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Abstract

Majority of ovarian cancers are diagnosed at advanced stages with  
intra-peritoneal spread as the most common mode of disease metastasis. The 
formation of cancer spheroids is essential for the collective migration process, 
where shed tumour cells from the primary tumour form aggregates rather than 
disseminating as individual cells and seed within the peritoneal cavity. These cancer 
spheroids consist of leader cells (LC) and follower cells (FC), with the LC subset as 
key drivers of cellular movement and invasion. LCs have stem cell-like properties 
and are highly chemo-resistant with a specific survival addiction to several cell 
signalling pathways, such as the PI3K/AKT/mTOR pathway. We explore in this book 
chapter, the evidence supporting the role of LC in OC metastasis and the suppres-
sion of LC as an attractive therapeutic option for the treatment of advanced OC.

Keywords: Ovarian cancer, Leader Cells, KRT14, PI3K/AKT/mTOR,  
Collective migration

1. Introduction

1.1  The majority of ovarian cancers disseminate passively within the 
intraperitoneal space via ascitic fluid

The majority of ovarian cancers (OC), up to 70%, are diagnosed at advanced 
stages (stage III-IV) with intra-peritoneal spread as the most common mode of 
metastasis [1]. OC dissemination is often accompanied by the formation of ascitic 
fluid within the peritoneal cavity [2–4]. Under normal conditions, a small amount 
of fluid is secreted by the peritoneal capillaries into the cavity to lubricate the move-
ment of abdominal organs which is normally re-absorbed by the lymphatic chan-
nels as a result of intrathoracic pressure [5]. However, in the presence of malignant 
cells, fluid can accumulate in large volumes in the peritoneum and facilitate passive 
cancer cell dissemination [6]. Whilst haematogenous spread may account for some 
ovarian tumour metastasis [7], it is largely the passive peritoneal dissemination of 
spheroids that results in ovarian cancer spread [8].

Prior to detachment from the primary tumour, OC cells are believed to exhibit a 
unique gene expression profile. This includes co-expression of both epithelial and 
mesenchymal markers and the acquisition of an epithelial-mesenchymal transition 
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(EMT)-like phenotype [9, 10]. The detached OC cells are then shed into the peri-
toneal cavity and simultaneously, E-cadherin expression is replaced by P-cadherin 
and N-cadherin, an event known as the global cadherin switch [11]. A fluctuation 
in E-cadherin levels is once again observed when detached cells form multicellular 
spheroids and E-cadherin levels are elevated [12], collectively demonstrating OC 
phenotypic plasticity is crucial for each step of the metastatic process [13].

1.2 OC spheroids play a key role in intra-peritoneal spread of malignant cells

Detached tumour cells from the primary tumour aggregate as spheroids in the 
ascites to overcome anoikis [2]. We believe that these cancer cell spheroids “float-
ing” in the ascites are a key component in OC passive dissemination and play a 
pivotal role in both invasion and metastasis [6]. Furthermore, OC spheroids exhibit 
remarkable chemoresistance and progenitor-like properties [14, 15].

The mesothelial monolayer covering all of the abdominal organs is the initial point 
of contact for the disseminating spheroids during the metastatic process [16]. This 
layer lies on top of basement membrane, which is composed of collagen I, IV, laminin 
and fibronectin and contains a milieu of macrophages and fibroblasts populating 
the extracellular matrix (ECM) space [17–19]. It was observed that transcriptional 
reprogramming occurred within the floating spheroids which transformed tumour 
cells from a proliferative to an invasive phenotype to facilitate invasion through the 
mesothelium via the ECM [6]. Studies have shown that α5β1-integrin expression by 
spheroids binds fibronectin expressed by mesothelial cells and is critical for spheroid 
adhesion to the mesothelial lining [20–24]. However, multiple preclinical studies 
targeting individual integrin complexes failed to prevent the adhesion of spheroids 
to the peritoneum, hence the role of non-integrin-based adhesion molecules, such 
as CD44 and L1CAM, may be crucial to the spheroid adhesion process [25]. The 
attachment of OC spheroids to the peritoneum initiates the process of infiltration and 
invasion. The process of passive dissemination is illustrated in Figure 1.

