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Chapter

The Paradigm of Complex
Probability and Isaac Newton’s
Classical Mechanics: On the
Foundation of Statistical Physics

Abdo Abou Jaoude

“Imagination is move important than knowledge. Knowledge is limited.
Imagination encircles the world.”

Albert Einstein.

“Our minds ave finite, and yet even in these circumstances of finitude we are
surrounded by possibilities that are infinite, and the purpose of life is to grasp as
much as we can out of that infinitude.”

Alfred North Whitehead.

“The important thing is not to stop questioning. Curiosity has its own reason for
existence.”
Albert Einstein.

“A theory with mathematical beauty is move likely to be correct than an ugly one
that fits some experimental data. God is a mathematician of a very high ovder, and
He used very advanced mathematics in constructing the universe.”

Paul Adrien Maurice Dirac.

Abstract

The concept of mathematical probability was established in 1933 by Andrey
Nikolaevich Kolmogorov by defining a system of five axioms. This system can be
enhanced to encompass the imaginary numbers set after the addition of three novel
axioms. As a result, any random experiment can be executed in the complex prob-
abilities set € which is the sum of the real probabilities set R and the imaginary
probabilities set M. We aim here to incorporate supplementary imaginary dimen-
sions to the random experiment occurring in the “real” laboratory in R and there-
fore to compute all the probabilities in the sets R, M, and €. Accordingly, the
probability in the whole set € = R + M is constantly equivalent to one independently
of the distribution of the input random variable in &, and subsequently the output
of the stochastic experiment in R can be determined absolutely in €. This is the
consequence of the fact that the probability in € is computed after the subtraction of
the chaotic factor from the degree of our knowledge of the nondeterministic exper-
iment. We will apply this innovative paradigm to Isaac Newton’s classical
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mechanics and to prove as well in an original way an important property at the
foundation of statistical physics.

Keywords: Chaotic factor, degree of our knowledge, complex random vector,
probability norm, complex probability set, random forces, complex force,
resultant force

1. Introduction

Firstly, classical mechanics is a theory in physics studying the macroscopic
objects motion whether they are parts of machinery or projectiles or objects in
astronomy like for example planets or spacecrafts or galaxies or stars. As it was
established, classical mechanics is deterministic that means that we can predict the
motion of objects in the future when we know their present state. It is also revers-
ible and that means we can know the motion of objects in the past when we know
their present state also. [1]

Since classical mechanics was developed at the beginning by Sir Isaac Newton
therefore it is usually referred to as Newtonian mechanics. It comprises the mathe-
matical methods and the employed physical concepts developed, as we have men-
tioned, by Newton, Gottfried Wilhelm Leibniz and others in the seventeenth
century to study the bodies motion under the effect of a set of forces. The theory
was more developed later on to embody more abstract methods which have led to
the reformulations of classical mechanics and hence to the establishment of Hamil-
tonian mechanics and Lagrangian mechanics. These developments which were done
in the eighteenth and nineteenth centuries are substantial extensions beyond the
work of Newton because they used more particularly analytical mechanics. After
doing some modifications, modern physics makes use of them in all its areas. [2]

Moreover, exceptionally precise results are provided by classical mechanics
when considering objects with velocities far from the speed of light and when they
do not possess extreme masses. It is mandatory to make use of quantum mechanics
which is a sub-field of mechanics when studying objects which have an atom
diameter size. Additionally, we need Albert Einstein’s special relativity when con-
sidering speeds near the velocity of light. Furthermore, Einstein’s general relativity
is applied when objects have huge masses. It is important to note that many modern
sources include in classical physics the relativistic mechanics which represents
according to them the most precise, developed, and complete form of classical
mechanics. [3]

Furthermore, we now present classical mechanics fundamental concepts. The
theory assumes that the objects of the real world are of negligible size that means
that they are point particles. And it also characterizes the point particle motion by
tew parameters which are: its mass, its position, and the applied forces to it. We will
discuss each of these parameters in turn. [4]

In fact, and in reality, classical mechanics can describe always the kind of objects
that have a non-zero size. Whereas, very small particles like electrons are described
more accurately by the physics of quantum mechanics. Additionally, hypothetical
point particles have more simplified behavior than non-zero size objects like for
example a baseball that can spin when it is in motion. Moreover, such non-zero
objects are considered as composite objects constituted of a large number of point
particles acting collectively; hence, the point particles results can be used in such
large objects study. [5]

Common sense notions are used by classical mechanics of how matter and forces
interact and exist. Its basic assumption is that energy and matter have knowable and
definite attributes such as speed and location in space. Additionally, it is assumed by
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non-relativistic mechanics the instantaneous action of forces or instantaneous
action at a distance. [6]

The bodies motion study is very ancient, this makes classical mechanics one of
the largest and oldest subjects in engineering, technology, and science. [7]

Aristotle, one among antiquity Greek philosophers and who is the founder of
Aristotelian physics, may have been the first to postulate that theoretical principles
can assist nature understanding and to assume that “everything happens for a rea-
son”. Many of these ideas preserved are considered as eminently reasonable by a
modern reader but there is an obvious lack of controlled experiment and mathemat-
ical theory as we know it. In fact, modern science was formed by these later decisive
factors and classical mechanics came to be known as their early application. [8]

The medieval mathematician Jordanus de Nemore introduced in his Elementa
demonstrationem ponderum the “positional gravity” concept and the component
forces use. [9]

Johannes Kepler published in 1609 Astronomia nova which was the first published
causal explanation of the planets motion. Based on the observations made by Tycho
Brahe on Mars orbit, he concluded that the orbits of the planet were ellipses. This
epistemological revolution occurred at the same time when Galileo was proposing for
objects motion abstract mathematical laws. Perhaps he may have performed the
historical experiment of the two cannonballs of different weights dropping from Pisa
tower. Hence, he showed that these two cannonballs hit the ground simultaneously.
We doubt in fact the reality of that particular experiment, but Galileo conducted
quantitative experiments which were to roll balls on an inclined plane. From such
experiments results he derived his accelerated motion theory. [10]

Sir Isaac Newton laid down classical mechanics foundations by founding his
natural philosophy principles on three laws of motion proposed by him: the inertia
first law, the acceleration second law, and the action and reaction third law. A
proper mathematical and scientific treatment in Philosophiae Naturalis Principia
Mathematica of Newton was given to his second and third laws. They are in fact
different from the attempts laid earlier to explain similar phenomena and which
were either incorrect, incomplete, or they lack a precise mathematical expression.
Moreover, the principles of conservation of angular momentum and momentum
were postulated by Newton. Additionally, the universal gravitational law of Newton
was also provided by him to give the first accurate mathematical and scientific
formulation of gravity. The most accurate and fullest description of classical
mechanics was provided by the combination of the laws of motion and gravitation
of Newton. Newton showed that his three laws can be applied to the objects of
everyday as well to heavenly objects. Particularly, Newton derived a theoretical
explanation of the planets’ laws of motion of Kepler. [11]

Newton performed the mathematical calculation by inventing previously the
mathematical calculus. In fact, calculus eclipsed his book, the Principia, which was
formulated totally in terms of geometric methods which were long established and
to gain hence acceptability. Moreover, the notation of the integral and of the
derivative which are preferred today were developed by Leibniz however. [12]

All phenomena, including light in the form of geometric optic, can be explained
by classical mechanics as it was assumed by Newton and most of his contempo-
raries, with the notable exception of Christiaan Huygens. Newton maintained his
own corpuscular light theory even when they discovered the wave interference
phenomenon or the so-called Newton’s rings. [13]

Classical mechanics became a major field of study in physics as well in mathe-
matics and this after Newton. A far greater number to problems solutions were
allowed by several progressive reformulations of his mechanics. Joseph Louis
Lagrange was the first to reformulate in 1788 Newtons’ mechanics. William Rowan
Hamilton in his turn reformulated Lagrangian mechanics in 1833. [14]
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More modern physics resolved some difficulties that were discovered in the late
nineteenth century. Compatibility with the theory of electromagnetism and the
famous Michelson-Morley experiment were some of these difficulties. Often still
considered as a part of classical mechanics, the special relativity theory was led by
the resolution of these problems. [15]

Explaining all thermodynamics, raised another set of difficulties and problems
with classical mechanics. Gibbs paradox of classical statistical mechanics was the
result of the combination of classical mechanics with thermodynamics. In this
paradox, entropy is not a quantity which was well defined. We introduced quanta to
explain the black-body radiation otherwise this was not possible. Classical mechan-
ics was unable to explain, not even approximately, such basic things as the sizes of
the atoms, the photo-electric effect, and the energy levels and this when experi-
ments delved into the atomic world. Quantum mechanics was the result of the
efforts to resolve these problems. [16]

Classical mechanics has no longer been considered as an independent theory
since the end of the twentieth century. We consider classical mechanics now as an
approximate theory to quantum mechanics which is a more general theory. The
desire to understand the fundamental forces of nature has shifted our emphasis in
our research and investigation and has led to the Standard Model and also has
directed the studies to a unified theory of everything. For the study of the motion of
low-energy, of non-quantum mechanical particles in weak gravitational fields, it is
useful to make use of classical mechanics. Additionally, we were successful to
extend classical mechanics to the complex domain. In fact, this extended complex
classical mechanics behaves very similarly to quantum mechanics. [17]

At the end, and to conclude, this research work is organized as follows: After
the introduction in section 1, Newton’s laws of classical mechanics are stated in
section 2, then the purpose and the advantages of the present work are presented
in section 3. Afterward, in section 4, the extended Kolmogorov’s axioms and hence
the complex probability paradigm with their original parameters and interpreta-
tion will be explained and summarized. Moreover, in section 5, the complex
probability paradigm axioms are applied to classical mechanics which will be
hence extended to the imaginary and complex sets. Additionally, in section 6, the
resultant complex random vector Z of CPP will be applied to statistical physics to
prove an important property at its foundation. Also, in section 7, the flowchart of
the new paradigm will be shown. Furthermore, the simulations of the novel model
for various discrete and continuous stochastic distributions are illustrated
in section 8. Finally, we conclude the work by doing a comprehensive summary in
section 9, and then present the list of references cited in the current research work.

2. Isaac Newton’s laws of motion

The classical mechanics foundation was laid down by Isaac Newton’s three
physical laws of motion. These laws define and describe the forces acting upon a
body as well as the response of the body to those forces. Moreover, and more
precisely, the first law defines the force qualitatively, the second law measures the
force quantitively. The third law states that an isolated single force does not exist
[18-21]. Throughout nearly three centuries, these three laws have been stated in
many different ways and we will summarize them as follows:

First law

In an inertial frame of reference, an object either remains at rest or continues to
move at a constant velocity, unless acted upon by a force.

