
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

148,000 185M

TOP 1%154

6,000



Chapter

On the Efficacy of Particle Swarm
Optimization for Gateway
Placement in LoRaWANNetworks
Clement N. Nyirenda

Abstract

The efficacy of the Particle Swarm Optimization (PSO) in determining the
optimal locations for gateways in LoRaWAN networks is investigated. A modified
PSO approach, which introduces gateway distancing measures during the initiali-
zation phase and flight time, is proposed. For the ease of comparisons and the
understanding of the behavior of the algorithms under study, a square LoRaWAN
area is used for simulations. Optimization results on a LoRaWAN script,
implemented in NS-3, show that the modified PSO converges faster and achieves
better results than the traditional PSO, as the number of gateways increases. Results
further show that the modified PSO approach achieves similar performance to a
deterministic approach, in which gateways are uniformly distributed in the net-
work. This shows that for swarm intelligence techniques such as PSO to be used for
gateway placement in LoRaWAN networks, gateway distancing mechanisms must
be incorporated in the optimization process. These results further show that these
techniques can be easily deployed in geometrically more complex LoRaWAN fig-
ures such as rectangular, triangular, circular and trapezoidal shapes. It is generally
difficult to figure out a deterministic gateway placement mechanism for such
shapes. As part of future work, more realistic LoRaWAN networks will be devel-
oped by using real geographical information of an area.

Keywords: Internet of Things, Particle Swarm Optimization, Networks,
Simulation, LoRaWAN

1. Introduction

As more and more devices are being embedded with networking capabilities, the
Internet of Things (IoT) paradigm is becoming more entrenched in the society. IoT
devices communicate with other devices on the Internet seamlessly. To date, IoT
has found ample applications in diverse areas such as health, agriculture, safety and
security, smart homes, smart water management, smart grids, fleet management
and traffic monitoring.

With the accelerated adoption of 5G, companies’ plans to invest in IoT solutions
will increase even more rapidly. The recent fourth annual Global IoT Executive
Survey [1] shows that the number of IoT devices will increase from 8 billion in 2019
to more than 41 billion IoT devices by 2027. Furthermore, the IoT market is geared
to grow to over $ 2.4 trillion annually by 2027.
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IoT connectivity was primarily based on short range wireless technologies such
as Bluetooth mesh networking, Wi-Fi (IEEE 802.11 standard) and Zigbee (IEEE
802.15.4 standard). The trend is, however, shifting toward Low-Power Wide Area
Networks (LPWANs), which provide low power, low data rate and long range
wireless transmission in the unlicensed frequency bands, configured in a star
topology network [2–4]. Interest in LPWANs is further fueled by low deployment
costs, large coverage, and the absense of competitors from cellular technologies in
the IoT arena [3]. Examples of LPWAN technologies include Sigfox,
Narrowband-IoT (NB-IoT) and Long-Range Wide Area Networks
(LoRaWAN) [5].

The LoRaWAN technology currently enjoys greater popularity because it is
supported by the LoRa Alliance, which is a non-profit association of more than 500
member companies [6]. It is for this reason that this work focuses on this technol-
ogy. The LoRaWAN network is a star-of-stars topology, where messages are relayed
between end devices (EDs) and the central network server (NS) through gateways
(GWs). Gateways are linked to the network server through standard IP connec-
tions. They act as transparent bridges by converting RF packets to IP packets and
vice versa [7].

Although gateways in LoRaWAN networks can cover large areas of end devices,
coverage problems still arise when the areas are too big. In such cases, the need to
deploy multiple gateways arises [8, 9]. In [8] the impact of redundant packet
reception at multiple gateways on data reliability in the LoRaWAN architecture
studied, while in [9], an adaptive algorithm for spreading factor selection in
LoRaWAN networks with multiple gateways is proposed. In the latter, the maxi-
mum number of number of gateways was four and their locations were fixed
deterministically.