2. Collective migration and leader cells

2.1 Collective migration occurs during epithelial cancer metastasis

During embryonic development, tissue homeostasis and also cancer invasion, cells 
migrate as multicellular clusters with a directed and coordinated movement – this 

Figure 1. 
Ovarian cancer passive mode of metastasis. Ovarian cancer cells from the primary tumour are exfoliated 
into the peritoneal cavity. Exfoliated cancer cells aggregate to form compact multicellular spheroids and 
disseminate within the peritoneal cavity, where single cells are subject to anoikis. Spheroids further attach to 
and invade the perineal lining by displacing the mesothelial cell layer in a process mediated by ovarian cancer 
leader cells.
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process is called collective migration [26]. Collective migration is characteristic of 
metastatic tumours in transit, particularly cancers with epithelial origin [27, 28] 
including pancreatic cancer [29], colon cancer [30], sebaceous cancer [31], melanoma 
[32], breast cancer [33–35], lung cancer [36] and OC [37, 38]. There are three key 
features that define the collective phenomenon; (i) the preservation of the physical 
connections and cell–cell junctions to orchestrate collective movement; (ii) the shared 
cytoskeletal dynamics within the cell clusters, allowing groups of cells to proceed as 
a single unit and maintain multicellular polarity; and (iii) the interactions with other 
cells and ECM along the migration path [26, 39, 40]. Interestingly, not all cells within 
the collective invading cell cluster are invasion competent [26] and it is now under-
stood that the complex cohesive movement of collective invasion is orchestrated by a 
subset of cells called “leader cells” (LCs) [37, 41–44].

2.2 Cancer leader cells are the key drivers in cancer cell migration

The LCs have been well characterised in the context of collective migration in 
normal physiological events such as wound healing [41], nephric ducts growth [45], 
angiogenesis [46], and mammary branching [47]. More recently, cancer LCs have 
been identified in bladder [48–50], breast [34, 35, 51], prostate [50], pancreatic 
[52], small cell lung cancer (SCLC) [53], and now in metastatic OC [37]. These cells 
have a distinct front-rear polarity and membrane protrusions to sense environ-
mental cues in order to direct the invading cluster [28, 54]. Studies have shown that 
within a collectively migrating cancer cluster the cancer LCs will be situated at the 
invasive front, followed by follower cells (FCs) in a packed morphology [28, 54, 55]. 
It has been shown that the removal of the LCs from an invading cluster of kidney 
epithelial cells results in the loss of orientation and speed in movement of the FCs - 
this highlighted the importance of LCs in the organisation of collective movement 
[44]. However, the dynamic interaction between the LCs and FCs is required to 
ensure the success of collective movement. Therefore, the FCs play a critical role in 
LCs polarisation, gradient sensing, and chemotaxis [54, 56, 57], and thus in return 
actively influence LC function.

2.3  Leader cells exhibit remarkable ability to alter their surrounding tissue 
micro-environment, which is crucial in their role as cell migration drivers

Within the collective migration process, LCs are able to lose or rearrange their 
baso-apical polarity during cellular elongation, while maintaining attachment to 
FCs by retaining molecular plasticity through the expression of epithelial markers 
such as CDH1, which encodes for E-cadherin [34, 55, 58]. LCs can mediate cyto-
skeletal organisation by displaying front-to-rear polarisation [28, 59]. Activation 
of phosphoinositide 3-kinase (PI3K) [60], GTPase proteins, cell division cycle 42 
(Cdc42) and Ras-related C3 botulinum toxin substrate (Rac) [54] at the front of the 
spheroid induces actin polymerisation and integrin-based interactions with ECM 
components [61], while the expression of matrix metalloproteinases (MMPs) by 
LCs generates a track within the ECM and the basement membrane allowing for cell 
invasion into these spaces [62].