Second law
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In an inertial frame of reference, the vector sum of the forces F on an object is
equal to the mass m of that object multiplied by the acceleration a of the object:

F = ma. (It is assumed here that the mass m is constant).

Third law

When one body exerts a force on a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in direction on the first body.

Isaac Newton was the first to state in his Mathematical Principles of Natural
Philosophy (Philosophiae Naturalis Principia Mathematica), first published in 1687,
the three laws of motion. Many systems and physical objects were investigated and
explained by the three laws of motion of Newton. As an example, the planetary motion
laws of Johannes Kepler were proved and demonstrated by Newton’s laws when
combined with the universal gravitational law, in the third volume of the text. [22-25]

Fourth law

Some also describe a Fourth law which states that forces add up like vectors, that
is, that forces obey the principle of superposition.

A single point masses idealize the objects to which we apply the laws of Newton,
that means that the object body shape and size are to be ignored in order to
concentrate on the body’s motion more easily. This is achieved when the rotation
and the deformation of the body are negligible and when the object is too small
compared to the distances that the analysis involves. Hence, in the planet orbital
motion around a star analysis, even a planet can be idealized as a particle. [26-29]

Moreover, deformable bodies and the rigid bodies motion are not characterized
by the original form of the laws of motion of Newton which reveal to be inadequate.
Additionally, a generalization of the laws of motion of Newton for rigid bodies was
introduced and achieved by Leonhard Euler in 1750 and they were called accord-
ingly Euler’s laws of motion. They were applied later on to deformable bodies which
were postulated to be a continuum. Euler’s laws can be derived from the laws of
Newton if we represent a body as an assemblage of discrete particles where every
particle is governed by the motion laws of Newton. Independently of the structure
of any particle, the laws of Euler can be considered, however, as axioms that
describe the motion laws of extended bodies. [30-33]

Newtonian inertial reference frames are a certain set of frames that verify and
confirm Newton’s laws. The first law defines what an inertial frame of reference is
and this according to some authors interpretation. Therefore, the first law cannot be
demonstrated as special case of the second law since the second law is only valid
when an inertial frame of reference is used in the observation. The second law is
considered as a corollary of the first law by other authors. It was long after Newton’s
death that we have developed the inertial frame of reference explicit concept. [34-37]

Furthermore, we assume that, momentum, acceleration, and most importantly
force to be quantities defined externally in the given interpretation. This is not the
only interpretation, but the most common way one can consider the definition of
these quantities by Newton’s laws. [38-41]

Additionally, when the speeds considered are much closer to the speed of light,
then Albert Einstein’s special relativity replaces Newtonian mechanics which is still
useful as an approximation of the studied phenomenon. [42-44]

3. The purpose and the advantages of the current publication
The crucial job of the theory of classical probability is to compute and to assess

probabilities. A deterministic expression of probability theory can be attained by
adding supplementary dimensions to nondeterministic and stochastic experiments.
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This original and novel idea is at the foundations of my new paradigm of complex
probability. In its core, probability theory is a nondeterministic system of axioms
that means that the phenomena and experiments outputs are the products of chance
and randomness. In fact, a deterministic expression of the stochastic experiment
will be realized and achieved by the addition of imaginary new dimensions to the
stochastic phenomenon taking place in the real probability set R and hence this will
lead to a certain output in the set € of complex probabilities. Accordingly, we will be
totally capable to foretell the random events outputs that occur in all probabilistic
processes in the real world. This is possible because the chaotic phenomenon
becomes completely predictable. Thus, the job that has been successfully completed
here was to extend the set of real and random probabilities which is the set R to the
complex and deterministic set of probabilities which is € = R + M. This is achieved
by taking into account the contributions of the imaginary and complementary set of
probabilities to the set R and that we have called accordingly the set J. This
extension proved that it was effective and consequently we were successful to
create an original paradigm dealing with prognostic and stochastic sciences in which
we were able to express deterministically in € all the nondeterministic processes
happening in the ‘real’ world R. This innovative paradigm was coined by the term
“The Complex Probability Paradigm” and was started and established in my seven-
teen earlier publications and research works [45-61].

The advantages and the purpose of this current work are to:

1. Extend the theory of classical probability to encompass the complex numbers
set, hence to bond the theory of probability to the field of complex variables
and analysis in mathematics. This mission was elaborated and initiated in my
earlier seventeen papers.

2. Apply the novel probability axioms and paradigm to Newton’s classical mechanics.

3.Show that all nondeterministic phenomena can be expressed deterministically
in the complex probabilities set which is C.

4.Compute and quantify both the degree of our knowledge and the chaotic
factor of all the forces acting on a body in classical mechanics and CPP in the
sets R, M, and C.

5.Represent and show the graphs of the functions and parameters of the
innovative paradigm related to Newton’s mechanics.

6.Demonstrate that the classical concept of probability is permanently equal to
one in the set of complex probabilities; hence, no randomness, no chaos, no
ignorance, no uncertainty, no nondeterminism, no unpredictability, and no
disorder exist in:

C (complex set) = R (real set) + M (imaginary set).

7.Prove an important property at the foundation of statistical physics after
applying CPP to classical mechanics.

8.Prepare to implement this creative model to other topics in prognostics and to
the field of stochastic processes. These will be the job to be accomplished in my
future research publications.
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Figure 1.
The diagram of the complex probability paradigm major goals.

Concerning some applications of the novel founded paradigm and as a future
work, it can be applied to any nondeterministic phenomenon using classical
mechanics whether in the continuous or in the discrete cases. Moreover, compared
with existing literature, the major contribution of the current research work is to
apply the innovative paradigm of complex probability to Newton’s classical
mechanics and to statistical physics as well.

The next figure displays the major purposes and goals of the Complex
Probability Paradigm (CPP) (Figure 1).

4. The complex probability paradigm
4.1 The original Andrey Nikolaevich Kolmogorov system of axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a
collection of elements {Ej, E;, ...} called elementary events and let F be a set of
subsets of E called random events [62-66]. The five axioms for a finite set E are:

Axiom 1: F is a field of sets.

Axiom 2: F contains the set E.

Axiom 3: A non-negative real number P,,,(A), called the probability of A, is
assigned to each set A in F. We have always 0 < P,,,(A) <1.

Axiom 4: P,,,(E) equals 1.

Axiom 5: If A and B have no elements in common, the number assigned to their
union is:

Prah (A UB) = Prob (A) + Prob (B)
hence, we say that A and B are disjoint; otherwise, we have:
P, (A UB) =P,y (A) + Pop (B) — P, (A ﬂB)

And we say also that: P,,,(ANB) = P,y (A) X Pyop(B/A) = Pyop(B) X Py (A/B)
which is the conditional probability. If both A and B are independent then:
P,op (A ﬂB) =P,y (A) X Porop (B)

Moreover, we can generalize and say that for N disjoint (mutually exclusive)
events Ay, Ay, ..., Aj, ..., Ay (for 1<j <N), we have the following additivity rule:
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N N
PVOb(UAj> :Zth(Aj)
j=1 j=1

And we say also that for N independent events A1, A, ..., A}, ..., Ay (for
1<j <N), we have the following product rule:

N N
Py ( n A]) = HP”Ob<Aj)
J=1 j=1

4.2 Adding the imaginary part M

Now, we can add to this system of axioms an imaginary part such that:

Axiom 6: Let P,, =i x (1 — P,) be the probability of an associated complemen-
tary event in JM (the imaginary part) to the event A in R (the real part). It follows
that P, + P,, /i = 1 where i is the imaginary number with i = /—1 or i* = —1.

Axiom 7: We construct the complex number or vector 2 = P, + P, =
P, +i(1 — P,) having a norm |z| such that:

o = P2 + (P i)

Axiom 8: Let P, denote the probability of an event in the complex probability
universe € where € = R + M. We say that P, is the probability of an event A in R
with its associated event in JM such that:

P2 = (P, +P, /i)’ = |z|* — 2iP,P,, and is always equal to 1.

We can see that by taking into consideration the set of imaginary probabilities
we added three new and original axioms and consequently the system of axioms
defined by Kolmogorov was hence expanded to encompass the set of imaginary
numbers. [45-61]

4.3 A Concise Interpretation of the Original Paradigm

As a summary of the new paradigm, we declare that in the universe & of real
probabilities we have the degree of our certain knowledge is unfortunately incom-
plete and therefore insufficient and unsatisfactory, hence we encompass in our
analysis the set € of complex numbers which integrates the contributions of both
the real set R of probabilities and its complementary imaginary probabilities set that
we have called accordingly (. Subsequently, a perfect and an absolute degree of
our knowledge is obtained and achieved in the universe of probabilities € = R + M
because we have constantly P, = 1. In fact, a sure and certain prediction of any
random phenomenon is reached in the universe € because in this set, we
eliminate and subtract from the measured degree of our knowledge the
computed chaotic factor. Consequently, this will lead to in the universe Ca
probability permanently equal to one as it is shown in the following equation:

P> = DOK— Chf = DOK + MChf =1 = P, deduced from the complex probability
paradigm. Moreover, various discrete and continuous stochastic distributions
illustrate in my seventeen previous research works this hypothesis and innovative
and original model. The figure that follows shows and summarizes the Extended
Kolmogorov Axioms (EKA) or the Complex Probability Paradigm (CPP)

(Figure 2) [67-92]:

8



The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On...
DOI: http://dx.doi.org/10.5772 /intechopen.98341

Figure 2.
The EKA or the CPP diagram.

5. The Newton’s mechanics and the complex probability paradigm
parameters

In this section we will relate and link Newton’s mechanics to the complex
probability paradigm with all its parameters by using four novel concepts which are:

the real stochastic force F, in the real probability set R, the imaginary stochastic
force F,, in the imaginary probability set JM, the complex resultant stochastic force

F in the complex probability set € = R + M, and the deterministic real force F, also
in the probability set € [45-61, 93-104].

5.1 The stochastic forces ﬁ, in R and ﬁm in M

The real stochastic force is defined by: FV = Pma &P, = : =

Here P, measures the probability that the real stochastic force ﬁ, acting on a
body in R will occur.

Since 0<P,<1e0< - <1 0<F,<ma
ma

If P, = 0 then ﬁ, — 0 that means that the real stochastic force in R is totally

known and is equal to 0 or null in this case.

If P, = 1then F . = ma that means that the real stochastic force in R is totally

known and totally deterministic and is equal to ma in this case.
The imaginary stochastic force is defined by:

—

Fp = Ppymd = i(1— P,)md <P =In —j(1-P,).

Here P,, measures the probability that the imaginary stochastic force F,, acting
on a body in M will occur.

9
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—

Since 0<P, <1 0<P,<i®0< 2 <i® 0<F, <ima
If P,, = 0 then F,, = 0 that means that the imaginary stochastic force in J is

totally known and is equal to 0 or null.