This work builds on those earlier works by investigating the efficacy of Particle
Swarm Optimization (PSO) for gateway placement in a LoRaWAN network. It
draws its the motivation from recent studies on PSO based placement of Master
Nodes (MNs) in smart water metering networks (SWMNs) [10, 11]. In these net-
works, Wi-Fi links were used to create a mesh network for the transmission of
readings from Smart Meters to Master Nodes. The need to extend PSO approach to
LoRaWAN arises naturally because of the advantages of this technology and its
growing popularity in the IoT community.

This work adopts a square area, where EDs are deployed randomly and gate-
ways are deployed by using three approaches: 1) the optimal approach based on
the standard PSO; 2) the optimal approach based on the PSO algorithm that
incorporates gateway distancing mechanisms to prevent gateway interference;
3) and the deterministic approach, where the area is broken down into a number
of equally-sized sub-areas, according to the number of gateways and having one
gateway deployed at the centre of each sub-area. The LoRaWAN scripts have
been implemented using the LoRaWAN NS-3 [12] module [13]. For the PSO
approaches, the optimiser which operates at a higher level, invokes the
LoRaWAN script, on every function evaluation to calculate the Packet Delivery
Ratio for the gateway position configuration created by the algorithm at that
moment.

The rest of this Chapter is organized as follows. Section 2 briefly describes the
LoRaWAN technology. An overview of Particle Swarm Optimization (PSO) is given
in Section 3. Section 4 presents the distancing mechanisms that have been added to
standard PSO in order to enhance the spreading of the gateways in the network.
Section 5 presents the experimental setup, the results and discussions, and Secton 6
concludes the Chapter.
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2. Overview of the LoRaWAN technology

This section gives a brief overview of the aspects of LoRa and LoRaWAN tech-
nologies, that are relevant to this study.

2.1 LoRa

LoRa (Long Range) [6] is a physical layer LPWAN technique, developed by
Cycleo in France and acquired by Semtech [14]. This technique uses the chirp
spread spectrum (CSS) technology, which spreads a narrow-band signal over a
wider channel bandwidth. This process greatly enhances the signal’s robustness to
interference thereby creating long range, low data rate communication over the
license-free sub-1GHz Industrial Scientific Medical (ISM) radio bands. The trans-
mission range in LoRa depends on various parameters: bandwidth, coding rate,
transmission power, carrier frequency, and six spreading factors (SF), ranging from
7 to 12. These SFs are known to be quasi-orthogonal because they enable simulta-
neous receptions of packets with different SFs. Another important characteristic is
that the increase in SF is accompanied by the signal’s resilience to noise, at the
expense of data throughput.

2.2 LoRaWAN

LoRaWAN is an upper layer technique that relies on the physical layer LoRa
technique. While the LoRa technology is proprietary, LoRaWAN is an open stan-
dard, developed and supported by the LoRa Alliance [6]. It is an ALOHA-based
protocol which organizes networks in a star-of-stars topology, with the following
major components:

1.End devices (EDs), which generate uplink data and send it to the network
server through the gateway through a single-hop LoRa communication. EDs
also receive downlink traffic from the gateways.

2.Gateways (GW), which serve as link between the EDs and the network servers
by using and IP backbone. They collect data sent by EDs and forward it to
network servers. They also relay packets sent by the network servers to the
EDs.

3.Network Server (NS), which serves as the central coordinator and controller of
the LoRaWAN network.

The LoRaWAN standard defines three types of EDs, namely Class A, Class B,
and Class C. Class A is the default class which must be supported by all LoRaWAN
EDs. In this class, communication is always initiated by the ED and is fully asyn-
chronous. Uplink transmission is followed by two short downlink windows, to cater
for bi-directional communication and/or the transmission of network control com-
mands. In addition to all the components of Class A, Class B EDs provide regular
receive windows for potential downlink traffic. In Class C, the EDs remain in
continuous receive mode thereby reducing latency on the downlink path.

The LoRaWAN standard also supports an Adaptive Data Rate (ADR) scheme,
which enables the NS to maximize both battery battery life of the EDs and overall
network capacity, by setting the data rate (DR) and RF output power for each ED
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individually. When radio conditions are bad, data rate is lowered by increasing th
SF, leading to low coverage. Conversely, when radio conditions are good, data rate
is increased by lowering the SF or by reducing the transmit power of a node in order
to maximize the battery lifetime and optimize overall network capacity. LoRaWAN
also suffers from collisions of packets at the gateways [9, 15–17]. This happens when
two or more signals arrive at the the gateway in same time duration. These collisions
lower the data rates drastically.

