
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800

Chapter

Delivering Precision Medicine
to Patients with Spinal Cord
Disorders; Insights into
Applications of Bioinformatics and
Machine Learning from Studies of
Degenerative Cervical Myelopathy
Kalum J. Ost, David W. Anderson and David W. Cadotte

Abstract

With the common adoption of electronic health records and new technologies
capable of producing an unprecedented scale of data, a shift must occur in how we
practice medicine in order to utilize these resources. We are entering an era in
which the capacity of even the most clever human doctor simply is insufficient. As
such, realizing “personalized” or “precision” medicine requires new methods that
can leverage the massive amounts of data now available. Machine learning tech-
niques provide one important toolkit in this venture, as they are fundamentally
designed to deal with (and, in fact, benefit from) massive datasets. The clinical
applications for such machine learning systems are still in their infancy, however,
and the field of medicine presents a unique set of design considerations. In this
chapter, we will walk through how we selected and adjusted the “Progressive
Learning framework” to account for these considerations in the case of Degenera-
tive Cervical Myeolopathy. We additionally compare a model designed with these
techniques to similar static models run in “perfect world” scenarios (free of the
clinical issues address), and we use simulated clinical data acquisition scenarios to
demonstrate the advantages of our machine learning approach in providing
personalized diagnoses.

Keywords: Precision Medicine, Personalized Medicine, Neural Networks,
Degenerative Cervical Myelopathy, Spinal Cord Injury, Continual Learning,
Bioinformatics

1. Introduction

The classical practice of medical is undergoing a transition as new scales of data
production become increasingly common. This transition presents the field with
major analytical challenges that necessitate new and creative ways of engaging. The
use of machine learning is one of the most important developments supporting this

1

transition, as its methods are ideally suited (and in fact benefit from) the massive
scale of data collection that is increasingly becoming the norm. With the rapid
growth in high-throughput technologies for genetics, proteomics, and other biolog-
ical metrics, alongside the recent wide-spread adaptation of electronic health
records [1, 2], more data than ever has become available to feed into a machine
learning system. The classical practice of medicine is typified by giants such as Dr.
William Osler [3] whose diagnostic acumen improved the lives of many. In the very
near future (and, in many cases, the present), physicians and diagnosticians will
work with more data than they could possibly interpret. Machine learning is one of
many tools which will help alleviate this, helping to guide many diagnostic and
therapeutic decisions made by the clinical team, and if implemented well, should
support patients’ overall health. This potential realization of “precision medicine” is
based on the belief that each patient has unique characteristics which should be
accounted for when treating them [4].

While precision medicine has already demonstrated major benefits in fields like
pharmacology [5] and oncology [6–8], a number of potential applications remain in
other medical fields. In this chapter, we will demonstrate this using spinal cord
disease, specifically by examining its application to Degenerative Cervical Myelop-
athy (DCM). DCM is a condition when the bones and joints of the human neck
(cervical spine) degenerate with age, causing a slow progressive ‘squeeze’ of the
spinal cord. This progressive condition has a significant effect on patient quality of
life. Symptoms include pain, numbness, dexterity loss, gait imbalance, and sphinc-
ter dysfunction [9, 10], with symptoms often not appearing until permanent dam-
age has already occurred [11]. MRI scans are typically used as part of the diagnostic
process, and demographic factors have also been shown to be effective in predicting
DCM severity [12]. An additional challenge is that patients can exhibit the hall-
marks of DCM without developing symptoms [13], suggesting that a wide range of
factors may be contributing to the illness’s severity. Despite all of this, research into
precision medical approaches and diagnostics have been sorely lacking; to the best
of our knowledge, only 4 published studies involving DCM (also referred to as
Cervical Spondylotic Myelopathy) exist which utilize machine learning [7, 14–16],
coming from only three different groups (including our own), and with only one
utilizing MRI data [16].

In this chapter, we will discuss how we went about designing a machine learning
process, focusing on considerations required for clinical data specifically. We first
explore how data should be managed and stored, before moving into data prepara-
tion procedures. Finally, we move onto the design considerations for the machine
learning model. We will focus on models made for diagnostic prediction, rather
than outcome prediction; however, we intend this only as a first step in using
machine learning to support patient care, with future work moving toward models
that provide personalized therapeutic recommendations as well. Throughout this
chapter we will apply the techniques being discussed to DCM to help contextualize
them. Some preliminary results for the final resulting system will also be shown, as
a ‘proof-of-concept’, using the CIFAR-10 dataset modified to replicate clinical cir-
cumstances. We hope that this will provide a road-map for future machine learning
driven precision medicine projects to follow.

2. Precision medicine machine learning system design

We have previously published work using spinal cord metrics generated by the
Spinal Cord Toolbox [17] alongside simple linear and logistic regression models
[16]. While it found moderate success, our results suggested that complex aspects of

2

Machine Learning - Algorithms, Models and Applications

the spinal cord morphology are likely the key to an accurate model, with simple
regression analyses alone appearing to be insufficient. Said study also only used
MRI-derived metrics, resulting in our model being unable to use non-imaging
attributes to support its diagnostic conclusions, something which has been shown to
aid model accuracy in other studies [18]. Finally, our prior models were static in
nature, and thus had to be rebuilt each time new data became available. While this
may be tractable for simple models (which can be rebuilt very quickly), more
complex models require more computational investment, and as such would
become far too difficult to manage as the dataset grows. As an additional concern,
there is reason to believe that the trends in our collected metrics are likely to change
over time as societal, behavioral, and environmental changes occur, influencing
DCM epidemiology [19], resulting in prior trends becoming obsolete or less signif-
icant. As such, an ideal model would be able to adapt to these changes as they arise,
without the need of manual correction.

2.1 Data management

As previously mentioned, a key consideration in the clinical use of machine
learning is that clinical data does not remain fixed. As new patients arrive and have
their data collected and current patients see their disease state change, the relevant
data that can be leveraged will change and expand over time. One possible approach
is to retrain our machine learning model from scratch each time we update our
dataset; this would become incredibly time and resource consuming as the dataset
grows, however. Thankfully, advancements in continual learning in the last 5 years
provide an elegant solution [20] (which we discuss in Section 3). To use these
techniques effectively, we will need to consider the best way of optimizing how
data is collected, stored, accessed, processed, and reported. Ideally, these data
management systems should be malleable, extendable, and easy to use, so they may
remain useful long-term in a ever-changing clinical environment. This section will
focus on detailing methodologies for achieving this, accounting for the challenges
presented by ongoing clinical data collection in the process.