If P,, =i then F,, = ima that means that the imaginary stochastic force in JM is
totally known and totally deterministic and is equal to ima.

5.1.1 The relation between the real and the imaginary stochastic forces

!

We have: ﬁm = P,ma =i(1—P,)ma &P, == =i(1-P,).

a

3

And since P, = = & p,, = fn — i<1 — FL).
ma ma ma
And we can deduce that: P, =1—P, /i =1 —tn op =1+ Engincei = —;1.
ma ma
= . F — .= Jpd
Therefore, F,, = z(l - F%)ma =ima — iF,
m
- — - — ,4‘ . . 1
& F, =ma — = =ma +iF, sincei = —; also.

5.2 The resultant complex stochastic force FinC=R+ M

We define the resultant complex stochastic force by: F=F ,+ ﬁm = P,ma +
P,ma = (P, + P,,)ma = zma.
Here z measures here the complex probability that the resultant stochastic force

— —

F=F,+F, acting on a body in € = R + M will occur.
Since z = P, + P,, then:

IfP, = 0P, =i(1-P,) =i(1—0)=iez=0+i=ioF =zmd = imd.

IfP, =1&P, =i(1-P,) =i(1-1) =0z =1+0=1&F =zma = ma.

5.2.1 The relations between the forces ﬁ,,, ﬁm, and ﬁ

Since F, = md + iFy & F = Fy+ Fy = md +iFpy + Fo =md + (1+1)F,.
where Re (ﬁ) = ma + iﬁm and Im (ﬁ) = ﬁm

Additionally, since ﬁm —ima — iﬁr(:F =F,+ ﬁm = FV +ima —iF, =
ima + (1—i)F,.

5.3 The deterministic real force F, in the probability set C= R + M

We define the deterministic real force by: ﬁc = P.ma.

Since from CPP we have: P, =P, +P,,/i=P,+ (1-P,) = lc)ﬁc =ma.

Here P, measures the probability that the force F, acting on a body in the
probability universe € = R + M will occur. This means that the force acting on the

body in the probability set € is totally known and is totally deterministic always
VP, :0<P,<1land VP, : 0<P, <i.

10
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5.3.1 The relations between the forces 1?,, I?m, and I?C

Furthermore,

SlnceF —P,mac»F —PF and P, = ;—

Since F,, = Pyma < Fy, = P,,F, and P ;—m

Since P, =i(1—P,) &P, =1—"2=1+iP, becausez———c)P—l—i—

"rjl|

Since F = zma < F = zF ., therefore:
IfP, = 0P, —ioz=0-+i=ioF —zmd = ima — iF..

—

IfP,=1&P, =0&z=1+0=1&F =zmd =ma = F..

The second case shows and proves that if P, = 1 then the complex resultant
stochastic force will become equal to the real deterministic force that means that we
will return directly to the classical deterministic Newtonian mechanics theory
which is a special deterministic case of the stochastic complex probability paradigm
general case.

Additionally, since ﬁm —ima — iﬁr @iﬁ, + Fm — imd = iF .
And F, —iF, —ma = F, since i = -1

Since F = md + (1+i)F,, &F = F, + (1+i)Fy
And since F = imd + (1- i)ﬁycbﬁ = iﬁc +(1- i)ﬁr.

5.4 The relationships between the forces in R, M, and € and all the CPP
parameters

5.4.1 The velationships between the real force in R and all the CPP parameters

Furthermore, according to CPP:

DOK = |z]> = |P, + P,,|* = P> + (P /i) = P> + (1 - P,)?
=P>4+1—-2P, + P>2<2P> -~ 2P, +1—- DOK = 0

which is a second-degree equation in terms of P, whose discriminant is:

A =4—-8(1-DOK)=8DOK — 4.

Since 0.5<DOK <1< 0<8DOK —4<40<A<4<A>0,VDOK. Therefore,
the equation admits two real roots which are:

P 2—vVA 2—+8DOK -4 2-2V2DOK -1 1-+2DOK —1
rl = = = =

4 4 N 4 N 2
4P 2+vA 2++v8DOK -4 2+2v2DOK -1 1++2DOK -1
an 2 = = = = .
4 4 4 2

But according to CPP: VP, : 0<P, <1< 0.5<DOK <1and —0.5<Chf <0 and
0 <MChf <0.5.

And if P, = 0 or P, = 1then DOK = 1 and Chf = 0 and MChf = 0.

And if P, = 0.5 then DOK = 0.5 and Chf = —0.5 and MChf = 0.5.

11
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Consequently,
1-+v2DOK -1
20 if 0<P,<0.5
P, =
1++V2DOK —1
w200 if 05<P, <1

But ﬁ, = P,ma hence (Figure 3):

2
(1 +2DOK —1

(1 7 AZDOE 1>m2 if0<P, <05

=l
[

2

>m3 if 0.5<P, <1

We have DOK =1+ Chf ©2DOK — 1 =1+ 2Chf thus (Figure 4):

)
(1_ VHZChf) a if0<P,<05

5 ma

1+ /14 2Ch -
( * 2+ f) if 0.5<P, <1
\

=l
I

ma

The Reduced Real Force |F|r / ma and the CPP Parameters

0.8

0.6 -
= 0.5

0.4

0.2 -

0.5 ;
0.4

F./ma 0 o5 "~ DOK

Figure 3.
The graphs of the veduced real force F, (P,) / ma in blue and of F, (DOK) / ma in pink and DOK (P,) in red
and of F, (DOK) / ma in green in the F, (P,) / ma plane in light gray.
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We have DOK = 1 — MChf 2DOK — 1 = 1 — 2MChf thus (Figure 5):

( (1—@) ~

5 ma if 0<P,<0.5

il
I

if 0.5<P, <1

(1 +/1- 2MChf> -
2

We can deduce also from CPP that (Figure 6):

( (1 — /DOK + Chf) -

5 if0<P, <05

F, =

ma if 0.5<P,<1

(1 + /DOK + Chf) ~
2
\

And we can infer using the fact that MChf = —Chf that (Figure 7):

2

(
1— +/DOK — MCh .
( \/ f)ma if 0<P,<0.5

il
I

1 DOK — MCh .
( v f)ma if 0.5<P,<1
\

2

Figure 4.
The graphs of the reduced real force F, (P,) / ma in blue and of F, (Chf) / ma in pink and Chf (P,) in red and
of F, (Chf) / ma in green in the F, (P,) / ma plane in light gray.
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Figure 5.
The graphs of the reduced real force F, (P,) | ma in blue and of F, (MChf) / ma in pink and MChf (P,) in red
and of F, (MChf) / ma in green in the F, (P,) / ma plane in light gray.

Figure 6.
The graphs of the reduced real force F, (Chf) / ma in pink and of F, (DOK) / ma in ved and of P> = DOK —
Chf = 1 = P, (Chf, DOK) in cyan and of F, (Chf, DOK) / ma in green in the P. plane in light gray.
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Figure 7.
The graphs of the reduced real force F, (MChf) / main pink and of F, (DOK) / main red and of P> = DOK +
MChf = 1 = P, (MChf, DOK) in cyan and of F, (MChf, DOK) / main green in the P. plane in light gray.

Also, we can calculate (Figure 8):

1_\/1+C;hf_MChf ma if0<P,<0.5

1 1 - M _
+\/ +C2’hf Chf ma if05<P,<1

=l
|

\

But according to CPP: P,> = DOK — Chf = DOK + MChf =1 = P, hence the

real force F, in R as a function of all the CPP parameters is the following:

P, — \/DOK — Chf — 2MChf
2

P. + \/DOK — Chf — 2MChf
2

ma if 0<P,<0.5

=l
Il

ma if 0.5<P, <1

\
5.4.2 The relationships between the imaginary force in M and all the CPP parameters

As we have computed:

1- ”220K_1 if0<P,<0.5
P, —
1+ ”220K_1 if05<P, <1

15
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The Reduced Real Force F|r I ma and the CPP Parameters

W

MChf o o5  Chf

Figure 8.
The graphs of the reduced real force F, (MChf) / ma in pink and of F, (Chf) / ma in red and of

Chf + MChf = o in cyan and of F, (Chf, MChf) / ma in green in the Chf + MChf = o plane in light gray.

And since P,, =i(1 — P,) then:

( (14 2DOK —1
i( + > if 0 <P, <0.5<if 0.5 <P, <i

2

1-+v2DOK -1
i( > ) if 0.5<P,<1sif 0<P, <0.5i
\

We have F,, = P,,ma, so similarly to the previous section we get (Figure 9):

)
1+v2DOK —1\ _
i(+ 20 >ma if 0<P,<0.5
F, —
i(l_ ”220K_1>ma’ if 0.5<P, <1
\

And we can deduce that (Figure 10):

)
1+4/1+2 -
i( i 2+ Chf)ma if0<P, <05
1—/1+2Ch -
i( i f)ma if 0.5<P, <1
\

2
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Figure 9.
The graphs of the veduced imaginary force F,, (P,) / ma in blue and of F,,, (DOK) / ma in pink and DOK (P,)
in red and of F, (DOK) / ma in green in the F,, (P.) / ma plane in light gray.

Figure 10.
The graphs of the reduced imaginary force Fy, (P.) [ main blue and of F,, (Chf) / ma in pink and Chf (P,) in
red and of Fy, (Chf) / ma in green in the Fy, (P,) / ma plane in light gray.
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And we can infer that (Figure 11):

(i<1+\/1—2MChf> -
2

ma

i<1 — /1= 2MChf>mE,

1l
3
I

2

\

We can deduce also that (Figure 12):

( ,<1 + /DOK + Chf) -
1
2

a

i<1 — /DOK + Chf) -

2

And we can compute (Figure 13):

(. (1 + /DOK — MChf
1
2

! 2

, <1 — /DOK — MChf

\

if0<P,<0.5

if 0.5<P, <1

if 0<P,<0.5

if 0.5<P, <1

>mz if0<P,<0.5

>m2 if 0.5<P, <1

Figure 11.

The graphs of the veduced imaginary force F, (P,) / ma in blue and of F,, (MChf) / ma in pink and
MChf (P,) in red and of F, (MChf) / ma in green in the Fy, (P,) / ma plane in light gray.
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Figure 12.
The graphs of the reduced imaginary force F, (Chf) / ma in pink and of F, (DOK) / ma in red and of
P2 = DOK - Chf = 1 = P, (Chf, DOK) in cyan and of F,,, (Chf, DOK) / ma in green in the P. plane in light

gray-

Figure 13.