Furthermore, this standard also faces the problem of network coverage when the
network area is very large. In this case, one GW cannot cater for all the EDs in the
area. As a result, there is a need for multiple gateways. To ensure that the network is
optimally covered, there is a need for sufficient inter-gateway distance. The work in
[9] implemented a maximum of 4 gateways in a 16 km � 16 km square area, in
which the gateways are located at the centres of the four quadrants. The results of
this work show that higher packet delivery rates are achieved with 4 GWs as the
network coverage area increases. In [8], the impact of redundant packet reception
at multiple gateways on data reliability is studied. This work models the Average
Successful Transmission Probability (ASTP) as a function of end device density,
gateway density, and traffic intensity thereby providing useful insights into the
deployment of multiple gateways in LoRaWANs.

Since this work focuses on the determining the effectiveness of Particle Swarm
Optimization (PSO) for the placement of multiple gateways, the next section pre-
sents an overview of the standard PSO algorithm.

3. The standard particle swarm optimization algorithm

Introduced by Kennedy and Eberhart in 1995, the Particle Swarm Optimization
(PSO) draws inspiration from the social behavior of animals living in swarms, such
as flocks of birds [18]. PSO is initialized with a population of N particles that are
generated randomly in a pre-determined search space S of D dimensions. Each
particle denotes a candidate solution to a problem and is characterized by three
main parameters: its current position, current velocity and the best position ever found
by the particle during the search process. The particles fly in the search space in
order to find the optimal solution. The trajectory of a particle is influenced by the
particle’s own experience as well as it’s neighboring particles. The velocity of the i-th
particle is updated at every iteration by using

vi tð Þ ¼ ω ∗ vi t� 1ð Þ þ c1r1 pbi � xi tð Þ
� �

þ c2r2 gb � xi tð Þ
� �

, (1)

where i ¼ 1, 2, … ,N; c1 and c2 are constants denoting cognitive and social
parameters respectively.

The values of c1 and c2 are chosen in the range 0:5, 2:5½ �. They are applied to cater

for the influence of the particle’s historical best position pbi and the swarm’s best

position gb respectively. Parameters r1 and r2 are random numbers uniformly
distributed within 0, 1½ �, while ω denotes the inertia weight; it helps to dampen the
velocities of the particles to assist in the convergence to the optimum point at the
end of the optimization iteration.

In order to keep the particle’s velocity bounded, a further arbitrary parameter
Vm ¼ vm1, vm2 … vmDð Þ∈ S, was defined. Whenever, a vector element, exceeds the
corresponding element of Vm, the element is reset to its upper limit. Once the
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velocity has been updated by using Eq. (1), the position of each particle is updated
at each iteration by using

xi tþ 1ð Þ ¼ xi tð Þ þ vi tþ 1ð Þ: (2)

In terms of implementation, the PSO algorithm goes through the following steps:

1.Initialization: It begins by initiliazing N, c1, c2, ω, and G, which denotes the
maximum number of iterations. Then the initial population of N particles is
generated with random values from the search space and initial velocities for
each particle are set to 0. The fitness function values for all N particles are
evaluated based on their initial positions. The initial positions of each particle
are set as the personal best positions for the respective particles, and the
overall best position found so far is set as best solution for the swarm.

2.Flight time: Once the initialization process is done, the algorithm goes into the
iterative process. At each iteration, the particle positions in the search space
are updated using Eqs. (1) and (2); fitness function values of all particles are
updated based on their new positions. If necessary, personal best and global
best values are updated accordingly.

3.Termination: This iterative process is terminated once G iterations are
completed. At this point, the best solution for the swarm becomes the optimal
solution for the optimization run.

The next section discusses the gateway distancing measures that have been
incorporated in the standard PSO algorithm in order to spread out the locations of
gateways in the LoRaWAN network.