2.1.1 Acquisition and storage

Ideally, our clinical dataset would include any and all relevant features that can
be reliably and cost-effectively obtained. In reality, the specific data elements (or
“features”) will vary both across patients and over time (as new diagnostic tests
come available or as ethical rules/constraints are updated). As such, an ideal data
management approach should be capable of adapting to variable data feature col-
lection over time, while still allowing new patients to be included. For ethical
reasons, the storage system also needs to be set up so that data can be easily
removed, should patients request their data be purged or if privacy rules require it.

In our facility, we addressed these considerations by creating a non-relational
document database system using MongoDB. This allows for new features to be
added and removed on-the-fly via a modular framework of ‘forms’, which specify
sets of related features that should exist inside a single document ‘type’. These
documents can then be stored within a larger super-document (which we will refer
to as a ‘record’) for each specific patient. This results in a large dataset containing all
relevant features organized in an individual-specific manner. Each form acts as a
‘schema’, specifying what features can be expected to exist within each patient’s
record. With MongoDB, this allows features to be added and removed as needed
without restructuring the entire database [21], which would risk data loss. If new
features are desired, one can simply write a new form containing said features and

3

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

add it to the system; previous entries without these new features can then be treated
as containing “null” values in their place, thereby enabling them to still be included
in any analyses performed on the data. Should features need to be removed, the
form containing them can either be revised or deleted entirely. This results in the
features effectively being masked from analysis access without deleting them from
the database itself, allowing for their recovery in the future.

Our system also has the added benefit of allowing for the creation of ‘output’
forms, which capture and store metrics generated from data analyses. This enables
the same system that collects the data to also report these analytical results back to
the original submitter via the same interface. These output forms can also be stored
alongside forms containing the original values that were provided to the analysis,
making both easily accessible when calculating error/loss.

In our DCM dataset, all features (including MRI sequences) were collected at the
time of diagnosis and consent to participate in our longitudinal registry associated
with the Canadian Spine Outcomes and Research Network [22]. This registry col-
lects hundreds of metrics on each patient, including a number of common diagnos-
tic tests, with each being stored in the database as a single form. Most notably, this
includes the modified Japanese Orthopedic Association (mJOA) scale form [23].
This is important for our study as we used this diagnostic assessment of DCM
severity as the target metric for model training purposes. The MRI sequence form
(which contains our MRI sequences alongside metadata associated with how they
were obtained) and demographic information about the patient (including metrics
such as name, age, and sex, among others) are also represented by one form each
within our system. A simplified visualization of this structure can be seen in
Figure 1.

This system can also allow pre-built structures to be re-created within it. For
example, our MRI data is currently stored using the Brain Imaging Data Structure
(BIDS) format [24]. This standardized data structure has directory hierarchies
according to the contents of the file, with metadata describing the contents of the
directory “falling through” to sub-directories and documents nested within it.
These nested directories can then contain new metadata which overrides some or all
of the previously set values, allowing for more granular metadata specification.
Such a structure is conducive to our system, with said “nested” directories acting as
features within forms, or forms within records; features could even consist of sets of
sub-features (such as our MRI feature, which contains the MRI image and its
associated metadata bundled together). Such nested structure can then specify
“override” values, as they become needed.

2.2 Cleaning and preparation

The raw data collected in a clinical setting is almost never “analysis ready”, as
factors like human error and/or missing data fields must be contended with. Strat-
egies for “cleaning” data can vary from dataset to dataset, but for precision medi-
cine models there are some common standards. First, such protocols should work
on a per-record basis, not a full-data basis. This is to avoid the circumstance where
adding entries with extreme values would skew the dataset’s distribution,
compromising the model’s prior training (as the input metrics are, in effect, re-
scaled), resulting in an unrealistic drop in model accuracy. Per-record internal
normalization, however, typically works well, so long as it remains consistent over
the period of the model’s use. Some exceptions to this exist; for example, exclusion
methods may need to be aware of the entire dataset to identify erroneous records.
Likewise, imputation methods will need to “tap into” other available data to fill in
missing or incorrect data points within each record.

4

Machine Learning - Algorithms, Models and Applications

It is often the case that data is obtained from multiple different sources (e.g.
different clinics, practitioners, hospitals, labs, databases, etc.), which may have
varying protocols and/or environmental differences that can structurally influence
the resulting measurements. If the model could be retrained from scratch every
time new data was obtained, these batch effects could be easily removed [25]. In
iteratively trained systems, however, this would result in the same issue as full-data
normalization; new entries causing fall-through changes in the entire dataset.
However, under the assumption that batch effects have less influence on the data
than ‘true’ contributing effects, it has been shown that systems which learn itera-
tively can integrate batch effect compensation directly into their training for both
numeric [26] and imaging [27] metrics, thereby resolving the issue.

Coming back to our DCM example, our data consists of demographic informa-
tion (which included a mix of numerical and categorical data), diagnostic data (also
numerical and categorical), and 3-dimensional MRI sequences data (which also
contains meta-data describing its acquisition method). For numerical and categori-
cal data, our processing procedures are minimal, consisting of a quick manual
review to confirm that all required features were present. As our dataset was
relatively large, we opted to simply drop entries which contained malformed or
missing data. New patient entries with errors were either met with a request to the
supplier for corrected data, or had true values imputed for prediction purposes [28].
Categorical data is then one-hot encoded, while numerical data is scaled between 0
and 1 for values with know minimums and maximums. We had access to multiple
different MRI sequencing methodologies as well, but focus on T2w sagittal oriented
sequences based on our prior tests with the data [16]. MRI sequences are then
resampled to a voxel size of 1mm3 and the signal values normalized to a 0 to 1 range.

Figure 1.
A simplified example of how data is stored and managed in our theoretical system. Each feature tracked is first
bundled into a ‘model’, which groups related features together alongside a descriptive label. These models act as
a schema for any data analysis procedures to hook into, and can be modified, removed, and created as needed.
Model instances are then stored in ‘records’, which represent one entry for any analysis system which requires it
(in our case, that of one patient enrolled in our DCM study). A data structure like this can be easily achieved
with any non-relational database system; in our case, we opted to use MongoDB.

5

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

Unlike our numerical results, this was done based on per-image signal minimum
and maximum, in an attempt to account for variations in signal intensity variation,
aiding in batch effect removal in the process.

3. Machine learning model design

Like the data management system, machine learning models designed for preci-
sion medicine need to be able to accept new data on an ongoing basis. The data
contents may change over time as new discoveries about the illness are made,
though it can be safely assumed that new data will be related to old data in some
way. Contents of new data cannot be expected to be well distributed across target all
target metrics. All of these requirements make precision medicinal systems a perfect
use-case for continual learning systems.