The graphs of the reduced imaginary force Fy, (MChf) / ma in pink and of F,, (DOK) / ma in red and of

P2 = DOK + MChf = 1 = P, (MChf, DOK) in cyan and of F,, (MChf, DOK) / ma in green in the P, plane in
light gray.
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And we can calculate (Figure 14):

1 1+ Chf — MCh =
+\/ + 2f f ma if 0<P,<0.5
Fp =
1—-/1+Chf —MCh =
\/ +2f f ma if 0.5<P,<1

\

But according to CPP: P,> = DOK — Chf = DOK + MChf =1 = P, hence the

imaginary force F,, in M as a function of all the CPP parameters is the following:

P, + \/DOK — Chf — 2MChf
2

ma if 0<P,<0.5

P, — \/DOK — Chf —2MCh -
i % > f f ma if 0.5<P,<1

\

5.4.3 The relationships between the resultant complex force in € and all the CPP
parameters

Analogously, and since F = ﬁ, + ﬁm then:

o -
1—+v2DOK —1 1+ v2DOK —1 ~
F={ - :
1+ 21;OK—1>+1.<1— 2[;OK_1 ma if 0.5<P, <1
| |

Figure 14.
The graphs of the reduced imaginary force F,, (MChf) / ma in pink and of F,,, (Chf) / ma in red and of
Chf + MChf = o in cyan and of Fy, (Chf, MChf) / ma in green in the Chf + MChf = o plane in light gray.
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And
,-<1_W>+i<1+@>_mg if 0<P,<0.5
And | |

ma if 0<P,<0.5

( '<1— 1—2MChf> +i<1+‘/1_MChf>-

1 2 2

F = - -
1 1—2MCh 1—./1—2MCh -
(1) (1= osen

We can deduce also that:

. _
1— /DOK / ~
( v/ +Chf)+i<1+ DOK+Chf) mi i 0<P. <05
- 2 2
F=¢ _
1 - —
( +\/DOK+Chf> +i<1 \/DOK+Chf) mi F05<P.<1
\ L 2 2 n
And
([ (1— /DOK —MCh 1+ /DOK —MChf\]| _
( \/ 5 f)+i< +‘/ 5 f) ma if 0<P,<0.5
F=3{ _
1+ /DOK — MCh 1— /DOK — MCh .
( +\/ 5 f)+i< \/ > f) ma if 05<P,<1
And
<1—\/1+Chf—MChf>+i<1+\/1+Chf—MChf> X o Lok
. 2 2 ="1"T
F = - Z
<1+\/1+Chf—MChf>+i<1—\/1+Chf—MChf> i 05<P <1
2 2 T

But according to CPP: P,> = DOK — Chf = DOK + MChf =1 = P, hence the

—

complex resultant force F=F .+ ﬁm in the set C = R + M as a function of all the
CPP parameters is the following (Figure 15):

—

ma if 0<P,<0.5

Kpc — /DOK — Chf — 2MChf> L (Pc + /DOK — Chf — 2MChf>
2 2

F:

ma if 0.5<P, <1

(Pc + /DOK — Chf — 2MChf> = (PC — /DOK — Chf — 2MChf)
2 2

And since the deterministic force in € = R + M is F. = ma then:
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P, — \/DOK — Chf — 2MChf L P + +/DOK — Chf — 2MChf
2 2 ¢

Tl

if 0<P,<0.5

=l
I

P. + /DOK — Chf —2MCIf \ , (P. — \/DOK — Chf —2MChf c
2 2

Tl

if 0.5<P, <1

—

=zma

In this cube (Figure 15), we can notice the simulation of the complex resultant
reduced force F / ma = z(X) in € = R + M as a function of the real reduced force
F,/ma = P,(X) = Re(z) in R and of its complementary imaginary reduced force
F,,/ma = P,,(X) =i x Im(g) in M, and this in terms of the random variable X for any
probability and stochastic distribution. The red curve represents F, / ma in the plane
P,,(X) = 0 and the blue curve represents F,, / ma in the plane P,(X) = 0. The green
curve represents the complex resultant reduced force F / ma = F, / ma + F,, / ma =
z2(X) = P,(X) + P, (X) = Re() +i x Im(2) in the plane 2(X) = P,(X) + P,,(X) or 2(X)
plane in cyan. The curve of F / ma starts at the point J (P, = 0, P,, =i, X = L;, = lower
bound of X) atz = 7 and ends at the point L (P, =1, P,, = 0, X = U}, = upper bound of
X) atz = 1. The thick line in cyan is P,(X = L) + P,,(X = L,) =2(X = L;) and it is the
projection of the F / ma curve on the complex probability plane whose equation is

Figure 15.

The graphs of the reduced veal force F, | ma = P, = Re(z) in red and of the reduced imaginary force
Fm/ma =Py, =1 X Im(z) in blue and of z = Py + Py, in cyan and of the reduced complex resultant force
F/ma=F,/ ma+ F,, / main green in the z plane in light cyan.
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z = i. This projected thick line starts at the point ] (P, = 0, P, =i, X = L;,) and ends at
the point (P, = 1, P,, = 0, X = L,,). Notice the importance of the point K
corresponding to z = 0.5 + 0.5/ when P, = 0.5and P,, = 0.5i.

5.4.3.1 The relationships between the norm of the resultant complex force and all the CPP
parameters

We have: F = ﬁr + ﬁm = (P, 4 P,,)ma = zma then the norm of the complex

— —2 2
2 —
force F can be computed as follows: ‘F ‘ = |2|” x mzla ’ .

But from CPP we have: |z|” _DOKc»’F‘ —DOme‘ ‘ ‘F’ VDOK x
mlal.

According to CPP-P2:DOK—Chf:1®DOI<:1+Chf©)ﬁ)2:
(1+Chf)><mH ‘F’ mxmﬂ

Since also P2 = DOK + MChf =1 DOK =1 — MChf@‘F’ (1 — MChf) x
m \z( |F| = /I=MCIf x m|d

Since we have-Pcz:DOK—Chf:DOI<+MChf:1:PC©‘I?‘2:
(P+Chf)><mH »|F| = mm)z)

And @’F’ — (P. MChf)xm‘ ( ‘F‘ \/Imxm‘ﬁ‘

5.4.4 The relationships between the real deterministic force in € = R + M and all the CPP
parameters

Furthermore, since ﬁc = P,ma and since P,2 = DOK — Chf = DOK + MChf =

1 = P, therefore:
F, = P.ma = \/DOK — Chf . ma

— /DOK + MChf ma

= \/1+ Chf + MChf ma
=P *ma

— —
=1Xma =ma

Hence, we can conclude that no chaos, no ignorance, no disorder, no
unpredictability, no chance, and no randomness exist in the probability universe
€ = R + M, but complete and perfect and deterministic knowledge and experiment.

6. The resultant complex random vector Z of CPP and statistical
physics

A powerful tool will be described in the current section which was developed in
my personal previous research papers and which is founded on the concept of a
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complex random vector that is a vector combining the real and the imaginary
probabilities of a random particle, defined in the three added axioms of CPP by the
term z; = P,; + P,,;. Accordingly, we will define the vector Z as the resultant
complex random vector which is the sum of all the complex random vectors z; in
the complex probability plane €. This procedure is illustrated by considering first a
general Bernoulli distribution, then we will discuss a discrete probability distribu-
tion with N equiprobable random vectors as a general case. In fact, if z represents
one particle in a macrosystem from the uniform distribution U, then Zy; represents
all the particles in the whole macrosystem from the uniform distribution U that
means that Zy represents the whole random distribution in the complex probability
plane €. So, in this context, it follows directly that a Bernoulli distribution can be
understood as a simplified system with two random particles (section 6-1), whereas
the general case is a random system with N random particles (section 6-2). After-
ward, I will prove an important property at the foundation of statistical mechanics
and physics using this new powerful concept (section 6-3) [45-61].

6.1 The resultant complex random vector Z of a general Bernoulli distribution
(a distribution with two random particles)

First, let us consider the following general Bernoulli distribution and let us
define its complex random vectors and their resultant (Table 1):

Where,

x1 and x, are the outcomes of the first and second random vectors respectively.

P,; and P,; are the real probabilities of x; and x, respectively.

P,,1 and P, are the imaginary probabilities of x; and x, respectively.

We have:

N

Y Pj=Pi+Pr=p+q=1
j=1

and

2
Zij =Puy1+Ppy=iqg+ip=i(l—p)+ip
=1

—i—ip+ip=i=i(2—1) =i(N —1)

Where N is the number of random vectors or outcomes which is equal to 2 for a
Bernoulli distribution.
The complex random vector corresponding to the random outcome x is:

z21=P1+Pm=p+il—p)=p+ig

Outcome X X1 X2

InR P,7 Prl =p PVZ =q

In M Py Py =i(l—p)=1iq Py =i(l—q)=ip

InC=R+M Zj 21 =Py + Py 2y =P+ Py
Table 1.

A general Bernoulli distribution in R, M, and C.
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The complex random vector corresponding to the random outcome x; is:
22 =Po+Pm=q+i(l—q)=q+ip

The resultant complex random vector is defined as follows:

2 2 2
Z = ZZ]' =21+2 = ZPU' +2ij
j=1 j=1

j=1
=p+iqg)+g+ip)=p+q) +ilp+q)
=1+i=1+4i(2-1)
= Z=1+i(N-1)

The probability P,; in the complex plane € = R + M which corresponds to the
complex random vector z; is computed as follows:

71> = P2 + (P /i)’ =p* + ¢°
Chf1 = —ZP,,lel/i = —qu
= P2 = |z|* — Chf,
=P+ g =(p+q) =1 =1
=P,4=1

This is coherent with the three novel complementary axioms defined for the

CPP.
Similarly, P., corresponding to 2; is:

22* = P% + (Pun /i)’ = 4* +p*
Chf2 = —2P;,2Pm2/i = —2qp
= P3 = |zaf* — Chf,

=+ +2up=(qg+p) =1 =1
=P,=1

The probability P, in the complex plane € which corresponds to the resultant
complex random vector Z = 1+ i is computed as follows:

2 2 2 2
Z|* = (Z&-) + (mej/i) =12 +12=2
=1 j=1

2 2
Chf = —2213,,- > Pufi=-2(1)(1) = -2
j=1 j=1

Lets? = |Z|° —Chf =24+2=4=5=2

C_NZ_ N2 _N2 N2_22_4_
s 2
PC:_:_:l
TN 2

Where s is an intermediary quantity used in our computation of P..
P. is the probability corresponding to the resultant complex random vector Z in
the probability universe € = R + M and is also equal to 1. Actually, Z represents both
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21 and 2z, that means the whole distribution of random vectors of the general
Bernoulli distribution in the complex plane € and its probability P, is computed in
the same way as P, and P .

By analogy, for the case of one random vector z; we have:

2 .
P’ =l|zj|" — Chf, with (N =1).
In general, for the vector Z we have:

2
,_ 12" Cnf
P, = N2 N (N>1)

Where the degree of our knowledge of the whole distribution is equal to

DOKy = |N‘2 , its relative chaotic factor is Chf , = fvhf
the chaotic factor is MChf , = |Chf ,|.