4. Gateway distancing measures in PSO

This section presents the gateway distancing measures that were incorporated in
the PSO algorithm. Properly distanced GWs will help to ensure that the network
coverage is high, thereby increasing the packet delivery rate (PDR). Before
presenting these measures, the GW placement optimization problem has to be
presented.

4.1 The GW placement optimization problem

The GW placement optimization problem adopts the approach used in the
Master Node optimization problem in [10, 11]. A LoRaWAN network is assummed
to contain ned EDs in a rectangular area defined by L�M, where L and M are in
kilometers. The number of GWs in the network is denoted by ngw. The location of
each GW is defined by the x and y coordinates. As a result, the number of variable
parameters in the vector of GW coordinates that depicts the locations of all the ngw
GWs is 2 ∗ ngw. In PSO terminology, this vector is called a particle. For instance, for
a LoRaWAN network with 4 GWs, the number of parameters in the particle will be
8. The aim of the optimization process is to obtain the particle that achieves the
highest packet delivery ratio (PDR), where PDR is defined by

5

On the Efficacy of Particle Swarm Optimization for Gateway Placement in LoRaWAN Networks
DOI: http://dx.doi.org/10.5772/intechopen.98649



PDR ¼ Pr=Ps, (3)

where Pr is the number of packets received at the NS, excluding duplicate
packets, while Ps denotes the number of packets sent by by the EDs. The location
information for the 2 ∗ ngw GWs can be encoded in a particle by using

p ¼ p0, p1 … pD�1

� �

, (4)

where p0 and p1 are the coordinates of the first GW; p2 and p3 are the
coordinates of the second GW; pD and pD�1 are the coordinates of the final GW;
D ¼ 2 ∗ ngw. If the standard PSO is used, each even-indexed element of the particle
is defined within 0,L½ �, while each odd-indexed element is defined within 0,M½ �,
denoting the x and y-cordinates respectively. When GW distancing measures are
employed, this process is modified as explained in the next subsection.

4.2 The PSO algorithm with GW distancing measures

GW distancing measures can be applied during the initialization process as well
as during flight time. During initialization, the initial GW positions can be set in
such a way that they are sufficiently far away from each other. During the iterative
process, only those particles that depict sufficient average inter-gateway distance
are evaluated. Next, the two techniques that would address GW distancing require-
ments will be presented.

4.2.1 GW distancing during initialization

This technique aims at initiliazing the locatons for the respective GWs to some
equal but distinct sub-areas of the LoRaWAN. The lengths of the sides of each of
those sub-areas be denoted by ΔL and ΔM can be defined by

ΔL ¼ L=
ffiffiffiffiffiffiffi

ngw
p

(5)

and

ΔM ¼ M=
ffiffiffiffiffiffiffi

ngw
p

: (6)

Figure 1.
Illustration of the sub-areas used in the GW initialization process.

6

Optimisation Algorithms and Swarm Intelligence



For instance, if 4 GWs are initialized in a square LoRaWAN area of sides 4 km
by 4 km, L ¼ M ¼ 4km, ΔL and ΔM would both be equal to 2 km as illustrated in
Figure 1. Each GW will be initialized in the distinct sub-area such that the
coordinates for the four GWs will be initialized as follows: for GW1, x∈ 0, 2½ � and
y∈ 0, 2½ �; for GW2, x∈ 0, 2½ � and y∈ 2, 4½ �; for GW3, x∈ 0, 2½ � and y∈ 2, 4½ �; and for
GW4, x∈ 2, 4½ � and y∈ 2, 4½ �.