Continual learning systems are characterized by their iterative training, as well
as the ability to ‘recall’what they learn from prior tasks to help solve new ones. Each
of these tasks are assumed to be related, but contain non-trivial variation. This
means the model must be flexible to change, while avoiding completely
reconstructing itself after each new task, which could result in it ‘forgetting’ useful
prior learning. These capabilities are referred to, respectively, as forward transfer
(the ability to leverage prior learning to improve future analyses) and backward
transfer (the ability leverage new knowledge to help with prior tasks).

Promising progress has been made in designing continual learning systems [20],
to the point of a preliminary frameworks being devised to develop them. For this
chapter, we will be using Fayek et. al’s Progressive Learning framework [29] as a
baseline reference, though some changes were made to account for precision med-
icine applications.

3.1 Initial network structure

All networks need to start somewhere, which for all intents and purposes acts
like a classical static machine learning system. Neural networks are the system of
choice for these processes, as they allow for multiple data types to be analyzed
simultaneously, being able to be constructed in a modular fashion to match up with
our data storage structure detailed prior. Depending on the data, what this entails
will differ. For data with implicit relations between features (such as MRI images
with their spatial relations), Convolutional Neural Network (CNN) systems have
been shown to be extremely effective [30]. CNNs are also among the most compu-
tational efficient neural networks to train and run [31, 32], making them ideal for
low resource systems. For other data, a Densely Connected Learning Networks
(DCLNs) may be more appropriate. The complexity of these networks can be tuned
to fit the problem. These models tend to be over-parameterized, however, poten-
tially causing them to “stick” in one place or over-fit to training data; this is
mediated somewhat via model pruning, discussed later in this section. The choice of
available models is ever-changing, however, so one should find the model structure
which best fits their specific case.

For progressively learning models, one further constraint exists; it must be able
to be cleanly divide its layers into ‘blocks’. As discussed in Fayek et. al’s framework
[29], this is necessary to allow for the model to progress over time. How these
blocks are formed can be arbitrary, so long as each block is capable of being
generalized to accept data containing the same features, but of different shape (as
the size of the input data grows resulting from the concatenation operation
discussed later in this section). One should also keep in mind that the block

6

Machine Learning - Algorithms, Models and Applications

containing the output layer will be reset every progressive iteration, and should be
kept as lightweight as possible.

For DCM, this would be accomplished via multiple layers running in parallel. For
MRI inputs, being 3D spatial sequences, something like a 3D DenseNet similar to that
employed by Ke et al. [33] could be used. The DenseNet could be run alongside
DCLN blocks in parallel to read and interpret our linear data (demographics, for
example), grouped with the DenseNet blocks to form the initial progressive learning
model. A diagram of this structure, using the same structure mentioned prior
(Figure 1), with a simplified “MRI”model present, is shown in Figure 2.

For the purposes of comparison with the original Progressive Learning frame-
work, however, our testing system will instead use their initial model structure [29].

3.2 Iterative training data considerations

Once this initial framework is in place, it then needs to prove capable of
accepting new patient data, updating itself as it does so. Given that the measure-
ments of patients enrolling in clinical illness studies can be sporadic in terms of
when and how often they are made, data for this system will need to be collected
over time until a sufficiently large ‘batch’ of new records is acquired. Ideally large

Figure 2.
An example of the initial neural network structure for use in precision medicinal systems. Note that each form
receives its own “branch” block (presented within the model block column) which is used to interpret the form’s
contents. As a result, each branch’s structure can be tailored to suit the form’s contents, allowing for modular
addition or removal of model’s feeding into the network’s design as needed. The results of each of these branches’
interpretations are then submitted to a set of “merging” blocks, which attempts to combine these results together
in a sensible manner, before a final “output” layer reports the model’s predictions for the input. The output layer
is also modular, allowing for extension and/or revision as desired.

7

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

batches would be collected which are sizable enough to be split into multiple smaller
batches, allowing for curriculum formation as detailed in the subsequent section. In
many cases this is simply not feasible due to the time required to obtain such large
batches. In this circumstance, each batch acts as a single ‘curriculum’ provided to
our network in effectively random order. Thankfully, the curriculum stage appears
to be the least significant stage of the Progressive Learning framework [29]. The
size of these batches will depend heavily on howmuch data one expects to be able to
collect in a given period of time and how regularly one wishes to update the model.
For categorical data, each batch should include at least two of every category (one
for testing, one for validation), which may influence how many samples one needs
to acquire. We recommend a slightly larger batch sizes when linear data is brought
into the fold, to account for the increased variety. With our DCM dataset, with a
categorical output metric (the mJOA-derived DCM severity class, consisting of 4
classes), a batch of 20 patient records was selected. Data augmentation of this new
data can also be utilized to increase the number of effective records being submit-
ted. However, one should avoid using data from records in previous training cycles,
as it can lead to a the model failing to adopt novel data trends in newer results.

3.3 Continual learning

Here, we will focus on detailing a framework based on Fayek et. al’s Progressive
Learning Framework [29], which consistes of three stages; curriculum, progression
and pruning.

3.3.1 Curriculum

Given sufficiently large batches of new data can be collected in a timely manner,
one can utilize the curriculum stage; at least three times the number of records per
batch being collected in a 6 month period seems to be a good cutoff for this, though
this can differ depending how rapidly one expects disease trends to change. This
stage, as described in Fayek et. al’s framework [29], is composed of two steps;
curricula creation and task ordering. In the creation step, the batch is split into sub-
batches, with each being known as a ‘curriculum’. How this is done depends on the
data at hand (i.e. categorical data requires that each curriculum contains data from
each category), but can otherwise be performed arbitrarily. Once these curricula are
formed they are sorted based on an estimate of how “difficult” they are, from least
to most. Difficulty estimation can be as simple as running a regression on the data
and using the resulting loss metric. The sorted set of curricula are then submitted to
the network for the progression and pruning stages, one at a time. This allows for
the network to learn incrementally, picking up the “easier” trends from earlier
curricula before being tasked with learning more “difficult” trends in later ones.

In precision medicine, however, collecting sufficient data in a useful time span is
often not possible. In this case, this stage can be safely skipped; the smaller batches will
simply act as randomly sampled, unordered curricula. How “large” this is depends on
the batch size selected earlier; one should collect at least three batches worth to
warrant the additional complexity of the curriculum stage. For our DCM setup, we fell
below this level, as we intend on updating as often as possible, and as such intended on
utilizing new batches as soon as they were collected. We believe that in most precision
medicine examples this is likely to be the case, though in some situations (such as the
ongoing COVID-19 pandemic), the scale of patient data collection may make the
curriculum stage worth considering. Employing few-shot learning techniques may also
allow for smaller subsets of data to form multiple batches as well, though the efficacy
of such procedures has yet to be tested in this context.