Notice, if N = 1 in the previous formula, then:

, and its relative magnitude of

2 _ chf 1z Chf

2 __
PC_N2 N2_12

= |Z]* — Chf = |zj|" — Chf; =P}

which is coherent with the calculations already done.
To illustrate the concept of the resultant complex random vector Z, I will use the
following graph (Figure 16).

Figure 16.
The resultant complex random vector Z = z, + 2, for a geneval Bernoulli distribution in the complex
probability plane C.
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6.2 The general case: A discrete distribution with IV Equiprobable random
vectors (a uniform distribution U with IN random particles)

As a general case, let us consider then this discrete probability distribution with
N equiprobable random vectors which is a discrete uniform probability distribution
U with N particles (Table 2):

We have herein € = R + M

andz; =2) = ... = 2N zl-l-M
N N
:ZU:]ﬁ:lzjzszzan +ZN:sz:N(J%+$> =1+i(N—-1)
Moreover, we can notice that: |z1| = |2;] = -+ = |2n], hence,
|Zu| = |21 +22 + ... +2n| = Nl21] = Nl22| = ... = Nlzn]
= |Zy[* = N?|zj|* = N? <]%+(NA;721>2> — 1+ (N — 1), where 1<j<N;

And

. 1\ (N-1
Chf = N? x Chf ; = =2 x Py x (Py;j/i) x N> = —2N* x <N) <T>

— 2(1)(N —1) = —2(N — 1)

=92 =Zy ~Chf =1+ (N—-1>+2(N-1) = 1+ (N - 1)]> = N?

2 N?
= Pelew = = = 1
1Zy> Chf 1+(N—-17% —2(N-1) 1+(N-1*+42(N-1) [1+(N-1)]* N?
N N N T N T N? ~ N2 !
:>P£|ZU:1

Where s is an intermediary quantity used in our computation of P, |z, .
Therefore, the degree of our knowledge corresponding to the resultant complex
vector Zy representing the whole uniform distribution is:

Zul? 14+ (N —1)
DOK, - 1\;]2| _ +(N2 )

5

and its relative chaotic factor is:

Chf 2(N-1)
ChfZU: N2 = N2

Similarly, its relative magnitude of the chaotic factor is:
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Outcome xj X1 X2 XN

InR P Py=4% Po=% Py =%

In M Prj P =i(1—-4) Py =i(1—3) Pun =i(1—-3)

InC=R+ M gj 21 =Py + Py 2y =Py + P, zNy = P,ny + PN
Table 2.

A discrete uniform distribution with N equiprobable random vectors in R, M, and €.

Chf

MChf,, = |Chf ,

:"2%?1)‘:2%;1)

Thus, we can verify that we have always:

X Zy|>  Chf
Pz, = N2 N2 DOKz, — Chf ;, = DOKz, + MChf , =1&Pz, =1

What is important here is that we can notice the following fact. Take for example:

1+(2-1) —2(2-1)
N=2= DOKz, =——7——=05 and Chfy, =—" ;=05
1+ (4—1)° —2(4-1
N =4 = DOKz, = % =0.625>05 and Chf, = %
=-0.375> — 0.5
1 —1)? —2(5—-1
N =5= DOKyz, = % = 0.68>0.625 and Chf, = %
=-0.32> —0.375
14 (10 —1)* —2(10 -1
N =10 = DOKz, = % =0.82>0.68 and Chf, = %
= —0.18> — 0.32
1+ (100 — 1) —2(100 — 1
N =100 = DOKz, = 27100 =" _ 6 98025082 and Ci,, = 2200~ 1)
100 u 100

= —-0.0198> - 0.18

2
1+ (1000 =117 _ 998002 0.9802 and

N = 1000 = DOK, =

100072
—2(1000 — 1
1+ (10 —1)°
N =1,000,000 = DOK, = T = 0.999998 > 0.998002 and
—2(10° - 1)
Chf ,, = —r —0.000001999998 > — 0.001998

We can deduce mathematically using calculus that:

= Jim DOKz, = Jim T <1
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2(N -1
and lim % = lim Chf, = lim —u
N—+o0 N2 N—+o0 u N—+o0 N2

=0.

From the above, we can also deduce this conclusion:

As much as N increases, as much as the degree of our knowledge in R
corresponding to the resultant complex vector is perfect and absolute, that means, it
is equal to one, and as much as the chaotic factor that prevents us from foretelling
exactly and totally the outcome of the stochastic phenomenon in R approaches zero.
Mathematically we state that: If N tends to infinity then the degree of our knowl-
edge in R tends to one and the chaotic factor always in R tends to zero.

6.3 Statistical mechanics using Z and CPP

We have:

Pz, = lezlej /N =N x % = P,; = %= the mean of the real probability of all
the N complex random vectors z; represented by Zy, and.

Pulz, = lezlej /N =N x % = P,,j = i(1 — %)= the mean of the imaginary
probability of all the N complex random vectors z; represented by Zy, then:

Zy =Nzj=N(Py|z, + Pulz,) = N[& +i(1—3)] =1+i(N — 1), as computed in
section 6-2.

N
i—1%J Nz; . .
WhereZWU:P,|ZU+Pm|ZU=ZI<,1]:%zz]-:P,j—l—ij:]%ﬂ—z( — ), Vi

1<j<N
= the mean of all the N complex random vectors z; represented by Zy.

Pm’ZU
i

Therefore, P, |z, = Py|z, +
predicted by CPP.
Additionally, we have:

:%_i_(l—%) :1:PCjJ Vj:]_SjSN,juStaS

F, = Pyma ;,Vj : 1<j <N, that means for every particle j in the macrosystem of
N particles, and

N
Filz, =Y Fy=Pamai +Pomds + ... + Pyma; + ... + Pymay

j=1

! a1+ I ar+ .. + 1 adi+ ..+ a
N CTT N2 N N N
1

= N (mzl +m32 =+ ... +m2j + ... —H/nZN)

=P,|z, <m21 +mar+ .. +maj+ .. +mZN)

N —

— — ma

:P7|Zum E d]‘:PV|ZUWlﬂ :W
=1

= the mean real random force acting on the whole macrosystem in R.
Moreover,

—

Fyj = Pyjma;,Vj : 1<j <N, that means for every particle j in the macrosystem
of N particles, and
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N
F,, |ZU = Z ij = Pm1m31 —f—szlez + .. +ijm3j + .. +PmNmZN
=

:l<1_ﬁ> (mal +maz+ ... +ma;+ .. +maN>

= Plz, (mﬁ’l +mar+ .. +ma;+ .. +mZN)

N
— — 1 —
= Pm’ZUWLZ ol]' = Pm|ZUma = Z<1 —N>ma
j=1

= the mean imaginary random force acting on the whole macrosystem in L.

Furthermore,
N - N _
Flz, = Frlz, + Fulz, = ZFW + ZFW’ = P,|z,ma + Py,|z,ma
j=1 j=1
Zy 1 1 .
(Prlzy + Pz, Jma = WUWM = [N—I—l(l —N)]ma

= the mean resultant complex random force acting on the whole macrosystem in
C=R+ M.
Also, we have:

—

Fg= Pq'mﬁj =1x mﬁj = mﬁj,‘v’j : 1<j <N, that means for every particle j in
the macrosystem of N particles, just as predicted by CPP.

And F,|z, =P, ZUmE =1 x ma =ma = the deterministic force acting on the

whole macrosystem in € = R + M, as predicted by CPP also.
Correspondingly, we can deduce the following result:

zyl 2, (Pulzo\® _ 2 _
If DOKz, =~ 5~= (Prlzy)" + (=) =Plzy + (1=Prlz,)" =1

1

PV|ZU:N:O N — +oo FV|ZU:P7‘ZUXWLE:OXWLE:6
< or =4 or < or
1 - — — —
Prlz, =5 =1 N=1 F,|z, = P/|z, xmad =1x ma =ma
Pulz, = i1 = Plz,) = i(1—0) i Foly, = Pyl x md — ima
=4 or =4 or
Pm‘ZU :i(l_PV|ZU) :l(l_ 1) =0 Fm‘ZU :Pm|ZU X WLE =0x mE = 6

Therefore, this means that in the first case the mean real force acting on

the macrosystem in the real set R is equal to 0, or that in the second case the
experiment on the macrosystem is totally deterministic always in the real
probability set R.
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= - - = .o . —
Flzy, = F/lzy + Fulz, = 0 +ima = ima
< or

— — —

Flz, = Fylzy + Flz, =ma + 0 =ma
ima| =m|a
ima

~
- ‘F|ZU

| <

S ‘F |z, in both cases.

—
= m|\a| =

That means that the mean norm of the resultant force acting on the whole
macrosystem is totally deterministic in both cases in the probability set € = R + M

and is always equal accordingly to m ’3 ’

Similarly, we can deduce also the following similar result:

If DOI(ZU = 1©ChfZU = 2iPy|ZU X Pm|ZU = _2Pr|ZU X (1 _PV|Zu) =0

1 - — — g
PV|ZU:N:O N — +oo Fulz, =Pz, xma =0xma =0
o or S or & or
1 - — — —
PV]ZU:N:1 N=1 F,|z, = Pz, x ma =1 x ma =ma
PleU :i(l _PV|ZU> = 1(1 - 0) =1 ﬁm|ZU :Pm‘ZU X mad = ima
o or & or

Pz, =i(1=Pylz,) =i(1-1) =0 Folzy = Pplz, xmd =0 x md = 0

Therefore, this means that in the first case the mean real force acting on the

macrosystem in the real set R is equal to 0, or that in the second case the
experiment on the macrosystem is totally deterministic always in the real
probability set R.

™ o - = . — . —
Flzy, = F/lzy + Funlz, = 0 +ima = ima
= or

F’ZU = FV|ZU + Fm|ZU =ma + 0= ma

That means that the mean norm of the resultant force acting on the whole
macrosystem is totally deterministic in both cases in the probability set € = R + M

. = —
ma| =mi|a

S ‘F |z, in both cases.

= or ‘F’ZU

| =mla]

and is always equal accordingly to m ’Z’. Consequently, we reach the same conclu-

sion if we consider Chf, as above when we have considered DOKz,,.

In addition, for N =1 = ‘fvvz\ = DOK7, 1+(%;1>2 _ 1+<1;1>2 _q

Chf _ o, _AN-Y 20—

N2 12

and
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This means that we have a random experiment with only one outcome or vector,
hence, P,|z, =+ = } = 1, that means we have a sure event in R. Consequently, we
have accordingly the degree of our knowledge is equal to one (perfect macrosystem
knowledge) and the chaotic factor is equal to zero (no chaos) since the experiment

is certain and totally deterministic in &, which is absolutely logical.