For some LoRaWAN network areas and designated number of GWs, it will not
be possible to fit all the GWs into the network by using the aforementioned
approach. In such cases, the extra GWs can be randomly initialized with coordi-
nates drawn from the entire area. The number of extra GWs negw can be determined
by using

negw ¼ ngw � M=ΔM ∗L=ΔLð Þ (7)

4.2.2 GW distancing during flight time

The parameter that governs GW distancing during flight time is the average
inter-gateway distance dk, which is defined for each particle k in the swarm by
using

dk ¼
1

ne

X

ngw

i¼0

X

ngw

j¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pk,2i � pk,2j

� �2
þ pk,2iþ1 � pk,2jþ1

� �2
r

, (8)

where ne is the number of edges among the GWs, which is defined by

ne ¼
ngw ngw � 1

� �

2
: (9)

After the initialization process, the initial average inter-gateway distance dinitk is
calculated for all particles by using Eqs. (8) and (9). During flight time, an inter-

gateway distance d
flight
k is calculated after every particle position update using the

same equations. Fitness function evaluation for the particle k is triggered by using
the probabilty pr which is defined by

pr ¼
d
flight
k

dinitk

, if d
flight
k ≤ dinitk

1, otherwise

8

>

>

<

>

>

:

(10)

The decision on whether to evaluate particle k or not is governed by the follow-
ing rule: if randðÞ< pr, then evaluate particle k, else try to get new position for the
particle and test the rule again. The parameter randðÞ is a random number in the
range 0:0, 1:0½ �. This process will continue until the rule fires.

Algorithm 1 shows the modified PSO algorithm, with the GW distancing mea-
sures highlighted in blue color. On lines 15 and 30, the LoRaWAN script is invoked
and the PDR value emanating from that process is construed as the fitness function
value, F xkð Þ, for each particle k.
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Algorithm 1: PSO with GW Distancing Measures

5. Simulation environment, results and discussions

Since the goal of this work is to determine the efficacy of PSO in GW placement
in LoRaWAN networks, the standard PSO and the modified PSO (with distancing
measures) are compared with a deterministic approach. For brevity, the standard
PSO, will be referred to as PSO, while the modified PSO will be refered to as
PSODIST. For purposes of ease of comparison and discussion of the ensuing results,
a square LoRaWAN area is adopted. Parameters L and M are both set to 50 km and
50 km respectively. The number of GWs ngw is varied by using 4, 9, 25, and 49,
which are all square numbers. This caters for the ease of deployment in the deter-
ministic approach, which uniformly distributes the GWs as illustrated in Figure 1
for 4 GWs. The expectation is that such a deterministic approach will yield the best
result for the square LoRaWAN network area. If a PSO based approach can achieve
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similar results to the deterministic approach, the effectiveness of the PSO approach
for GW placement will be proved.

5.1 The LoRaWAN script and simulation parameters

The LoRaWAN script is implemented in the NS-3 LoRaWAN module [13]. In
order to reduce the simulation time for the LoRaWAN script during the optimiza-
tion process, the number of EDs, ned is set 400. These EDs are set up randomly in
the LoRaWAN area and the resulting text file is saved on the system. The ED
locations are loaded to the simulation together with the GW locations on every
LoRaWAN script invocation.

With the introduction of multiple GWs, a single packet may find its way to the
Network Server (NS) through two or more GWs. In order to remove such packets
from the number of unique packets received at the NS, some modifications were
made to the LoRaWAN module. The default LoRa physical layer parameters in [13]
were used in the simulations. The rest of the parameters in the LoRaWAN script are
shown in Table 1. For the PSO algorithms, parameters are set as follows:N ¼ 20,
c1 ¼ 1:5, c2 ¼ 1:5, ω ¼ 0:7, and G ¼ 50. They are all within the ranges that are
commonly used in literature.

The basic C++ PSO code used in this study have been downloaded from [19].
The PSODIST code was developed by incorporating the GW distancing measures,
explained in Section 4, in the basic PSO code. A personal computer with an Intel®
Core™ i7-7500U CPU @ 2.70GHz � 4 processor with 8 GB RAM, running on
Ubuntu 18.04.5 LTS, was used in this study. Ten optimization runs were conducted
for each specific number of GWs for the PSO and PSODIST approaches. The
LoRaWAN script was seeded with the same values, in order to ensure that the same
simulation conditions prevail in all the optimization runs.