In the absence of a known LC marker, earlier studies have focused on the physi-
cal positioning of LCs within a collectively invading cluster to investigate the LCs 
profile. Carey et al., shed light on heterogeneous tumour subpopulations within 
3D spheroids and showed different invasion and ECM remodelling capacities with 
LCs driving malignant protrusions [63]. Later, Yamaguchi et al., used the same 
approach and showed that by removing the LCs from a collectively invading cluster 
of epithelial kidney cells, the follower population movement lost direction [44]. 
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This study further showed that LCs express high level of proteins involved in cell 
migration and polarisation, such as Rac, integrin β1 and PI3K [44]. Konen and col-
leagues established a novel image-guided manipulation technique to isolate the LCs 
from collectively invading lung cancer spheroids [64]. The spatiotemporal genomic 
and cellular analysis (SaGA) technique involved labelling cells within the spheroid 
with a green-to-red photoconvertible fluorescent protein. Invasive cells at the front 
were tagged with a laser beam which converted the fluorescence to red allowing the 
isolation of the invasive LCs by fluorescent activated cell sorting (FACS) [64, 65]. 
Using SaGA, transcriptomic analysis of lung cancer LCs identified 788 differentially 
expressed genes comparing LCs and FCs. Among them, genes involved in VEGF 
signalling, focal adhesion and RNA polymerase II transcription were significantly 
over-expressed in the LCs population [64]. The authors further demonstrated that 
although LC function was not dependent on VEGF signalling, it was necessary to 
drive the collective movement of FCs [64]. In SCLC, a distinctive mutation profile 
between LCs and FCs showed that mutations in the actin related protein-3 (ARP3) 
gene enhanced LCs function [53]. Further, introducing this mutation into the non-
invasive follower population promoted invasion and collective movement [53].

2.4 Cancer LCs have stem cell-like phenotype

Cancer LCs play a critical role in early-stage invasion and tumour micrometa-
static seeding [34, 35, 42, 66, 67]. Multiple studies investigating cancer microme-
tastasis in patient-derived-xenograft (PDX) models further characterised cancer 
LCs at a single cell level. A study by Lawson et al. analysing breast cancer PDX 
micrometastases by single cell sequencing demonstrated a distinct basal/stem-cell 
signature in early-stage metastatic cells [68]. This study demonstrated a distinctive 
molecular signature for low and high- burden metastatic tumours with elevated 
stem cell signatures and dormancy in low burden tumours and high proliferation 
and differentiation signatures in high-burden tumours [68]. Another study with 
the same approach for the analysis of breast cancer micrometastasis identified 330 
differentially expressed genes. Among the genes significantly upregulated in the 
micrometastatic lesions were those encoding heat shock proteins HSPB1, HSPA8 
and HSPE1 as well as cytokeratins KRT14, KRT16, KRT7 and KRT17 [69]. HSPB1 
is involved in protein folding, apoptosis evasion and actin remodelling [70, 71], 
whereas KRT14 is a marker of invasion driving LCs in breast and ovarian cancer 
[34, 37]. This study also showed that mitochondrial oxidative phosphorylation 
(OXPHOS) was significantly up-regulated in metastatic cell seedings, suggesting a 
potential alternative metabolic pathway is utilised by the LCs to fuel the metastatic 
process [72–74].

2.5 KRT14 is a reliable dynamic cancer LC marker

KRT14 is a member of the intermediate filaments (IFs) and is generally 
expressed within the basal layer of epithelium to provide structural support [75]. 
In cancer cells, the direction of collective migration cell cluster movement and 
formation of protrusive structures are mediated via the interplay between the 
keratin IFs and cadherin [76]. Elevated expression of KRT14 has been identified in 
invasive LCs of breast [34], ovarian [37], bladder [49], and salivary adenoid cystic 
carcinoma (SACC) [77]. In vitro studies on KRT14 expressing LCs in OC dem-
onstrated that spheroids generated from KRT14 depleted cells failed to maintain 
stable attachment with the mesothelial layer and to generate invasive protrusions 
[37]. RNA-sequencing revealed that the KRT14+ breast cancer LCs show a signifi-
cantly higher level of DSG3, encoding a major desmosomal protein, as well as gene 
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expression signatures associated with cell and matrix adhesion [34]. Desmosomes 
play a critical role in maintaining cell–cell adhesion throughout the collective 
movement via intracellular connection of keratin filaments in neighbouring cells 
[78, 79]. However, the exact mechanisms of KRT14 involvement in driving collec-
tive invasion remains unknown. It was hypothesised that keratin IFs may regulate 
focal adhesions via intertwined interactions with the AKT and integrin/focal 
adhesion kinase (FAK) pathways [80–83]. More specifically, KRT14 has been shown 
to stabilise hemidesmosomes by regulating the levels of integrin β4 on the surface 
of keratinocytes [80]. Furthermore, KRT14 can mediate the phosphorylation of 
desmosomal cell junctions via PKCα, which is important in regulating epithelial cell 
adhesion [81, 82]. These results suggest that the KRT14 expression in LCs can be a 
determining factor to maintain the integrity of the collective movement via cell–cell 
and cell-matrix adhesion [54, 83].