6.4 Analysis and interpretation of all the results

The law of large numbers states that:

“As N increases, then the probability that the value of sample mean to be close to
population mean approaches 1”.

We can deduce now the following conclusion related to the law of large
numbers:

We can see, as we have proved, that as much as N increases, as much as the

degree of knowledge of the resultant complex vector DOKz, = Zuf’ tends to 1and

N2
its relative chaotic factor Chf Zy = CN—h{ tends to 0. Assume now that the random

variables x s correspond to the atoms or particles or molecules moving randomly in
a gas or a liquid. So, if we study a gas or a liquid with billions of such particles, then
N is big enough (e.g. Avogadro’s number ~ 6.02214 x 10 / mole in the Interna-
tional System of Units) to allow that its corresponding temperature, pressure,
energy etc. ... tend to the mean of these quantities corresponding to the whole
system. This because the chaotic factor of the whole macrosystem (gas, liquid, etc.),
that is, of the resultant complex random vector Zy representing all the random
particles or vectors, tends to 0; thus, the behavior and characteristics of the whole
system in R is predictable with great precision since the degree of our knowledge of

Figure 17.
Chf ;,,DOKz,,, and P.|z,, as functions of the particles number N in 2D.
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Figure 18.
Chf ZU,DOK 74> and P;|z,, as functions of the particles number N in 3D.

the whole macrosystem tends to 1. Subsequently, we can deduce from the above
that since for DOKz, = 1 or for Chf , = 0 the mean norm of the resultant force
acting on the macrosystem that consists of N > > 1 individual particles is totally
known and deterministic in R then all the properties of the macrosystem are totally
and completely known and determined like the macrosystem energy which should
be equal to the mean of the individual particles energies, or the macrosystem
pressure which should be equal to the mean of the individual particles pressures or
the macrosystem temperature which should be equal to the mean of the individual
particles temperatures, etc.

Hence, what we have done here is that we have proved the law of large numbers
(already discussed in the published papers [46, 50, 57, 61]) as well as an important
property of statistical mechanics using CPP. In fact, as it is very well known in the
classical probability theory and statistics, the law of large numbers is tightly related
and linked to statistical mechanics. Here CPP comes and proves both of them in a
novel and original way. This looks very interesting and fruitful and shows the
validity and the benefits of extending Kolmogorov’s axioms to the complex probability
set € = R + M. The following figures (Figures 17 and 18) show the convergence of
Chf 5, to 0 and of DOKz,to 1 as functions of the particles or atoms or molecules

number N.

7. Flowchart of the complex probability and Newton’s mechanics
prognostic model
The following flowchart summarizes all the procedures of the proposed complex

probability prognostic model where X is between the lower bound L, and the upper
bound U,:
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8. The new paradigm applied to various discrete and continuous
stochastic distributions

In this section, the simulation of the novel CPP model for various discrete and
continuous random distributions will be done. Note that all the numerical values
found in the paradigm functions analysis for all the simulations were computed using
the 64-Bit MATLAB version 2020 software. It is important to mention here that a few
important and well-known probability distributions were considered although the
original CPP model can be applied to any stochastic distribution beside the studied
random cases below. This will lead to similar results and conclusions. Hence, the new
paradigm is successful with any discrete or continuous random case.

8.1 Simulation of discrete probability distributions
8.1.1 The discrete uniform probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:

34



The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On...
DOI: http://dx.doi.org/10.5772 /intechopen.98341

0 forX =x0 =L,k =0
X =x,;N) = 1
f( X N) N for X = x1,%2, ..., Xp, s (xn = Up), Ve : 1<k SN

Note that in the simulation we have considered: L, = —21 and U, = 21 and
N =60and Vk : 1<k < (N = 60) we have : Ax;, =x, —x,_1=0.7.
The cumulative distribution function (CDF) is:

k

k
k
CDF(x) = Ppp(X <) = Y f(xj3N) =f(xo; N)+ > flx;3N) =0+ ZN N
j=0 j=1
k
= — <r<
=20’ ,Vk: 0<k < (N = 60)
Note that:

If k = 0« CDF(x) = P, (X <x) =f(X = x0 = Lj; N) = 0.
Ifk=NoX=xy=U,

_N
N 60
& CDF(x) = P,op(X <x) = f(x0; N +fo], _O+ZN N 0"

The mean or average or expectation is:

N
2 j=0%j

2N+

The variance is:

2 21}[:0 (o — :“)2

= = 151.900
c N1 51.9000
The standard deviation is:
Z] 0 .X']
N+ 1 =4/151.9000 = 12.3247718

The median Md = 0 =u since it is a symmetric distribution.
Since the distribution is uniform then it has no mode.
The real probability P, (x) and force are:

P,(x):CDF(x):if(xj;N) ]]; 6k0 Vk:0<k< (N =60)

& F,(x) = P,(x)md = <1%)m5 = ( 6k0>ma

The imaginary complementary probability P, (x) and force are:
Py (x) =i[l — P,(x)] = i[1 — CDF(x)] =i [1 — Zf xj3N ]

=i i\’:f(xj;N) :i(1—]%) :i(1—6lio>, Vk:0<k<(N =60)

j—k+1
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The real complementary probability P, (x)/i and force are:

k N
Pu(x)/i=1-P,(x) =1—-CDF(x) =1-» f(x;;N)= Y f(x;N)=1 —1%
j=0 j=k+1

k
= _— : < < =
1— Yk : 0<k< (N = 60)

B )i =) g (1 —]%)mz L (1 —:;O)ma‘

The complex probability or random vector and force are:

ke k

2(x) = Py(x) + Pp(x) :1%+i(1—ﬁ) :@Jri(l—ée—o),Vk L 0<k <(N = 60)

& F(x) = F,(x) + Fpu(x) = Py(x)md + Py (x)ma = [P,(x) + Py (x)jma = zma

The Degree of Our Knowledge:

2 2
DOK (x) = |z(x)[* = PX(x) + [P (x)/i]” = (1%) + (1 - 1%)
=1+ 2iP,(x)Py(x) =1 — 2P, (x)[1 — Py(x)] = 1 — 2P,(x) + 2P2(x)

wft) ()

—1—25 +2£2 Vk:0<k<(N =60)
N 60 60/’ \IT ~V\)

DOK (x) is equal to 1 when P, (x) = P,(L, = —21) = 0 and when P,(x) =
P (U, =21) =1.
The Chaotic Factor:
Chf (x) = 2iP, ()P, (x) = —2P,(x)[1 — P,(x)] = —2P,(x) + 2P?(x)
k k\?

=2(y) +2(x)
= -2 k +2 L3 2 Vk:0<k<(N=60)
B 60 60/’ I

Chf (x) isnull when P,(x) = P,(L, = —21) = Oand when P,(x) = P,(U, = 21) = 1.
The Magnitude of the Chaotic Factor MChf:

MChf (x) = |Chf (x)| = —2iP, ()P (x) = 2P,(x)[1 — P,(x)] = 2P,(x) — 2P*(x)

36



The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On...
DOI: http://dx.doi.org/10.5772/intechopen.98341

)y
_ z(é%) _2<6’io>2, Vk:0<k<(N = 60)

MChf (x) is null when P,(x) = P,(L, = —21) = 0 and when P,(x) =
P (U,=21)=1.

At any value of x: Vx : (L, = —21) <x < (U, =21) and Vk : 0 <k < (N = 60), the
probability expressed in the complex probability set € = R + M is the following:

P2 (x) = [P(x) + Pr(x)/i]" = |g(x)[* = 2iP,(x)Pp ()

= DOK (x) — Chf (x)
= DOK (x) + MChf (x)
=1

P2(x) = [Pr(x) 4 Pu(x)/i]* = {Py(x) + 1 — Py(x)]}* = 1> = 1& P,(x) = 1 always

& F.(x) = P.(x)ma = 1 x ma = ma always also.
Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe € = R + M is permanently certain and perfectly deterministic

(Figure 19).

Figure 19.
The graphs of F,. | ma, Fy,, / ima, and F. / ma and of all the CPP parameters as functions of the random
variable X for this discrete uniform probability distribution.

37



The Monte Carlo Methods - Recent Advances, New Perspectives and Applications

8.1.1.1 The complex probability cubes

In the first cube (Figure 20), the simulation of DOK and Chkf as functions of each
other and of the random variable X for the discrete uniform probability distribution
can be seen. The dotted line in cyan is the projection of the plane P2(X) = DOK(X) -
Chf(X) =1 =P.(X) = F./ma on the plane X = L, = lower bound of X = —21. This
dotted line starts at the point ] (DOK =1, Chf = 0) when X = L, = —21, reaches the
point (DOK = 0.5, Chf = —0.5) when X = 0, and returns at the end to ] (DOK =1,
Chf = 0) when X = U, = upper bound of X = 21. The other curves are the graphs of
DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation planes. Notice
that they all have a minimum at the point K (DOK = 0.5, Chf = —0.5, X = 0). The
point L corresponds to (DOK = 1, Chf = 0, X = U, = 21). The three points J, K, L are
the same as in Figure 19.

In the second cube (Figure 21), we can notice the simulation of the real
reduced force F, / ma = P,(X) in R and its complementary real reduced force
F,,/ima = P,,(X)/i in R also in terms of the random variable X for the discrete
uniform probability distribution. The dotted line in cyan is the projection of the
plane P*(X) = P(X) + P,,(X)/i =1 =P.(X) = F./ ma on the plane X = L, = lower

DOK and Chf in Terms of X and of each Other for the Discrete Uniform Distribution
I

_

-0.1 <

-0.2 <

0.3 . -
+* + /’jﬁ 3
0.4 &
ik -
f_f—’”’ +
é_’___,__-—*"’ %+ +

+ DOK : Degree of our knowledge
+ Chf": Chaotic factor
+ Chf": Chaotic factor

Figure 20.
The graphs of DOK and Chf and the deterministic reduced force F. / ma = P in terms of X and of each other for
this discrete uniform probability distribution.
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The Reduced Forces Fr /ma and Fm / ima for the Discrete Uniform Distribution

L
T -
- z \ + Fima=P
_—— + oo = ;
f__fdfw— i + Frn /ima= F’rn fi
21 — % =
ﬁ.f-""'_‘ n
5 \ _Z \
| >
15 - - >
e ,ﬂq;‘i‘ﬁ
12 - et
e _a-—"”‘ +++
9 = o _.“ — *+
e % e ++
6 - *1_- d..-n-ﬂ"“"_f’ +***
x D L. 1 _t |‘+
-3 - y
6 -
_g -] \
12 + it
++ e
A5 TS e B
; ** ‘____,._-‘" \x\
-18 - g+‘!¢f" Sl
21 3';** i ‘\"‘\
1 T
e, f,_—:\"\
0.8 ﬂ“\ _,.,-'-{""F ~ 1
06 o 0.8
0.5 >~ <
0.4 ) . e 0.5 06
\\] L 0.4 .
0.2 JE
Fm,‘lma-Pmll Fr‘rma=Pr

+ Fy /ima = Py / i : Complementary real reduced force in the set R
+ /./ma = P, : Real reduced force in the set R

Figure 21.
The graphs of F, / ma = P.and F,,, / ima = P,,, /i and F. / ma = P in terms of X and of each other for this
discrete uniform probability distribution.

bound of X = —21. This dotted line starts at the point (P, = 0, P,,/i = 1) and ends at
the point (P, = 1, P,,/i = 0). The red curve represents F, / ma = P,(X) in the plane
P,(X) = P,,(X)/i in light gray. This curve starts at the point J (P, = 0, P,,/i = 1,

X = L, = lower bound of X = —21), reaches the point K (P, = 0.5, P,,/i = 0.5, X = 0),
and getsattheend toL (P, = 1, P,,/i = 0, X = Uj, = upper bound of X = 21). The blue
curve represents F,,, / ima = P,,(X)/i in the plane in cyan P,(X) + P,,(X)/i =
1=P.(X) = F./ma. Notice the importance of the point K which is the intersection of
the red and blue curves at X = 0 and when P,(X) = P,,(X)/i = 0.5. The three points ],
K, L are the same as in Figure 19.