5.2 The efficacy of GW distancing measures

In this subsection, the efficacy of the GW distancing measures in the PSODIST
algorithm is investigated by examining the mechanics of PSODIST against the basic
PSO approach. Figures 2–5 show the evolution of the optimization process for PSO
and PSODIST approaches for the best optimization runs for 4, 9, 25, and 49 GWs. In
the case of 4 GWs, in Figure 2, the difference in the evolution of the PDR value
between the two approaches is very minimal. In fact, contrary to expectation, the
PSODIST approach starts from a worse off position at around 36% while PSO starts
from 38%. The GW distancing process during the initialization process does not
help simply because the partitions in which the GWs are initialized are too big. The
flight time GW distancing process helps to push PSODIST barely above the PSO. It
can, therefore, be observed that GW distancing measures do not improve the
performance of PSO when the number of GWs is low.

Parameter Value

Spreading factors 7, 8, 9, 10, 11 and 12

GW height 20 m

ED height 2 m

Packet generation rate 12 packets/h

Simulation time 3000 s

Table 1.
LoRaWAN simulation parameters.
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In the case of 9 GWs, as shown in Figure 3, PSODIST starts with a PDR of 49.2%
while PSO starts with 45.5%. The trend becomes even more prominent as the
number of GWs increases (see Figures 4 and 5). At 25 GWs, PSO and PSODIST
register initial PDR values of 47.4% and 52.3% respectively, while at 49 GWs, the
initial PDR values are 47% and 49.9% respectively. This shows that the benefits of
GW distancing measures in the initializition process are only realized as the number

Figure 2.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 4.

Figure 3.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 9.
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of GWs increases. This is due to the reduction in the sizes of the partitions in which
the GWs are initialized.

As the number of GWs increases, the flight time GW distancing process seems
to be more effective than in the case of 4 GWs. Figure 3 shows that at 9 GWs,
PSODIST converges to a PDR value of 51.63% at the 24th generation, while PSO
converges to 50.98% at the 38th generation. In the case of 25 GWs, as shown in
Figure 4, PSODIST converges to a PDR value of 53.95% at the 27th generation,

Figure 4.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 25.

Figure 5.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 40.
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while PSO converges to 50.65% at the 38th generation. When 49 GWs are used, as
shown in Figure 5, PSODIST converges to a PDR value of 54.8% at the 34th
generation, while PSO converges to 51.1% at the 37th generation. These results show
that the basic PSO suffers from delayed convergence as well as suboptimal conver-
gence because the initial positions of the GWs are not properly distanced. It can,
therefore, be concluded that GW distancing measures improve the performance of
PSO when the number of GWs is increased.

Figure 6.
Locations of 25 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSO swarm.

Figure 7.
Locations of 25 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSODIST swarm.
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Figures 6–9 illustrate the spread of the GW locations in the LoRaWAN area.
From these graphical presentations, it is easy to see that the PSODIST achieves a
better GW spread than PSO. In the PSO approach, there are some sections where
the GWs are too crowded. For instance, in Figure 6, the subarea bounded by
coordinates (20, 0), (20, 10, 30, 10, 30, 0), has four GWs, while in the north-
western corner, there are no GWs in a subarea that is 2.5 times the former. In
Figure 8, a similar trend is observed as there are even up 6 GWs in the central

Figure 8.
Locations of 49 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSO swarm.

Figure 9.
Locations of 49 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSODIST swarm.
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10 km x 10 km subarea. The EDs in the subareas with little GW coverage suffer
from GW reachability issues. On the other hand, subareas with many GWs also
suffer from increased downlink traffic interference. Both of these conditions lead to
the reduction of PDR.

5.3 Benchmarking PDR performance of PSO with the deterministic approach

A separate simulation exercise was conducted using the deterministic approach
for benchmarking purposes. Ten simulation runs were also conducted for 4, 9, 25,
and 49 GWs. Table 2 shows the minimum, mean and maximum PDR values from
the two PSO approaches along with the deterministic approach. Results depicting
the best performing approach are shown in bold text. For 4 GWs, there is no
significant difference among the three approaches as best minimum value of 39.8%
is from PSO. On the other hand, the deterministic approach and PSODIST achieve
the best mean and maximum values of 40.23% and 40.70% respectively. With 9
GWs, PSODIST seems to have an upper hand in the sense that it achieves the best
minimum and mean values of 51.28% and 51.51% respectively, while the determin-
istic approach gets the best maximum value of 52.38%. At 25 GWs, all the best