Study Model LC-specific 

signatures

Yamaguchi et al. [43] LCs isolated from invasive 
strands of a spheroid embedded 
in collagen matrix using a 
micromanipulator

Kidney epithelial 
cells

Rac
Integrin β1
PI3K

Lawson et al. [66] FACS-based isolation of single 
metastatic cells followed 
by Fluidigm dynamic array 
experiments identified 
signatures of micrometastases.

Breast cancer 
PDX model

Differentiation
Proliferation
Dormancy exit

Cheung et al. [33] RNA-sequencing identified 239 
DEGs comparing KRT14+ LCs 
and KRT14− FCs

Breast cancer 
cells/ PDX model

ECM proteins
Immune system 
regulators
Cell–cell and cell-
matrix adhesion
Regulators of the 
metastatic niche

Konen et al. [62] SAGA identification of 788 
DEGs in the LCs isolated from 
a collectively invading spheroid 
model

Lung cancer VEGF signalling
Focal adhesion 
molecules
RNA polymerase II 
transcription

Sonzogni et al. [50] RNA sequencing and secretome 
analysis of KRT14+ LCs and 
KRT14− FCs

Breast cancer Pro-metastatic 
genes
Matrix adhesion

Zoeller et al. [52] SAGA identification of genomic 
and transcriptomic signatures 
for LCs via parallel mutation and 
RNA-seq analysis

NSCLC collective 
movement
Actin filament 
proteins
Mitochondrial 
enzymes

Davis et al. [67] Single-cell RNA sequencing of 
micrometastases compared to 
the primary tumour.

Breast cancer /
PDX model

Heat shock proteins
Cytokeratins
OXPHOS
Mitochondrial 
electron transport
Mitochondrial 
ribosomal genes

Table 1. 
Summary of studies investigating LCs profile.
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2.6 KRT14 positive cells are linked to LC with distinct gene expression profile

Transcriptome analysis of the KRT14 expressing LCs in breast cancer by RNA 
sequencing identified 239 differentially expressed signatures between the KRT14+ 
LCs and the KRT14− FC population. Gene ontology (GO) analyses, revealed that the 
expression of genes encoding ECM proteins, intermediate filaments, cytoskeleton 
organisation, and cell adhesion were significantly elevated in LCs compared to the 
FC population [34]. Interestingly, this study demonstrated that the LC subset is not 
a fixed lineage, however, the mechanisms regulating the interconversion of LCs and 
FCs remains unclear [34]. Recent studies suggest that the behaviour of breast cancer 
LCs can be mediated by CD44 expression levels where a high level of expression 
induces a shift towards an invasive LC phenotype [84]. Sonzogni et al. showed that 
KRT14 expressing LCs have a significantly higher expression of genes involved 
in metastasis progression including metallothionein-2 (Mt2), glycoprotein non-
metastatic B (Gpnmb), and adhesion molecule Amigo2, and secrete significantly 
higher levels of the collagen VI subunit A (Col6a1) [51]. In bladder cancer, stem-like 
KRT14+ cells gave rise to differentiated cells and were shown to be necessary for 
epithelial layer establishment following tissue damage [49]. A summary of studies 
and pathways involved in LC function is provided in Table 1.

2.7 LCs are implicated in OC metastasis and invasion

We have recently identified the OC LCs [37]. A study using spheroid-meso-
thelium co-culture model was utilised to identify molecules that were specifically 
expressed at the early stages of invasion via matrix-assisted laser desorption/
ionisation (MALDI) tissue imaging. Among the identified proteins, KRT14 was 
shown to mark the invading cells universally across the different subtypes of EOC, 
while KRT14 expression was absent from the normal ovarian and fallopian tube 
tissue [37]. This study confirmed that cells lacking KRT14 proliferate at the same 
rate as the WT cells, however, demonstrate significantly impaired migration and 
matrix-adhesion [37]. These results suggest the explicit role of LCs in invasion and 
metastasis in OC.