8

Machine Learning - Algorithms, Models and Applications

3.3.2 Progression

In this stage, new blocks of layers are generated and concatenated to previously
generated blocks in the model. The new input-accepting block is simply stacked
adjacent to the prior input blocks in the model, ready to receive input from records
in our dataset. Each subsequent new block, however, receives the concatenated
outputs of all blocks from the prior layer, allowing it to include features learned in
previous training cycles. The final block, which contains the output layer, is then
regenerated entirely, resulting in some lost training progress that is, thankfully,
usually quickly resolved as the model begins re-training.

The contents of these added blocks depends on the desired task and computa-
tional resources available. Large, more complex blocks require more computational
resources and are more likely to result in over-fitting, but can enable rapid adaption
of the network and better forward transfer. In the original framework [29], these
blocks were simply copies of the original block’s architecture, but reduced to
approximately half the parameters. However, one could instead cycle through a set
of varying block-types, based on how well the model performed and whether new
data trends are expected to have appeared. They could also be changed as the model
evolves and new effective model designs are discovered, though how effective this
is in practice has yet to be seen.

Once these blocks are added, the network is then retrained on the new batch of
data, generally with the same training setup used for the original set of blocks. During
this retraining, prior block’s parameters can be frozen, locking in what they had
learned prior while still allowing them to contribute to the model’s overall prediction.
This prevents catastrophic forgetting of previously learned tasks, should they need to
be recalled, though this usually comes at the cost of reduced overall training effec-
tiveness. However, if one does not expect to need to re-evaluate records which have
already been tested before, one can deviate from Fayek’s original design and instead
allow prior blocks to change along with the rest of the model. An example of pro-
gression (with two simple DCLN blocks being added) is shown in Figure 3.

For our DCM data, this is a pretty straightforward decision. New blocks would
simply consist of new 3D DenseNet blocks run in parallel to simple DCLN layers,
both containing approximately half the parameters as the original block set. The
output block is then simply a linear layer which is fed into a SoftMax function for
final categorical prediction. As we do not expect prior records to need to be
re-tested, we also allow prior blocks to be updated during each training cycle.

3.3.3 Pruning

In this stage, a portion of parameters in the new blocks are dropped from the
network. What parts of the model are allowed to be pruned depends on how the
prior progression stage was accomplished; if previously trained blocks have been
frozen, then only newly added elements should be allowed to be pruned to avoid
catastrophic loss of prior training. Otherwise, the entire model can be pruned, just
as it has been allowed to be trained and updated. The pruning system can also vary
in how it determines which parameters are to be pruned, though dropping param-
eters with the lowest absolute value weights is the most straightforward. These can
also be grouped as well, with Fayek et al. choosing to prune greedily layer-by-layer.
However, we have found that considering all parameters at once is also effective.
The proportion q dropped per cycle will depend on the computational resources and
time available. Smaller increments will take longer to run, whereas larger values will
tend to land further away from the “optimal” state of the network. An example of
the pruning stage is shown in Figure 4.

9

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

The network, now lacking the pruned parameters, is then retrained for a (much
shorter) duration to account for their loss. In Fayek et al’s example, this process is
then repeated with progressively larger q proportions until a loss in performance is
observed. Alternatively, one can instead repeatedly drop the same percentile of
parameters each cycle from the previously pruned network. This has the benefit of
reducing the time taken per cycle slightly (the same weights do not need to be
pruned every cycle), while also leading to the total proportion of the pruned model
increasing more gradually per cycle, improving the odds that the model lands closer
to the true optimal size for the system. This pruning system has the potential to be
much slower, however (should the rare circumstance occur where all the new
parameters are useless, requiring more iterations overall). As such, in time-limited
systems, Fayek’s approach remains more effective.

This stage also allows for, in theory, dynamic feature removal. Should a model (or
feature within said model) cease to be available, one can simply explicitly prune the
parameters associated with that feature, in effect performing a targeted pruning
cycle. One would need to re-enable training of previously trained nodes to account

Figure 3.
An example of the progression stage, building off of the initial model shown in Figure 2. New nodes are
contained within the gray boxes, with hashed lines indicating the new connections formed as a result. Note that
input connections are specific to each form, only connecting to one’s inputs (in this case, only the Demographic’s
input), and not to those in the other branches (such as the MRI branch); this allows for shortcomings in
particular model’s contributions to be accounting for independently, without an extreme growth in network
complexity. Note as well that the merging layer (representing all non-input receiving blocks) forms connections
with all prior block outputs, however, regardless of which forms have received a new connected block. The entire
output block is also regenerated at this stage, providing some learning plasticity at the expense of initial learning.

10

Machine Learning - Algorithms, Models and Applications

for this, however, leading to the possibility of reduced backward transfer. Depending
on how significant the to-be-removed features have become in the network, this may
need to be done over multiple pruning cycles; this should allow the network to adapt
to changes over time, reducing the risk of it getting ‘stuck’ in a sub-optimal state.

For our DCM data, the complexity of the illness and scope of the data makes it
extremely unlikely for a worst-case pruning issue to occur. As such, a 10% lowest
absolute weight pruning system, applied globally, is selected as our starting point,
iteratively applied until a loss of mean accuracy over 10 post-prune correction
epochs is observed.

4. Protocol assessment

4.1 Progressive learning ConvNet

4.1.1 Methodology

To confirm our protocol functions effectively in practice, we replicated the
CIFAR-100 analysis used in the original Progressive Learning paper [29], with a few
major changes to replicate a precision medicine environment (i.e. the kind of

Figure 4.
An example of the pruning stage, building off of the progression network shown in Figure 3. Note that only
newly formed connections are targeted for pruning by default, with pre-existing connections remaining safe.
Parameters themselves can also be effectively lost entirely (shown as nodes with no fill and a dashed outline)
should all connections leading into them get removed. This results in all connections leading out of them also
getting pruned by proxy.

11

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

clinical context in which data is typically collected). First, only the CIFAR-10
dataset was used [34], rather than it being used as the model initialization dataset.
This was done to better reflect the clinical environment, where we are unlikely to
have a pre-established dataset which is known to be effective at preparing our
model for the task. The 10 categories of the CIFAR-10 dataset also represent the
average granularity usually used to assess many illnesses. Second, our datasets were
randomly split into 10 subsets of 6000 random images, with 5000 used for training
and the remaining 1000 used for validation. The contents of these subsets was
completely random, allowing for imbalance in the number of elements from each of
the 10 categories, reflecting how data collected in a clinical setting could occur.
Third, we skipped the curriculum stage, again to reflect the circumstances of clini-
cal data collection (wherein the scale of collection is insufficient). Fourth, our
framework was implemented in PyTorch [35] rather than TensorFlow [36] due to
its more robust network pruning support. Finally, data augmentation was
performed on each image to both discourage the model from memorizing data and
to simulate human error/variation in clinically acquired data. This results in a
problem which is slightly more difficult than the original setup devised by Fayek
et al., though for parity sake, we continued to use the same Convolution Network
design.

