference subpopu-
lation (clr ∗j ) of true negative (high-yielding and nutritionally balanced) specimens
weighted by the standard deviation (SD ∗

j ) ranked nutrients in the order of their
limitation to yield, as follows [80]:

Index_clrj ¼
clrj � clr ∗j
� �

SD ∗

j
(12)

At that time, the reference subpopulation was selected at regional scale using the
Cate-Nelson partitioning procedure by iterating the Mahalanobis distance M to
maximize classification accuracy. The M was computed as follows:
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Milr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD�1

j¼1
ilr j � ilr ∗j

� �

COV�1 ilr j � ilr ∗j

� �

r

or (13)

Mclr ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD�1

j¼1
clrj � clr ∗j
� �

VAR�1 clrj � clr ∗j
� �

r

(14)

TheM2 is distributed like a χ
2 variable. The variance matrix is used where clr

values are relatively independent from each other [80]. The use of D clr variables
leads to singularity of the covariance matrix. This required removing one clr value,
generally that of the filling value. [81] recommended using the ilr transformation
rather than clr or the ordinary log transformation to conduct multivariate analysis
due to the advantageous orthonormal basis of ilr variables.

The Cate-Nelson procedure returned four quadrants by point counting and thus
allowed setting apart the subpopulation of true negative specimens, avoiding to
include false positive specimens (high-yielding but nutritionally imbalanced) in the
reference subpopulation, as was the case for DRIS and other nutrient diagnostic
approaches. Quadrants are interpreted as follows:

1.True negative (TN) specimens showing high yield and nutrient balance

2.False negative (FN) specimens showing low yield despite nutrient balance
(Type II error)

Figure 4.
Balance dendrogram of tissue nutrient compositions of peach trees in southern Brazil, addressing micro- and
macronutrients, then macronutrients moving in different directions with time.
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3.True positive (TP) specimens showing low yield and nutrient imbalance

4.False positive (FP) specimens showing high yield despite nutrient imbalance
(Type I error)

Model accuracy is determined as follows:

Accuracy %ð Þ ¼ 100�
VNþ TP

TNþ TPþ FNþ FP
(15)

Figure 5.
Time change in N, P, and K concentrations the leaf tissues of peach trees (data [64]). Balances between nutrient
concentrations moving in the same direction with time are stationary (upper figure). As expected, the balance
between [N, P, K] and [Ca, Mg] changes with time (lower figure).
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4. Machine learning methods to process large datasets

An introduction to machine learning methods is provided in [82]. “When deal-
ing with complexity, mechanistic models become less obvious. System thinking,
implying stocks and flows, becomes difficult to tune where species interact through
varying functions over space and time… most ecological patterns are nonlinear…
Another approach could rely purely on phenomenology with machine learning.
Using this approach, we identify key features to predict outcomes using pattern
detection”.

Machine learning is a family of methods of artificial intelligence that includes
object similarity algorithms (k-nearest neighbors), decision trees (e.g., Random
Forest), boosted decision trees (e.g., Gradient Boosting), multiple regression,
gaussian methods, neural networks and several others, often tunable with
hyperparameters. Machine learning methods can integrate numerous growth-
impacting factors including soil quality indicators such as those documented by
technologies of precision agriculture or supported by classical state- or industry-
based agronomic models. Documenting as many growth-limiting factors as possible
can decrease the number of assumptions required to diagnose nutrient problems at
local scale, facilitating side-by-side comparisons. The confusion matrix generated
by machine learning (ML) model in classification mode classified specimens into
four quadrants by point counting, and thus allowed setting apart true negative
specimens.

Compositional Data Analysis can be combined with machine learning methods
to customize plant nutrient requirements for application at local scale where factor
interactions shape fertilization decisions [17, 46, 83–86]. After running ML
methods, it was suggested to use the ilr transformation to compute the Euclidean
distance between the diagnosed (X) and successful (x) compositions, then compute
the corresponding perturbation vector to rank nutrients in the order of their
limitations to yield [44]. The perturbation vector is computed as follows [87]:

p ¼ X⊝ x ¼
X1

x1
, … ,

XD

xD

	 


, hence : p ¼
N

N ∗
,
P

P ∗
, … ,

Fv

F ∗

v

	 


or (16)

p ¼
N

N ∗
� 1,

P

P ∗
� 1, … ,

Fv

F ∗

v

� 1
	 


: (17)

The perturbation vector resembles the Deviation from Opimum Percentage
[88]. Several log ratio transformation techniques other than clr and ilr are available
but have not been tested yet [89].

4.1 Information flow

A flow of information from data acquisition to dataset organization and fertilizer
recommendations at subfield level was described for lowbush blueberry (Vaccinium
angustifolium) in Quebec [46], cranberry (Vaccinium macrocarpon) in Quebec and
Wisconsin [85], and several crops in Brazil [17, 83, 84]. Nutrient diagnosis at local
scale requires a well-documented dataset, an accurate machine learning model, a
reliable model prediction algorithm, and a large set of ecologically diversified true
negative specimens (Figure 6).