3.  Novel OC therapeutic approach by targeting the collectively migrating 
cell population

3.1 Collectively migrating cell clusters may be targeted to reduce cancer spread

Current cancer therapies are mainly evaluated by cytotoxicity and their effect 
on tumour shrinkage; however, bulk tumour regression is not the only factor 
in effective cancer therapies [85]. In OC, the majority of patients are diagnosed 
with metastatic disease which is associated with a significantly poorer prognosis, 
hence strategies to interrupt metastasis through the disruption of cell motility, 
collective movement, directed cell migration and invasion have gained interest 
[86]. Targeting the cytoskeletal stability through actin is one such approach that 
has shown inhibitory effects on invadopodia formation and outgrowth in lung 
[87, 88], melanoma [88] and prostate [89] cancers. Unfortunately, these drugs are 
usually associated with significant toxicities due to the lack of discriminative drug 
effects between the malignant and healthy cells [88, 89]. Targeting other processes 
involved in actin polymerisation such as Rho GTPases and RhoA/Rho-associated 
kinase (ROCK) signalling pathway is potentially beneficial since the cytoskeletal 
dynamics play an important role during invasion and metastasis of a collectively 
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invading cluster [90, 91]. However, cancer cells generally are able to establish 
alternative mechanisms to bypass these targets leading to early drug resistance [92].

3.2  Targeting LCs within the collectively migrating cluster may be a better 
therapeutic option for the treatment of OC

As highlighted earlier, the molecular features of LCs are cancer-specific and 
this represents a challenge for developing clinically relevant therapies against LCs. 
Despite this, multiple targets have emerged from LCs studies (listed in Table 1: 
Summary of studies investigating LCs profile). These include targeting the LC 
stimulatory pathways such as the PI3K/mTOR pathway (with tyrosine kinase inhib-
itors and Ivermectin), metabolic/energy pathways (statins, cardiac glycosides and 
metformin) and inflammatory pathways (non-steroidal anti-inflammatory drugs).

3.3  Disrupting the PI3K/AKT/mTOR pathway is an attractive therapeutic 
strategy to inhibit LCs

There is an enrichment of LCs observed in late-stage OC associated with the 
up-regulation of the PI3K/AKT/mTOR pathway [37, 93]. Yamaguchi et al.’s study 
revealed the up-regulation of PI3K in kidney epithelial LCs [44] implicating this 
pathway as a potential target for LC inhibition. The PI3K/AKT/mTOR signalling 
pathway mediates major cellular events such as growth, motility, metabolism, and 
survival [94].

PI3Ks are a group of membrane-associated kinases that form heterodimeric 
structures comprised of regulatory and catalytic subunits classified based on 
their structure, regulation and substrates [95]. Class I PI3Ks are hugely implicated 
in cancer and are comprised of a p85 regulatory and a p110 catalytic subunit 
[96]. The catalytic subunit in class IA has three variants including p110α, p110β, 
and p110δ encoded by PIK3CA, PIK3CB and PIK3CD respectively, whilst the 
catalytic subunit of the only class IB PI3K, p110γ, is produced from PIK3CG gene 
[96]. Class IA PI3Ks are activated via ligand binding to receptor tyrosine kinases 
(RTKs), while activation IB PI3Ks is mediated by G-protein-coupled receptors 
(GCPRs) [97]. Upon ligand binding, activated PI3Ks catalyse phosphorylation of 
phosphatidylinositol (PtdIns) [4, 5] P2 (PIP2) to produce PtdIns [3–5] P3 (PIP3), 
an event that is inhibited by the tumour suppressor Phosphatase and tensin homo-
logue (PTEN) in normal cells [94]. Following PIP2 to PIP3 conversion, proteins 
with a PH domain are recruited to the plasma membrane to activate downstream 
signalling proteins such as AKT, triggering multiple downstream pathways regu-
lating survival, growth and invasion [94, 98]. AKT, also known as protein kinase 
B (PKB) is the main effector of PI3K and other than direct activation by PI3K, 
can be activated indirectly by mTOR and phosphoinositide-dependent kinase-1 
(PDK1) that phosphorylate AKT at Ser 473 and Tyr 308 residues, respectively 
[99–101]. A schematic overview of the PI3K/AKT/mTOR pathway is demonstrated 
in (Figure 2).