No. of GWs Deterministic PSO PSODIST

Min Mean Max Min Mean Max Min Mean Max

4 38.66 40.23 42.68 39.58 40.06 40.58 39.55 40.17 40.70

9 48.15 49.95 52.38 48.28 49.81 50.98 51.28 51.51 51.63

25 49.70 51.78 53.28 50.65 51.50 52.15 53.50 53.74 53.95

49 54.25 55.29 57.18 50.43 50.81 51.10 53.50 54.33 54.80

Table 2.
Benchmarking of PSO approaches with the deterministic approach.

Figure 10.
A comparison of the PDR values for the three approaches when the number of GWs is set to 4, 9, 25 and 50.

14

Optimisation Algorithms and Swarm Intelligence



values come from PSODIST, while at 50GWs, they all come from the deterministic
approach. The basic PSO seems not to compete well with the other two approaches.

Figure 10 illustrates the same results from a graphical perspective, where the
performance of PSODIST compares fairly well with the deterministic approach. It
even outperforms the deterministic approach at 25 GWs. This clearly shows that
when PSO approach is used for GW placement in LoRaWAN networks, there is a
need for GW distancing mechanisms in order to prevent GWs from accumulating
in some specific zones thereby jeopardizing performance in terms of PDR.

6. Conclusions

This Chapter investigated the efficacy of using Particle Swarm Optimization
(PSO) in determining the optimal locations for gateways in large LoRaWAN net-
works. The coordinates of the gateways are coded into a vector, which denotes
particle in PSO terminology. Gateway distancing measures have been proposed for
the initiliazation and flight time phases of the PSO in order to spread out the
gateways in the network. This process created a modified PSO algorithm, herein
refered to as PSODIST. During initialization, the LoRaWAN area is broken down
into a number of subareas and each gateway is initiliazed in a specific area. If there
are some extra gateways, which cannot fit in the subareas, such gateways are
initialized randomly within the entire area. During flight time, only new particle
positions, that exhibit a sufficiently high inter-gateway distance, are evaluated.
Optimization experiments are conducted to verify the effectiveness of the PSODIST
approach. The LoRaWAN script, used in the optimization process, is implemented
in NS-3 [12] using the recently proposed LoRaWAN module [13]. The function
evaluation routines in the PSO algorithms invoke the LoRaWAN script and the
resulting packet delivery rate (PDR) is retained as the fitness for the respective
particle.

The mechanics of the optimization process show that there is no difference
between PSODIST and PSO when the number of gateways is small. Nevertheless, as
the number of gateways increases, the impact of distancing measures becomes
evident; PSODIST yields better optimization rates as well as much faster conver-
gence than PSO. The much more even spread of the gateway locations determined
by PSODIST has also been demonstrated graphically. The results from the PSO
approaches have been further compared with the deterministic approach which
arranges the gateways uniformly over the LoRaWAN area. PSODIST yields similar
PDR values as the deterministic approach in the 50 km � 50 km LoRaWAN area.
Unlike the deterministic approach, which relies on square numbers and square areas
for uniform coverage, PSODIST can work well for any number of GWs. It is,
therefore, possible to get optimal performance at a lower number of GWs, in
between square numbers. Furthermore, PSODIST is not shape-dependent. It can,
therefore, be deployed easily in geometrically more complex LoRaWAN figures
such as rectangular, triangular, circular and trapezoidal shapes. The development of
more realistic LoRaWAN network by using real geographical information of an area
will be considered in future.

Abbreviations

IoT Internet of Things
NB Narrowband
LoRaWAN Long Range Wide Area Network
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LPWAN Low-Power Wide Area Networks
LoRa Long Range
PSO Particle Swarm Optimization
ED End Devices
GW Gateway
GW Network Server
SWMN Smart Water Metering Network
SWMN Chirp Spread Spectrum
SF Spreading Factor
PDR Packet Delivery Ratio
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