We tested 6 procedures, representing combinations of two different variations.
The first variation was whether the learning model trained as an independent
learning model, a progressive learning model with prior blocks frozen, or a pro-
gressive learning model with prior blocks being freely pruned and updated. For
independent learning procedures, the model was completely reset after each train-
ing cycle, whereas for progressive learning procedures the model persisted across
cycles (allowing for it to “apply” prior knowledge to new data). The second was
whether data was provided in batches (similar to a clinical setting), or submitted all
at once (the “ideal” for machine learning analyses). In batched procedures, data was
submitted one subset at a time, as described prior. A strict max wall time of 8 hours
was put in place for all protocols to simulate the limited resources (in both time and
hardware) that clinical settings often have. All protocols were run on a single Tesla
V100-PCIE-16GB GPU with 16GB of RAM and two Intel(R) Xeon(R) Gold 6148
CPUs run at 2.40GHz (speeding up initial protocol setup).

The initial architecture for all procedures is shown in Table 1. For progressive
learning procedures, new blocks were added which were half the size of the original
blocks, set to receive the the concatenated outputs of all blocks in the prior layer of
each set of blocks. All parameters were initialized randomly using PyTorch version
1.8.1 default settings. We used an ADAM optimizer with a learning rate of 0.001,
first moment β1 of 0.99, second moment β2 of 0.999, and weight decay λ of 0.001
during training. For progressive learning models, an identical optimizer with one
tenth the learning rate was used for post-pruning model optimization. Each cycle
consisted of 90 epochs of training. Progressive procedures were given 10 epochs per
pruning cycle, with pruning being repeated until the mean accuracy of the prior set
of epochs was greater than that of the new set of epochs, with the model’s state
being restored to the prior before continuing. The model’s training and validation
accuracy was evaluated and reported once per epoch. Protocol efficacy was mea-
sured via the max validation accuracy of the model over all cycles and epochs and
mean best-accuracy-per-cycle (BAPC) for all cycles.

4.1.2 Results

For our full datasets, the model achieved diagnostic classification accuracy
values of 80-85% for most of the results. The simple model, without progression

12

Machine Learning - Algorithms, Models and Applications

and with full access to the entire dataset, reached a max accuracy of 81.13%, with a
mean BAPC of 80.71%. Adding progression to the process further improved this,
primarily though the pruning stage, with a max accuracy of of 84.80%. However,
the mean BAPC dropped to 77.44%, as prior frozen parameters in the model
appeared to make the model “stagnate”. Allowing the model to update and prune
these carried-over parameters improves things substantially, leading to a max
accuracy of 90.66% and a mean BAPC of 84.83%.

When data was batched, a noticeable drop in accuracy was observed, as
expected. Without progressive learning, our model’s max observed accuracy was
only 73.7% (a drop of 7.37%), with a mean BAPC of 71.75%. The progressive model

Block Number Type Size Other

1 2DConvolution 32, 3x3 Stride = 1

2DBatchNorm

ReLU

[Concatenation]

2 2DConvolution 32, 3x3 Stride = 1

2DBatchNorm

ReLU

2DMaxPooling 2x2 Stride = 2

Dropout r = 0.25

[Concatenation]

3 2DConvolution 64, 3x3 Stride = 1

2DBatchNorm

ReLU

[Concatenation]

4 2DConvolution 64, 3x3 Stride = 1

2DBatchNorm

ReLU

2DMaxPooling 2x2 Stride = 2

Dropout r = 0.25

[Concatenation]

5 Flatten

Linear 512

1DBatchNorm 512

ReLU

Dropout r = 0.5

6 [Concatenation]

Linear 20

Softmax

Table 1.
The basic structure of the convolutional neural network being tested on the CIFAR-10 dataset. Based on the
model used by Fayek et al. [29]. [Concatenation] indicates where the output of one set of blocks would be
concatenated together before being fed into new blocks in the following layer, and can be ignored for
independent learning tasks.

13

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

with frozen priors initially performed better, reaching its maximum accuracy of
75.9% in its first cycle, but rapidly fell off, having a mean BAPC of 66.0%. Allowing
the model to update its priors greatly improve the results, however, leading to a
maximum accuracy of 82.4% and a mean BAPC of 79.02%, competing with the
static model trained on all data at once.

A plot of each model’s accuracy for each model setup, taken over the entire
duration (all cycles and epochs) for both the training and validation assessments, is
shown in Figure 5.

4.2 DenseNet

4.2.1 Methodology

To confirm that the success of the setup suggested by Fayek et al. was not due to
random chance, we also applied the technique to another model which is effective
at predicting the CIFAR-10 dataset; the DenseNet architecture [37]. DenseNets are
characterized by their “blocks” of densely connected convolution layer chains,
leading to a model which can utilize simpler features identified in early convolu-
tions to inform later layers that would, in a more linear setup, not be connected
together at all. These blocks are a perfect fit for our method, as they can be

Figure 5.
The training progression of the ConvNet model replicated from Fayek et. al’s study [29] in various forms. From
left to right, the model on its own, reset after every cycle (static), a progressively learning model, with prior traits
frozen (progressive, frozen), and a progressively learning model, with all traits open to training and pruning
each cycle (progressive, free). Training accuracy is shown in blue, with validation accuracy shown in orange.
The maximum observed accuracy for each is indicated via a horizontal dotted (training) or dashed
(validation) line. The dotted horizontal lines indicate where the training of the model for a given cycle was
complete (not including the pruning of progressive models). Note that the total number of epochs taken between
these cycles differs from cycle to cycle in progressive models, as a result of the pruning stage cycling until a
validation accuracy loss was observed.

14

Machine Learning - Algorithms, Models and Applications

generated and added to our progressive learning network just like any other set of
layers. DenseNets have also been shown to have better accuracy than classical
convolution nets within the CIFAR-10 dataset, reaching error rates of less than 10%
in many cases [37]. However, the dense connections make the networks extremely
complex, and they are generally highly over-parameterized as well, making them
prone to over-fitting in some cases.