3.4  Dual PI3K/mTOR kinase inhibitors may be required to effectively suppress 
OC leader cells

Activation of PI3K/AKT/mTOR pathway is frequently observed in oncogenic 
events contributing to tumour development, metastasis and therapy resistance 
[98] and irregularities in the PI3K/AKT/mTOR pathway corresponds with a poor 
prognosis in OC patients [99, 102, 103]. Activating mutations and genomic ampli-
fication of PIK3CA [104] and AKT and mTOR are more prevalent in women with 
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clear cell ovarian carcinoma and associated with drug resistance phenotype [101]. 
Importantly, pharmaceutical inhibition of the PI3K/AKT/mTOR pathway was 
shown to increase in vitro sensitivity of OC cell lines to multiple chemotherapy 
agents [105, 106]. Moreover, PI3K inhibition via LY294002 disrupted the direc-
tional movement of kidney LCs [44], further highlighting the importance of the 
PI3K pathway for LC function. Inhibition of PI3K/AKT/mTOR pathway can be 
achieved via pan or isoform specific PI3K inhibitors, AKT inhibitors or dual pan 
PI3K/mTOR inhibitors [107–109]. However, PI3K/AKT/mTOR inhibition as a 
therapeutic option can be challenging due to the potential toxicities compounded 
by the activation of compensatory pathways and enhanced insulin production 
upon inhibition of PI3K [94, 98, 100, 101, 104, 110]. Currently, the PI3K inhibitor 
idelalisib and the mTOR inhibitor everolimus have gained FDA approval for the 
treatment of lymphoma [111] and renal cancer [112], respectively. Unfortunately, 
the clinical use of single agent inhibitors has shown minimal efficacy and high 
toxicities in treatment of OC [113–115].

The PI3K/AKT/mTOR pathway is interconnected with other signalling path-
ways including focal adhesion kinases [116] and RAS/RAF/MEK/ERK [117]. There 
are multiple canonical and non-canonical crosslinked pathways that could bypass 
single protein inhibition resulting in therapeutic failure. Therefore, targeting the 
pathway cascade at multiple levels via dual PI3K/mTOR inhibitors, might circum-
vent the negative feedback loops that occur with single target inhibitors [118]. 
Pre-clinical data from the PI3K/mTOR dual inhibitors omipalisib (GSK2126458), 
CMG002 and BEZ235 have indicated effective inhibition of ovarian cancer 
tumour growth and progression in vitro and in vivo [93, 106, 119, 120]. Currently, 
there are no ongoing clinical trials investigating the efficacy of dual inhibitors in 
OC patients mainly due to toxicity and off target effects of the dual inhibitors in 
clinical setting [121].

Figure 2. 
Overview of the PI3K/AKT/mTOR pathway. Class IA PI3Ks are activated via ligand binding of receptor 
tyrosine kinases (RTKs), while class IB PI3Ks depend on G protein-coupled receptor (GPCRs) activation. 
Activated PI3K facilitates the conversion of PIP2 to PIP3 and in turn induces AKT phosphorylation. Activated 
AKT mediates the phosphorylation mTOR and a signalling cascade that drives cellular proliferation and cell 
death. In concert, the RAS/RAF/MEK/ERK pathway is activated by RTKs, acting as an escape mechanism 
for PI3K inhibition. The focal adhesion kinase (FAK) pathway also feeds into the PI3K pathway through c-Src 
activated by integrin-based adhesion molecules including integrin α5β1.
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3.5  Anti-helminth, Ivermectin, may be effective in sensitising OC LCs to 
chemotherapy by disrupting the AKT/mTOR pathway

Ivermectin belongs to a family of drugs widely used to treat parasites and pest 
insects [122]. The anti-cancer property of ivermectin can be related to the inhibition 
of the Pgp pumps and MDR protein expression [123], inhibition of AKT/mTOR 
pathway [124], and targeting the yes-associated protein 1 (YAP1) [125], all of which 
are involved in the OC tumorigenesis [100, 126–128]. In vivo, ivermectin treatment 
of a xenograft mouse model of EOC showed a significant reduction in tumour 
growth and a reversal in tumour growth without severe toxicity effects when the 
drug was combined with cisplatin [129]. Currently there is a phase II clinical trial in 
recruitment to study the long-term effect of ivermectin treatment (NCT02366884).

3.6  The mevalonate pathway in LC can be potentially targeted with HMG-CoA 
inhibitors

Statins are among the most commonly prescribed medications to reduce 
cholesterol and inflammation through blocking 3-hydroxy-3-methyl-glutaryl-
CoA (HMG-CoA) reductase [130]. Inhibiting the mevalonate pathway can have 
a protective effect against cancer progression and reduce LC activity [131, 132]. 
Furthermore, the mevalonate pathway has been shown to be significantly acti-
vated in TP53 mutated cells [133]. Therapeutic effects of statins in OC are further 
supported by the in vitro studies showing anti-metastatic and anti-tumorigenic 
effects through the inhibition of MAPK and mTOR pathways [134]. Lovastatin 
significantly reduced the development of serous tubal intraepithelial carcinomas, 
the purported precursor ovarian cancer lesions, in mice through the inhibition of 
the mevalonate pathway and dysregulation of the Rho signalling pathway [135]. 
Currently, a phase III clinical study for evaluating the safety, tolerability and effects 
on tumour progression of Atorvastatin is at the recruitment stage for ovarian and 
pancreatic cancer patients (NCT 02201381).