The bottleneck of machine learning models is knowledge gain on the learning
curve. As anticipated 200 years ago by Alexander von Humboldt [3] a comprehen-
sive understanding of living systems requires collecting facts and local knowledge
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trustfully. Data can be observational as provided by growers, or experimental as
retrieved from the published and the gray literature. Data sharing among stake-
holders does not suffice to run machine learning. Data must be collected in a
uniform way and cleaned from errors. Missing data could be imputed carefully or
documented from other databases such as meteorological databases. Thereafter,
data must be checked for their distribution to detect outliers.

A minimum dataset of meaningful features could be selected by adding or
removing features (razor of Occam) without losing model accuracy during the
model training process. Minimum data sets facilitate data acquisition by stake-
holders at minimum cost and effort and make sense to them. The most performing
machine learning model is selected. In general, the classification mode (yield class
about yield cutoff) is more acurate than the regression mode. The classification
mode returns the probability to exceed yield cutoff as targeted by the grower.

4.2 Local diagnosis

Features such as cultivar, rootstock, soil type or climatic conditions have been
averaged to generate regional standards as “Frankenstein-built constructs” that may
lead to unaccurate diagnosis at local scale where factors interact [17]. The local
diagnosis often differs from regional diagnosis because the heroic assumption that
“all controllable and uncontrollable factors but the ones being addressed are at equal
or optimum levels” may fail at local scale. Indeed, the regional diagnosis is counter-
intuitive to growers’ heuristics that compares normal to abnormal situations under
similar conditions in their neigborhood [86]. Fertilizer recommendations can be
customized using the fertilization regime of the closest compositional neighbors as
reference, by modifying regional recommendations, from response curves, or using
an optimization algorithm (Figure 7).

At local scale, the closest compositional neighbors are the true negative speci-
mens showing similar growing conditions and the smallest compositional Euclidean
distance from the diagnosed specimen. The nearest neighbors were said to be
located in “Humboldtian loci or “enchanting islands”, “Ilhas Encantadas” in
Portuguese, for a given set of uncontrollable factors. The grower has been pictured
by [43] as a compositional parachutist manipulating nutrients as paracords to land
on the closest “enchanting islands”. There, the resources to tackle controllable
factors can be used parsimoniously and efficiently to reach trustful yield targets.
Because the number of successful factor combinations is limited by the size and
diversity of datasets, a close collaboration is required between stakeholders to
collect facts and document local knowledge trustfully [6, 7, 90–94].

Figure 6.
Flowchart of nutrient diagnosis in agroecosystems from data collection to fertilizer recommendations.
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The decision to fix a yield target in classificaiton mode depends not only on
growers’ yield objective, but also on model precision and the number of true nega-
tive specimens available as close neighbors. The number of true negative specimens
must be high because they provide benchmark compositions and trustfull yield
targets under otherwise comparable growing conditions. As shown in Figure 8 for
the Brazilian peach tree dataset [83], classification accuracy increased slightly while
the number of true negative specimens decreased exponentially as yield target
increased. Smaller number of true negative specimens as benchmark compositions
limits model’s capacity to select local conditons close to those of the diagnosed
specimen. In this case, the decision was to select 16 ton ha�1 as cutoff yield, a
reasonable yield objective.

Figure 7.
Fertilization recommendation using a Markov chain random walk algorithm to combine optimally N,, P and K
dosage to increase yield from 2300 to 5900 kg berry ha�1 for lowbush blueberry considering a set of corrected
site-specific controllable factors (reproduced from [46]).

Figure 8.
Dependence on yield cutoff of the number of true negative (high-yielding and nutritionnallly balanced)
specimens and classification accuracy.
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5. Concluding remarks

In this chapter, we showed that fractal, compositional and machine learning
models are promising alternatives to former empirical and mechanistic models to
diagnose soil quality and plant nutrition at local scale and conduct side-by-side
comparisons. Fractal kinetics confirmed that organic matter decomposition rates
are controlled by protection mechanisms developing during organic matter trans-
formation in soils. Site-specific coefficients can be assigned to decomposition rates
under soil management practices. Compositional Data Analysis accounted for the
special geometry of D-part compositions using log ratio transformations to tackle
numerical bias before running numerical analyses. Machine learning methods can
handle large and diversified datasets acquired through close collaboration between
stakeholders.The CoDa methods can be combined with machine learning methods
to diagnose nutrient imbalance and rank nutrients in the order of their limitation to
yield by side-by-side comparison with successful neighbors.

This paper emphasized the need to change paradigm from the regional to the
local scale to diagnose soil quality and plant nutrients and customize recommenda-
tions. Local features can be assembled in large and diversified numbers to address
trustful feature combinations, then carved to a minimum data set impacting sys-
tem’s productivity and sustainability. Large and diversified data sets can be
processed by methods of machine learning and compositional data analysis to reach
the field or subfield scale. This requires collecting data uniformly and a close
collaboration between stakeholders.
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