Our testing methodology was largely identical to that of the Convolutional
network tested in the previous section. One change was to use a Stochastic Gradient
Descent (SGD) optimizer with an initial learning rate of 0.1. Training was done in
batches of 64, for a total of 300 epochs per cycle. The learning rate is reduced by a
factor of 10 when 50% and 75% of the epochs for each cycle has passed. The SGD
optimizer was set with a weight decay of 0.0001 and a momentum of 0.9. Dropout
layers with a drop rate of 0.2 were added after each block as well. The initial
architecture for the network was based on the ‘densenet-169’ architecture, and is
shown in Table 2, having a growth rate of 32, an initial feature count of 64, and

Block Number Type Size Other

1 2DConvolution 64, 7x7 Stride = 2, Padding = 3

2DBatchNorm

ReLU

2DMaxPooling 3x3 Stride = 2, Padding = 1

[Concatenation]

2 Dense Block Layers = 6 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

3 Dense Block Layers = 12 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

4 Dense Block Layers = 32 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

5 Dense Block Layers = 32 Bottleneck = 4, r = 0.2

Transition Block

[Concatenation]

6 2DBatchNorm 1664

[Concatenation]

7 ReLU

2DAdaptiveAveragePool 1x1

Flatten

Linear 1664

Table 2.
The structure of the DenseNet mdoel being tested on the CIFAR-10 dataset. Based on the model used by Huang
et al. [37]. Dense block indicates a densely connected convolution block, with transition block indicating a
transition layer, both being detailed in Huang et. al’s original paper. [Concatenation] indicates where the
output of one set of blocks would be concatenated together before being fed into new blocks in the following
layer, and can be ignored for independent learning tasks. Where it appears, r indicates dropout rate for the
associated block.

15

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

consisting of 4 blocks of densely connected convolution layers, each with 6, 12, 32,
and 32 convolution layers respectively. For progressive learning systems, new
blocks followed the same architecture with half the growth rate (16) and initial
features (32). These changes were made to maintain parity with the original
DenseNet CIFAR-10 test [37].

4.2.2 Results

For our full datasets, we saw an accuracy values of around 90%. The simple
model, without progression, reached a max accuracy of exactly 90%, but was only
able to run one cycle to completion before the 8 hour time limit was reached.
Adding progression to the process improved this slightly, resulting in a max accu-
racy of of 90.66%, but only barely completed its first pruning cycle before the time
limit was reached. As a result, the same accuracy was observed for both progressive
models with and without priors being trainable, as no new prior blocks were added.
Slight variations were still observed, however, due to how the model’s initialization
process differs.

When data was batched, a much more significant drop in accuracy occured as
compared to the Convolutional network. Without progressive learning, our model’s
max observed accuracy was only 69.9% (a drop of more than 30%), with a mean
BAPC of 65.87%. However, it was able to run for all 10 cycles within the allotted

Figure 6.
The training progression of the DeepNet model replicated from Huang et. al’s original ‘densenet-169’ model
[37] in various forms. From left to right, the model on its own, reset after every cycle (static), a progressively
learning model, with prior traits frozen (progressive, frozen), and a progressively learning model, with all traits
open to training and pruning each cycle (progressive, free). Training accuracy is shown in blue, with validation
accuracy shown in orange. The maximum observed accuracy for each is indicated via a horizontal dotted
(training) or dashed (validation) line. The dotted horizontal lines indicate where the training of the model for a
given cycle was complete (not including the pruning of progressive models). Note that the total number of epochs
taken between these cycles differs from cycle to cycle in progressive models, as a result of the pruning stage cycling
until a validation accuracy loss was observed.

16

Machine Learning - Algorithms, Models and Applications

8 hour time span. The progressive model with frozen priors performed even worse,
reaching a maximum accuracy of 67.1% in its first cycle, and only completing
5 cycles before the time limit, only reaching a mean BAPC of 64.28%. Allowing the
model to update its priors somewhat improved the results, leading to a maximum
accuracy of 71.7% and a mean BAPC of 68.28%, showing some slight recovery over
the static model in a batch scenario. However, it also only managed to run through
5 cycles before the time limit was reached.

A plot of each model’s accuracy for each model setup, taken over the entire
duration (all cycles and epochs) for both the training and validation assessments, is
summarized in Figure 6.

5. Discussion and conclusions

The results of our tests show great promise for how these approaches to machine
learning use in precision medicine can be used, while nonetheless highlighting some
significant shortcomings which will need to be considered should this framework
become common practice. Most notably, we see that model’s which over-fit the
available data are extremely detrimental to the system, even if the underlying
model would be better with all data immediately available to it. This is shown very
clearly with the effectiveness of pruning in all our models, with clear gains in
accuracy observed, likely as a result of the process helping counteract over-fitting
resulting from over-parameterized models. Finding an “ideal” model for a given
task is already a difficult task, and our results show that this is only exacerbated by
the conditions of a clinical environment. Nevertheless, there is clearly potential in
this framework, with the Convolutional network tested on clinical-like batch data
being near identical in effectiveness to its static counterpart trained on the full
dataset.

We are also optimistic that many opportunities remain for improvement in
progressive learning implementations. Our current implementation of the progres-
sive learning framework is locked to a specific set of initial data inputs, being unable
to add new ones should they become available. In theory, this could be as simple as
adding a new set of initial blocks to the existing network, in effect acting like a
“progression” stage with custom new blocks (as well as an update to existing new
block generation procedures to match). However, this has a number of issues that
we have not, at present, found a way to resolve. First, each branch is likely to
“learn” at different rates, resulting in one set of blocks associated with a given set of
input data containing more redundant features per-progression stage than the rest.
This proves problematic during pruning, however; we either over-prune blocks
with important features within them, or under-prune those which contain an
abundance of redundant and/or noise-contributing features. We believe this can be
resolved, but were simply unable to do so by the time of this publication.

Another potential improvement would be to “carry-over” output layers weights
between progression stages. This would allow for the network to have better for-
ward transfer, so long as the task’s end goal (categorical prediction, single metric
estimation etc.) remains the same. In our implementation, this is currently not the
case, with the output layer being regenerated every cycle, keeping it in line with the
original Progressive Learning framework’s design [29]. The difficulty of
implementing such as system, as well as its effectiveness in improving model out-
comes, has yet to be tested.

One other major hurdle is that of long term memory cost. As currently
implemented, pruning does not actually remove parameters from the model; it
simply masks them out during training and evaluation, preventing them from

17

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

contributing to the models predictions. While this improves the speed and accuracy
of the model being generated, its memory footprint expands infinitely as more
cycles are run. Resolving this issue is difficult, however, requiring the model to
effectively fully re-construct itself to account for any now-removed parameters.
Doing so would allow the model to come to a “static” memory cost, as the number
of pruned parameters approaches the number of new ones added every cycle. In
turn, this would enable applications where the model is expected to existing for
very long duration in limited resource systems. Such compression techniques are an
ongoing field of research at time of writing; as such, we believe such a implemen-
tation will be possible in the near future.