3.7 Cardiac glycosides, such as digoxin, may be able to suppress LC population

Cardiac glycosidases (CGs) are a family of drugs used for the treatment of 
congestive heart failure and cardiac arrhythmia by regulating cardiac muscle 
contraction through the inhibition of the NA+-K+-ATPase pump [136]. The first 
anti-proliferative effects of CGs were reported more than five decades ago in HeLa 
cells [137] and since then, multiple studies have highlighted the anti-neoplastic 
effects of CGs by inducing cancer cell apoptosis [138], activating autophagic cell 
death through the Ras-dependent extracellular signal-regulated kinase (ERK1/2) 
pathway [139], inhibiting hypoxia-inducible factor-1 alpha (HIF-1α) protein 
synthesis [140] and inhibiting FA/BRCA pathway activation [141]. CGs have been 
shown to have a higher cytotoxicity effect when combined with chemotherapy in 
prostate, breast, non-small cell lung, colorectal, and pancreatic cell lines as well as 
advanced stage melanoma patients compared to single agents [141–144]. However, 
so far epidemiological studies have yielded inconsistent results. For example, while 
digoxin was found to inhibit tumour growth in vitro and was associated with a 25% 
lower prostate cancer risk [145], systematic review and meta-analyses indicated an 
increased prostate cancer risk in digoxin users [146]. Nevertheless, the number of 
clinical trials specifically designed for cancer patients being treated with CGs is very 
limited and most of these conflicting results come from re-analysing data present in 
the medical databases with limited numbers of patients. So far, there are no clinical 
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trials designed to investigate the relationship between CGs and OC. Despite this, 
there is a recent study retrospectively analysing the Surveillance, Epidemiology, and 
End Results (SEER) program, the national cancer institute (NCI), and Medicare 
healthcare claim record data to assess whether digoxin use enhances chemothera-
peutic responses in OC treatment [147]. The study suggested that digoxin use 
during chemotherapy did not have any survival benefits in patients with EOC, 
however, the research was limited by small sample size. Furthermore, 46% of the 
patients had a prior history of heart disease complicating the interpretation of sub-
ject fatality rates. More importantly, only 7% of the studied population were treated 
with digoxin during chemotherapy which may describe the opposing results with 
other cancer types. Since cardiac glycosidases regulate ion transport via the NA+/K+-
ATPase, they interact with a wide variety of the intracellular signalling pathways, 
including those driving cellular proliferation and apoptosis [148], therefore, future 
clinical trials specifically designed for OC patients is highly expected. Our labora-
tory drug screening pipeline used to identify therapies against LCs has identified 
digoxin as a potent LC inhibitor, demonstrating synergistic effects when sublethal 
concentrations of digoxin were combined with platinum-based chemotherapies 
(result not published).

3.8  Metformin is a potential LC targeting agent by suppressing the AMPK 
pathway

Metformin is an anti-diabetic drug reducing blood glucose and insulin levels 
through activation of adenosine monophosphate-activated protein kinase (AMPK) 
to inhibit gluconeogenesis in the liver [149]. In cancer cells, AMPK activation results 
in mTOR pathway inhibition and therefore inhibition of cell proliferation [150]. 
So far, several epidemiological studies focusing on ovarian cancer patients with 
type 2 diabetes who were taking metformin at the time of diagnosis showed that 
these patients had a significantly improved 5-year survival rate compared to those 
who did not take metformin [151, 152]. Currently, there are multiple clinical trials 
submitted in the national institute of health (NIH) clinical trial database focusing 
on non-diabetic ovarian cancer patients being treated with a combination of met-
formin and first line chemotherapy. The results from one of the completed phase II 
studies (NCT01579812) showed that the tumours in women treated with metformin 
had a significantly fewer ALDH1+ cells representing OC stem cells [153], therefore, 
supporting the use of this drug in the next phase of clinical trials. Furthermore, 
investigations in our lab evaluated the effect of sitagliptin, a drug used for the 
treatment of type 2 diabetes, in a murine model of ovarian cancer showing that 
sitagliptin enhanced the immune response via T cell recruitment to the tumour and 
inhibited several pro-tumorigenic cytokines, therefore reducing tumour burden 
and improving survival [154].