In the third cube (Figure 22), we can notice the simulation of the complex
resultant reduced force F/ ma = z(X) in C = R + M as a function of the real reduced
force F, / ma = P,(X) = Re(z) in R and of its complementary imaginary reduced
force F,, / ma = P,,(X) =i x Im(g) in M, and this in terms of the random variable X
for the discrete uniform probability distribution. The red curve represents F, / ma in
the plane P,,(X) = 0 and the blue curve represents F,, / ma in the plane P,(X) = 0.
The green curve represents the complex resultant reduced force F / ma = F, / ma +
F,,/ma =2(X) = P,(X) + P,,(X) = Re(2) +i x Im(2) in the plane P,(X) =iP,(X) + 1
or z(X) plane in cyan. The curve of F / ma starts at the point J (P, = 0, P,, = 1,

X = L, = lower bound of X = —21) and ends at the point L (P, =1, P,, = 0,
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The Reduced Forces Fr! ma, le ma, and F / ma for the Discrete Uniform Distribution

_— ~ + F ima=P_
T + F_Ima=P_

< 4
ro
2
D.Bin: . #++ e 0.8
Rl - =
04 N & < o5 0°
021 U — 04
' - 0.2
0o
. Re(z)=F /Ima=P
i*Im(z)=F_/ma=P r r
m m
+ F,./ma= P,: Real reduced force in the set &= Re(z)
+ £,/ ma = P, . Complementary Imaginary reduced force in the set M = ixlm(z)
Figure 22.

The graphs of the reduced forces F, / ma = P, and F,, / ma = P,, and F / ma = z in terms of X for this discrete
uniform probability distribution.

X = U, = upper bound of X = 21). The dotted line in cyan is

P,(X =L, =-21) =iP,,(X = L, = —21) + 1 and it is the projection of the F / ma curve
on the complex probability plane whose equation is X = L, = —21. This projected
dotted line starts at the point J (P, = 0, P,,, = i, X = L, = —21) and ends at the point
(P,=1,P, =0,X =L, = —21). Notice the importance of the point K corresponding
toX =0andz = 0.5 + 0.5 when P, = 0.5 and P,, = 0.5i. The three points J, K, L are
the same as in Figure 19.

8.1.2 The binomial probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:

N
flx) = yCap™g" ™ = (x >p’“qN‘x, for (L, = 0) <x < (U, = N)

I have taken the domain for the binomial random variable to be:
x€[L, =0,U, =N =12] and Vk : 1<k <12 we have Ax;, = xj, — x;_1 = 1, then:
x=0,1,2,..,12.

Taking in our simulation N =12andp + ¢4 =1, p = ¢ = 0.5 then:

The mean of this binomial discrete random distribution is: y = Np = 12 X 0.5 = 6.
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The standard deviation is: 6 = \/Npq =112 x 0.5x 0.5=+/3=1.73205....

The median is Md = u = 6.
The mode for this symmetric distribution is = 6 = Md = p.
The cumulative distribution function (CDF) is:

X

CDF(x) = P, (X <x) Zf (k;N) ZNCkPk N—k Z wCuptq>*,

k=0
Vx : 0<x < (N = 12)
Note that:
Ifx = 0 X = L, & CDF(x) = P,y (X <0) = f(X = Ly; N) = yCop®q" 0 =
gN =052 >0,

Ifx =N=12&X = U, < CDF(x) = P, (X <x) = S o onCrp*qV % =
(p +¢)N =1 = 12 = 1 by the binomial theorem.
The real probability P, (x) and force are:

X

P,(x) = CDF(x) = Zf ZNCkpk Nk = " nCptg™*,

k=0 k=0

Vx: 0<x<(N=12)

& F,(x) = P,(x)ma = (chkpk 12 k)

The imaginary complementary probability P,,(x) and force are:
P, (x) = i[1 — P,(x)] = i[1 — CDF(x) [ ka N]

12
( ZNCkpqu k) - Z Cpk N—Fk - Z 12Ckpk412fk’

k=x+1 k=x+1
Va1 0<x < (N = 12)

12
& F,(x) = P, (x)ma = i( Z LG k)
k

=x+1

The real complementary probability P, (x)/i and force are:

N
P,(x)/i=1—P,(x) =1— CDF(x _1—kaN > NGtV
k=x+1
— Z 12Ckpk 12-k Vx: 0<x< (N =12)
k=x+1
s -_P ( k 12—k
S Fp(x)/i = Z 2Cep"q
k=x+1

1
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The complex probability or random vector and force are:

z(x) :P ZNCkpk N—k (Z Ckpk N— k)

k=x+1

=D uC'q? " + (Z nC'q k)a Vx: 0<x < (N =12)
0

k=x+1

e
Il

S F(x) = ﬁy(x) +F, (x) = P,(x)ma + P, (x)mad = [Py(x) + Pp(x)ma = zma

ZNCkpqu k)ma —l—z< Z NC g k)mﬁ
Je

k=0 =x+1

(G o Soert)

k=x+1

= <Z nCp'q™ k) +l< > G k)]mﬁ, Vx:0<x < (N = 12)

k=0 k=x+1

The Degree of Our Knowledge:

DOK (x) = |z(x)* = PX(x) + [Pu(x) /i) = (z’“:chpqu k) + (l - Zx:NCkpqu k)

k=0 k=0

(e (e < (e (e

k=x+1 k=x+1

=1+ 2P, (x)Pp(x) =1 —2P(x)[1 — P;(x)] = 1 — 2P,(x) + pr(x)

2

k=0

2
=1- Z(Zlckpkqn k>+2<zlckpkq12 k) , Vx:0<x<(N=12)

k=0

DOK (x) is equal to 1 when P,(x) = P,(L, = 0) = 0 and when P,(x) =
P (U, =12)=1.
The Chaotic Factor:

Chf (x) = 2iP,(x)Py, (x) = —2P,(x)[1 — Py(x)] = —2P,(x) + 2P%(x)

2
— _2<ZNCkpk N— k) +2<ZNCkpk N— k)

k=0

2
= —2(21 Cup*q'* k) +2(Zl Cupq> k) ,Vx 1 0<x < (N =12)
Chf (x) is null when P,(x) = P,(L, = 0) = 0 and when P,(x) = P,(U, =12) = 1.
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The Magnitude of the Chaotic Factor MChf:
MChf (x) = |Chf (x)| = —2iP,(x)P,,(x) = 2P,(x)[1 — P,(x)] = 2P,(x) — 2P%(x)

X X 2
-2 (Z chpqu—k) -2 (Z chpqu—k>

k=0 k=0

X x 2
=2 (Z nCepq > -2 (Z 1zCkpkq12‘k> , Vx:0<x<(N=12)
k=0 k=0

MChf (x) is null when P, (x) = P,(L, = 0) = Oand when P,(x) = P,(U, = 12) = 1.
At any value of x: Vx : (L, = 0) <x < (U, = N = 12), the probability expressed
in the complex probability set € = R + M is the following:

P2 (x) = [P(x) + Pr(x)/i]" = |g(x)|* — 2iP,(x)Pp(x)
= DOK (x) — Chf (x)

= DOK (x) + MChf (x)

=1

Figure 23.
The graphs of F,. | ma, Fy,, / ima, and F. / ma and of all the CPP parameters as functions of the random
variable X for this discrete binomial probability distribution.
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then,
P2(x) = [Pr(x) 4+ Pu(x)/i]* = {Pr(x) + [1 — Py(x)]}* = 1> = 1 P, (x) = 1 always

& F.(x) = P.(x)ma =1 x ma = ma always also.
Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe € = R + M is permanently certain and perfectly deterministic

(Figure 23).

8.1.2.1 The complex probability cubes

In the first cube (Figure 24), the simulation of DOK and Chkf as functions of each
other and of the random variable X for the binomial probability distribution can be
seen. The thick line in cyan is the projection of the plane P2(X) = DOK(X) - Chf(X)
=1=P.(X) = F./ma on the plane X = L, = lower bound of X = 0. This thick line
starts at the point ] (DOK =1, Chf = 0) when X = L, = 0, reaches the point
(DOK = 0.5, Chf = —0.5) when X = 6, and returns at the end to ] (DOK =1, Chf = 0)

Figure 24.
The graphs of DOK and Chf and the deterministic reduced force F. | ma = P in terms of X and of each other for
this binomial probability distribution.
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when X = U, = upper bound of X = 12. The other curves are the graphs of DOK(X)
(red) and Chf(X) (green, blue, pink) in different simulation planes. Notice that
they all have a minimum at the point K (DOK = 0.5, Chf = —0.5, X = 6). The point L
corresponds to (DOK =1, Chf = 0, X = Uj, = 12). The three points ], K, L are the same
as in Figure 23.