Finally, testing our methodology on a real-world clinical dataset is needed before
we can be sure it is truly effective. While the CIFAR-10 dataset [34] has been shown
to work effectively for machine learning testing purposes, our assumptions about
clinical data still need to be confirmed. We intend to put our framework to the test
soon, assessing its effectiveness at predicting DCM severity using the DCM data
mentioned throughout this chapter; nevertheless, this framework should be con-
sidered experimental until such results (from ourselves or others) are acquired.
Continual learning systems trained for clinical data also retain the limitations of
continual learning, such as increased potential to over-fit and the inability to trans-
fer new knowledge obtained to help with the understanding of prior knowledge.
Modifications to the progression procedure have been proposed to amend this [29],
though these have not been tested at time of writing.

Overall, however, we believe our framework for machine learning system design
in precision medicine should work well as a road-map for future research, even
though refinements remain to be made. With systems such as the Progressive
Learning framework available, these new systems can adapt to changes in data
trends while accepting new data in effectively random batches, both important
requirements for a clinical environment. Well designed data storage and manage-
ment also allows such systems to easily access, update, and report important metrics
to all necessary parties, while remaining open to changes as new research is com-
pleted. Through the application of these techniques, modern medicine should be
able to not only adapt to the age of information, but to benefit immensely from it.

Abbreviations

DCM Degenerative Cervical Myeolopathy
CIFAR Canadian Institute for Advanced Research
mJOA Modified Japanese Orthopedic Association
BIDS Brain Imaging Data Structure
CNN Convolutional Neural Network
DCLN Deeply Connected Learning Network
BAPC Best Accuracy Per Cycle
SGD Stochastic Gradient Descent

18

Machine Learning - Algorithms, Models and Applications

Author details

Kalum J. Ost1,2, David W. Anderson2† and David W. Cadotte1,2,3,4*†

1 Hotchkiss Brain Institute, Calgary, Alberta, Canada

2 Cumming School of Medicine, Calgary, Alberta, Canada

3 Division of Neurosurgery, Departments of Clinical Neurosciences and Radiology,
University of Calgary, Alberta, Canada

4 Combined Orthopedic and Neurosurgery Spine Program, University of Calgary,
Alberta, Canada

*Address all correspondence to: david.cadotte@ucalgary.ca

†These authors contributed equally.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

19

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

References

[1] Julia Adler-Milstein and Ashish K Jha.
Hitech act drove large gains in hospital
electronic health record adoption.
Health Affairs, 36(8): 1416–1422, 2017.
doi:10.1016/j.cell.2019.02.039.

[2] R Scott Evans. Electronic health
records: then, now, and in the future.
Yearbook of medical informatics, (Suppl
1):S48, 2016.

[3]Michael Bliss. William Osler: A life in
medicine. Oxford University Press,
1999.

[4] Zheng-Guo Wang, Liang Zhang, and
Wen-Jun Zhao. Definition and
application of precision medicine.
Chinese Journal of Traumatology, 19(5):
249–250, 2016.

[5] Christina L Aquilante, David P Kao,
Katy E Trinkley, Chen-Tan Lin, Kristy R
Crooks, Emily C Hearst, Steven J Hess,
Elizabeth L Kudron, Yee Ming Lee, Ina
Liko, et al. Clinical implementation of
pharmacogenomics via a health system-
wide research biobank: the university of
colorado experience, 2020.

[6] Jessica R Williams, Dalia Lorenzo,
John Salerno, Vivian M Yeh, Victoria B
Mitrani, and Sunil Kripalani. Current
applications of precision medicine: a
bibliometric analysis. Personalized
medicine, 16(4):351–359, 2019. doi:
10.2217/pme-2018-0089.

[7]Omar Khan, Jetan H Badhiwala,
Giovanni Grasso, and Michael G
Fehlings. Use of machine learning and
artificial intelligence to drive
personalized medicine approaches for
spine care. World Neurosurgery, 140:
512–518, 2020. doi: 10.1016/j.
wneu.2020.04.022.

[8] Renato Cuocolo, Martina Caruso,
Teresa Perillo, Lorenzo Ugga, and Mario
Petretta. Machine learning in oncology:
A clinical appraisal. Cancer letters, 481:

55–62, 2020. doi: 10.1016/j.
canlet.2020.03.032.

[9] Aria Nouri, Lindsay Tetreault,
Anoushka Singh, Spyridon K
Karadimas, and Michael G Fehlings.
Degenerative cervical myelopathy:
epidemiology, genetics, and
pathogenesis. Spine, 40(12):E675–E693,
2015. doi: 10.1097/
BRS.0000000000000913.

[10] Benjamin M Davies, Oliver D
Mowforth, Emma K Smith, and Mark
RN Kotter. Degenerative cervical
myelopathy. Bmj, 360, 2018. doi:
10.1136/bmj.k186.

[11] Ivana Kovalova, Milos Kerkovsky,
Zdenek Kadanka, Zdenek Kadanka Jr,
Martin Nemec, Barbora Jurova, Ladislav
Dusek, Jiri Jarkovsky, and Josef
Bednarik. Prevalence and imaging
characteristics of nonmyelopathic and
myelopathic spondylotic cervical cord
compression. Spine, 41(24):1908–1916,
2016. doi: 10.1097/
BRS.0000000000001842.

[12] Lindsay A Tetreault, Branko
Kopjar, Alexander Vaccaro, Sangwook
Tim Yoon, Paul M Arnold, Eric M
Massicotte, and Michael G Fehlings. A
clinical prediction model to determine
outcomes in patients with cervical
spondylotic myelopathy undergoing
surgical treatment: data from the
prospective, multi-center aospine
north america study. JBJS, 95 (18):
1659–1666, 2013. doi: 10.2106/JBJS.
L.01323.

[13] Josef Bednarik, Zdenek Kadanka,
Ladislav Dusek, Milos Kerkovsky,
Stanislav Vohanka, Oldrich Novotny,
Igor Urbanek, and Dagmar
Kratochvilova. Presymptomatic
spondylotic cervical myelopathy: an
updated predictive model. European
Spine Journal, 17(3):421–431, 2008. doi:
10.1007/s00586-008-0585-1.

20

Machine Learning - Algorithms, Models and Applications

[14] Benjamin S Hopkins, Kenneth A
Weber II, Kartik Kesavabhotla, Monica
Paliwal, Donald R Cantrell, and Zachary
A Smith. Machine learning for the
prediction of cervical spondylotic
myelopathy: a post hoc pilot study of 28
participants. World neurosurgery, 127:
e436–e442, 2019. doi: 10.1016/j.
wneu.2019.03.165.

[15]Omar Khan, Jetan H Badhiwala,
Muhammad A Akbar, and Michael G
Fehlings. Prediction of worse functional
status after surgery for degenerative
cervical myelopathy: A machine
learning approach. Neurosurgery, 2020.
doi: 10.1093/neuros/nyaa477.