3.9 Non-steroidal anti-inflammatory drugs are potent cytotoxic LC inhibitors

Non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin, diclofenac 
and celecoxib are mainly prescribed to reduce pain, fever and inflammation [155]. 
Inflammation has a key role in cancer development and progression, therefore, 
NSAIDs have been shown to exhibit protective roles against this disease [156]. This 
effect is mediated through the inhibition of cyclooxygenase-1 and 2 (COX-1,2) 
enzymes inhibiting prostaglandin (PG) synthesis [157]. While constitutive expres-
sion of COX-1 regulates tissue homeostasis through PG synthesis, COX-2 is not 
expressed in normal epithelial tissues and is only induced during inflammation. 
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In addition, this marker is found to be overexpressed in epithelial tumours [158]. 
COX-2 inhibition eventually leads to the induction of apoptosis and the inhibition 
of tumour invasion [159]. The action of NSAIDs has been further linked to PI3K 
signalling pathway [160, 161] and the inhibition of NFКB that leads to dysregula-
tion of the genes involved in cancer progression and apoptosis [162]. The benefit 
of NSAIDs in cancer prevention and treatment remains controversial and tumour 
type dependant [156]. Re-assessing case–control and cohort studies from 1950 to 
2011, that reported associations between aspirin uptake and cancer, showed that 
cancer prevention becomes significant only when the aspirin usage proceeds 5 years 
[162] and in this case, the overall benefit from the long-term use of NSAIDs was 
compromised by side-effects, such as gastrointestinal bleeding [163–165]. In vitro 
investigation of a panel of NSAIDs in ovarian cancer, showed significant apoptosis 
induction and reduced tumour growth in four cell lines treated with diclofenac 
[166]. Moreover, in vivo evaluation of diclofenac in mice implanted with ovarian 
cancer cells, showed significantly smaller tumours formed in diclofenac-treated 
animals compared to the control group [166, 167]. In line with this data, the drug 
screening platform established in our laboratory also identified diclofenac as a 
potent cytotoxic LC inhibitor. However, despite the growing body of evidence 
regarding the anti-neoplastic effects of diclofenac in OC, currently there are no 
clinical trials evaluating the effectiveness of this drug in patients. A phase II clinical 
trial to examine the effect of celecoxib treatment in combination with carboplatin 
in recurrent resistant ovarian cancer patients has shown promising results with a 
28% RR and PFS [168], however this study did not provide any evidence of COX-2 
inhibition in patients after treatment. Likewise, a phase II investigation of celecoxib 
plus carboplatin and docetaxel as a first-line treatment for ovarian cancer failed 
to demonstrate COX-2 inhibition with 82% of patients expressing COX-2 and no 
improvement in PFS or OS observed [169]. Furthermore, two systematic analyses 
on the effect of NSAID use and OC risk on big cohorts of patients failed to show 
such an association [170, 171]. However, both studies have indeed critical limita-
tions with regards to the cancer subtypes, type of NSAIDs used, drug doses and the 
duration of treatments.

4. Conclusion

Despite the introduction of several novel therapeutics that include targeting 
DNA repair pathways with Poly (ADP-ribose) polymerase (PARP) inhibitors 
(PARPi), and vascular endothelial growth factor (VEGF) pathways with beva-
cizumab, the overall survival outcome for women with platinum-resistant OC 
remains poor. Unfortunately, women with advanced metastatic OC will eventually 
succumb to their disease due to the emergence of drug resistance. Understanding 
the mechanisms of OC migration and metastasis is crucial for the development of 
an effective therapeutic approach. Targeting the OC LC population serves as an 
attractive strategy given LCs are instrumental in orchestrating OC spread within 
the intra-peritoneal cavity. LCs are often highly chemo-resistant due to their stem 
cell-like nature and their survival post cytotoxic chemotherapy treatment may 
lead to therapy resistance and tumour recurrence. Multiple potential targets have 
been identified based on the understanding of LC biology, some of which may be 
targeted by re-proposing established drugs, such as dual PI3K/mTOR inhibitors, 
anti-helminths, statins, NSAIDs and metformin. Suppressing and eliminating LCs 
may be an effective therapeutic option for management of this lethal disease and is 
worth further exploration.
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