[16] Kalum Ost, W Bradley Jacobs,
Nathan Evaniew, Julien Cohen-Adad,
David Anderson, and David W Cadotte.
Spinal cord morphology in degenerative
cervical myelopathy patients; assessing
key morphological characteristics using
machine vision tools. Journal of Clinical
Medicine, 10(4): 892, 2021. doi: 10.3390/
jcm10040892.

[17] Benjamin De Leener, Simon Lévy,
Sara M Dupont, Vladimir S Fonov,
Nikola Stikov, D Louis Collins, Virginie
Callot, and Julien Cohen-Adad. Sct:
Spinal cord toolbox, an open-source
software for processing spinal cord mri
data. Neuroimage, 145:24–43, 2017. doi:
10.1016/j.neuroimage.2016.10.009.

[18] Takashi Kameyama, Yoshio
Hashizume, Tetsuo Ando, and Akira
Takahashi. Morphometry of the normal
cadaveric cervical spinal cord. Spine, 19
(18):2077–2081, 1994. doi: 10.1097/
00007632-199409150-00013.

[19]Nitin B Jain, Gregory D Ayers,
Emily N Peterson, Mitchel B Harris,
Leslie Morse, Kevin C O’Connor, and
Eric Garshick. Traumatic spinal cord
injury in the united states, 1993-2012.
Jama, 313(22):2236–2243, 2015.

[20] Raia Hadsell, Dushyant Rao, Andrei
A Rusu, and Razvan Pascanu.

Embracing change: Continual learning
in deep neural networks. Trends in
Cognitive Sciences, 2020. doi: 10.1016/j.
tics.2020.09.004.

[21]Mongodb. https://github.com/mong
odb/mongo, 2013.

[22]Nathan Evaniew, David W Cadotte,
Nicolas Dea, Christopher S Bailey, Sean
D Christie, Charles G Fisher, Jerome
Paquet, Alex Soroceanu, Kenneth C
Thomas, Y Raja Rampersaud, et al.
Clinical predictors of achieving the
minimal clinically important difference
after surgery for cervical spondylotic
myelopathy: an external validation
study from the canadian spine outcomes
and research network. Journal of
Neurosurgery: Spine, 33(2):129–137,
2020. doi: 10.3171/2020.2.spine191495.

[23] Lindsay Tetreault, Branko Kopjar,
Aria Nouri, Paul Arnold, Giuseppe
Barbagallo, Ronald Bartels, Zhou
Qiang, Anoushka Singh, Mehmet
Zileli, Alexander Vaccaro, et al. The
modified japanese orthopaedic
association scale: establishing criteria
for mild, moderate and severe
impairment in patients with
degenerative cervical myelopathy.
European Spine Journal, 26(1):78–84,
2017. doi: 10.1007/s00586-016-
4660-8.

[24] Krzyszt of J Gorgolewski, Tibor
Auer, Vince D Calhoun, R Cameron
Craddock, Samir Das, Eugene P Duff,
Guillaume Flandin, Satrajit S Ghosh,
Tristan Glatard, Yaroslav O Halchenko,
et al. The brain imaging data structure, a
format for organizing and describing
outputs of neuroimaging experiments.
Scientific data, 3(1):1–9, 2016. doi:
10.1038/sdata.2016.44.

[25] A. Chen, J. Beer, N. Tustison, P.
Cook, R. Shinohara, and H. Shou.
Removal of scanner effects in
covariance improves multivariate
pattern analysis in neuroimaging data.
bioRxiv p, 2019.

21

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

[26] Xiangjie Li, Kui Wang, Yafei Lyu,
Huize Pan, Jingxiao Zhang, Dwight
Stambolian, Katalin Susztak, Muredach
P Reilly, Gang Hu, and Mingyao Li.
Deep learning enables accurate
clustering with batch effect removal in
single-cell rna-seq analysis. Nature
communications, 11(1):1–14, 2020. doi:
10.1038/s41467-020-15851-3.

[27] Samuel J Yang, Scott L Lipnick, Nina
R Makhortova, Subhashini
Venugopalan, Minjie Fan, Zan
Armstrong, Thorsten M Schlaeger,
Liyong Deng, Wendy K Chung, Liadan
O’Callaghan, et al. Applying deep neural
network analysis to high-content image-
based assays. SLAS DISCOVERY:
Advancing Life Sciences R&D, 24(8):829–
841, 2019. doi: 10.1177/
2472555219857715.

[28] Jake Turicchi, Ruairi O’Driscoll,
Graham Finlayson, Cristiana Duarte,
Antonio L Palmeira, Sofus C Larsen,
Berit L Heitmann, and R James Stubbs.
Data imputation and body weight
variability calculation using linear and
nonlinear methods in data collected
from digital smart scales: simulation and
validation study. JMIR mHealth and
uHealth, 8(9):e17977, 2020.

[29]Haytham M Fayek, Lawrence
Cavedon, and Hong Ren Wu.
Progressive learning: A deep learning
framework for continual learning.
Neural Networks, 128:345–357, 2020. doi:
10.1016/j.neunet.2020.05.011.

[30]Olaf Ronneberger, Philipp Fischer,
and Thomas Brox. U-net: Convolutional
networks for biomedical image
segmentation. In International
Conference on Medical image computing
and computer-assisted intervention, pages
234–241. Springer, 2015.

[31] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet
classification with deep convolutional
neural networks. Advances in neural

information processing systems, 25: 1097–
1105, 2012.

[32] Ting Zhang, Guo-Jun Qi, Bin Xiao,
and Jingdong Wang. Interleaved group
convolutions. In Proceedings of the IEEE
international conference on computer
vision, pages 4373–4382, 2017.

[33] Liangru Ke, Yishu Deng, Weixiong
Xia, Mengyun Qiang, Xi Chen, Kuiyuan
Liu, Bingzhong Jing, Caisheng He,
Chuanmiao Xie, Xiang Guo, et al.
Development of a self-constrained 3d
densenet model in automatic detection
and segmentation of nasopharyngeal
carcinoma using magnetic resonance
images. Oral Oncology, 110:104862,
2020. doi: 10.1016/j.
oraloncology.2020.104862.

[34] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of
features from tiny images. 2009.

[35] Adam Paszke, Sam Gross, Soumith
Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation
in pytorch. 2017.

[36]Martín Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Man’e, Rajat
Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine
learning on heterogeneous systems,

22

Machine Learning - Algorithms, Models and Applications

2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[37] Gao Huang, Zhuang Liu, Laurens
Van Der Maaten, and Kilian Q
Weinberger. Densely connected
convolutional networks. In Proceedings
of the IEEE conference on computer vision
and pattern recognition, pages 4700–
4708, 2017.

23

Delivering Precision Medicine to Patients with Spinal Cord Disorders; Insights…
DOI: http://dx.doi.org/10.5772/intechopen.98713