In the second cube (Figure 25), we can notice the simulation of the real reduced
force F, / ma = P,(X) in R and its complementary real reduced force F,, / ima =
P,,(X)/i in R also in terms of the random variable X for the binomial probability
distribution. The thick line in cyan is the projection of the plane
P2(X) =P.(X) + P,,(X)/i =1 = P.(X) = F./ ma on the plane X = L, = lower bound of
X = 0. This thick line starts at the point (P, = 0, P,,/i = 1) and ends at the point
(P, =1, P,,/i = 0). The red curve represents F, / ma = P,(X) in the plane
P,(X) = P,,(X)/i in light gray. This curve starts at the point ] (P, = 0, P,,/i = 1,

X =L, = lower bound of X = 0), reaches the point K (P, = 0.5, P,,,/i = 0.5, X = 6), and
getsat theend to L (P, =1, P,/i = 0, X = U, = upper bound of X = 12). The blue
curve represents F,,, / ima = P,,(X)/i in the plane in cyan P,(X) + P,,(X)/i =
1=P.(X) = F./ma. Notice the importance of the point K which is the intersection of
the red and blue curves at X = 6 and when P,(X) = P,,(X)/i = 0.5. The three points J,
K, L are the same as in Figure 23.

Figure 25.
The graphs of Fy | ma = P, and F,, / ima = P, /iand F. / ma = P. in terms of X and of each other for this
binomial probability distribution.
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In the third cube (Figure 26), we can notice the simulation of the complex
resultant reduced force F/ ma = 2(X) in € = R + M as a function of the real reduced
force F, / ma = P,(X) = Re(z) in R and of its complementary imaginary reduced
force F,, / ma = P,,(X) =i x Im(g) in M, and this in terms of the random variable X
for the binomial probability distribution. The red curve represents F, / ma in the
plane P,,(X) = 0 and the blue curve represents F,, / ma in the plane P,(X) = 0. The
green curve represents the complex resultant reduced force F / ma = F, / ma +
F, /ma =2(X) = P,(X) + P,,(X) = Re(z) +i x Im(2) in the plane P,(X) =iP,,(X) +1
or z(X) plane in cyan. The curve of F / ma starts at the point J (P, = 0, P,, =1,

X =L, = lower bound of X = 0) and ends at the point L (P, =1, P,, = 0, X = U}, = upper
bound of X = 12). The thick line in cyan is P,(X = L, = 0) =iP,,(X =L, = 0) + 1and it
is the projection of the F / ma curve on the complex probability plane whose
equation is X = L, = 0. This projected thick line starts at the point J (P, = 0, P,, = 1,
X =Lj, = 0) and ends at the point (P, =1, P,, = 0, X = L, = 0). Notice the importance
of the point K corresponding to X = 6 and z = 0.5 + 0.5 when P, = 0.5 and P,, = 0.5i.
The three points J, K, L are the same as in Figure 23.

Figure 26.
The graphs of the veduced forces F, | ma = P, and Fy, / ma = Py, and F / ma = z in terms of X for this binomial
probability distribution.
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8.1.3 The Poisson probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:

7/‘]' X
where 0 <x < oo.

flx;2) =

X

For the Poisson discrete random variable: x € [L, = 0, o) and Vk :
k>1we have Ax;, = x;, —x,_1 =1,thenx =0,1,2, ...,

I have taken in the simulation the domain for the Poisson random variable to be
equal to: x € [L, = 0, U, = 16], then: x = 0,1,2, ..., 16.

The mean of this Poisson discrete random distribution is: y = 4 = 6.7.

The standard deviation is: 6 = V1 = v/6.7 = 2.588435821 ....

The median Md is = 6.

The mode is = = |1] = |6.7] = 6.

Since Md = mode < y then this distribution is skewed to the right or positively
skewed.

The cumulative distribution function (CDF) is:

X e*/llk X 676.76.7k
CDF() VObX<x ka/l Z X :ZT, VXOSXS16

k=0 k=0

Note that:
Ifx =0&CDF(x) =P,(X<0)=f(X =Ly; 1) =e* =¢ % 0.

Ifx=U,eX>>18X — +00& CDF(x) = P,y (X <x) — Ze +=

_i % = ¢~* x ¢* = 1 by the properties of infinite series from calculus.

k=0
The real probability P,(x) and force are:

X X ek e 676.7
p— pu— : pu— pu— — : < <
P,(x) = CDF(x) kgof(k, 2) ,;0 7 kgo o Vx:0<x<16
- . X €_Aﬂk - x €_6'76.7k _
@FV(X) :Pr(x)ma = E X ma = E T ma
k=0 ’ k=0 ’

The imaginary complementary probability P, (x) and force are:

P, (x) = i[1 — P,(x)] = i[1 — CDF(x [ Zf (k; 2) ]
. X ek R ek [ & 6767k
:z(l—z A ) :z(kz A ) :z<kz T),Vx10§x§16

k=0 =x+1 =x+1
. . oo emipk\ 16 677\ |
& Fp(x) = Py(x)ma :i< Z ek! ma =i Z 64]6! " \ma
k=x+1 k=x+1
The real complementary probability P, (x)/i and force are:
X e—ilk
Pn(x)/i=1—P,(x) =1— CDF(x) =1— % 0
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+oo  _Aak 16 674 7k
A 6.
k=x+1 ' k=x+1 ’
- L Pu(x) [ D e\ B e 5767%\
S Fyx)/i= Soma = <kz o |ma = Z ol ma
=x+1 k=x+1

The complex probability or random vector and force are:

X ,—Agk Too i)k
z(x)ZPV(X)‘|‘Pm(x):z:ek!}L +i(z ekf)

k=0 k=x+1
X 6767k ( 16 66.76_7k>
S Y )
k=0 k! k=x+1 k!

S F(x) = ﬁy(x) + F,(x) = Po(x)ma + Py, (x)ma = [Py(x) + Py (x)|ma = zma

X e\ L[ &R ek L
— g 7l ma +1 kz %! ma
= =x+1
WIS & ek -
= (kz %l )+z< Z A ma
L \k=0 k=x+1

[ [(E~e 6767 & e 6767 =
— (Z o +1 kz o ma, Vx:0<x<16

=x+1

The Degree of Our Knowledge:

: ) X ek ? X ek ?
DOK (x) = |a(x)|? = P2(x) + [P (x)/i]? = (Z . ) + (1_2 - >
! k !

k=0
) (; eljfk>2 N (;;e;k)z _ <§ 66.;!6_7k)2 ) (ki;ei?]k)z
=1+ 2iP,(x)P,,(x) = 1 — 2P,(x)[1 — Py(x)] = 1 — 2P,(x) + 2P%(x)
(35 ()
G ST woere

DOK (x) is equal to 1 when P, (x) = P,(L, = 0) = 0 and when P,(x) =
P, (U, =16) =1.
The Chaotic Factor:

Chf (x) = 2iP, ()P, (x) = —2P,(x)[1 — P,(x)] = —2P,(x) + 2P?(x)

2
X e—,l/*{k) < X e—/llk)
=2 +2
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2
X e 676.7% X 6767
:_2<Z o +2 Z O , Vx:0<x<16

k=0 k=0

Chf (x) is null when P,(x) = P,(L, = 0) = 0 and whenP,(x) = P,(U, =16) =1.
The Magnitude of the Chaotic Factor MChf:

MChf (x) = |Chf (x)] = —2iP, (x)P (x) = 2P, (x)[1 — P, (x)] = 2P, (x) — 2P2(x)

(55) A55)

k=0 k=0
2
* ¢ 676.7% X 6767
:2(% i -2 % O , Vx:0<x<16

MChf (x) is null when P, (x) = P,(L, = 0) = 0 and when P,(x) = P,(U, = 16) = 1.
At any value of x: Vx : (L, = 0) <x < (U, = 16), the probability expressed in the
complex probability set € = R + M is the following:

P2(x) = [Py(x) + P () i* = J5() [ — 2P, (x)Pru(x)
= DOK (x) — Chf (x)
— DOK (x) + MChf (x)
=1

P2(x) = [Py(x) 4+ Pp(x)/i]> = {Py(x) + [1 — P,(x)]}* = 1> = 1 P.(x) = 1 always

@l?c(x) = P.(x)md =1 x ma = ma always also.
Hence, the prediction of all the probabilities and forces of the stochastic experiment
in the universe € = R + M is permanently certain and perfectly deterministic (Figure 27).

8.1.3.1 The complex probability cubes

In the first cube (Figure 28), the simulation of DOK and Chf as functions of each
other and of the random variable X for the Poisson probability distribution can be
seen. The thick line in cyan is the projection of the plane P2(X) = DOK(X) - Chf(X)
=1=P.(X) = F./ ma on the plane X = L, = lower bound of X = 0. This thick line
starts at the point ] (DOK =1, Chf = 0) when X = L, = 0, reaches the point
(DOK = 0.5, Chf = —0.5) when X = 6, and returns at the end to ] (DOK =1, Chf = 0)
when X = U, = upper bound of X = 16. The other curves are the graphs of DOK(X)
(red) and Chf(X) (green, blue, pink) in different simulation planes. Notice that
they all have a minimum at the point K (DOK = 0.5, Chif = —0.5, X = 6). The point L
corresponds to (DOK =1, Chf = 0, X = U, = 16). The three points J, K, L are the same
as in Figure 27.

In the second cube (Figure 29), we can notice the simulation of the real reduced
force F, / ma = P,(X) in R and its complementary real reduced force F,,, / ima =
P,,(X)/i in R also in terms of the random variable X for the Poisson probability
distribution. The thick line in cyan is the projection of the plane
P*(X) = P.(X) + P,,(X)/i =1 = P.(X) = F./ma on the plane X = L, = lower bound of
X = 0. This thick line starts at the point (P, = 0, P,,/i = 1) and ends at the point
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Figure 27.
The graphs of F, | ma, Fy, / ima, and F. / ma and of all the CPP parameters as functions of the random
variable X for this discrete Poisson probability distribution.

(P, =1, P,/i = 0). The red curve represents F, / ma = P,(X) in the plane

P,(X) = P,,(X)/i in light gray. This curve starts at the point J (P, = 0, P,,/i = 1,

X =L, = lower bound of X = 0), reaches the point K (P, = 0.5, P,,,/i = 0.5, X = 6), and
getsattheendto L (P, =1, P,/i = 0, X = U, = upper bound of X = 16). The blue
curve represents F,, / ima = P,,(X)/i in the plane in cyan P,(X) + P,,(X)/i =

1= P.(X) = F./ma. Notice the importance of the point K which is the intersection of
the red and blue curves at X = 6 and when P,(X) = P,,(X)/i = 0.5. The three points ],
K, L are the same as in Figure 27.

In the third cube (Figure 30), we can notice the simulation of the complex
resultant reduced force F/ ma = 2(X) in € = R + M as a function of the real reduced
force F, / ma = P,(X) = Re(z) in R and of its complementary imaginary reduced
force F,, / ma = P,,(X) =i x Im(g) in M, and this in terms of the random variable X
for the Poisson probability distribution. The red curve represents F, / ma in the
plane P,,(X) = 0 and the blue curve represents F,, / ma in the plane P,(X) = 0. The
green curve represents the complex resultant reduced force F / ma = F, / ma + F,, /
ma = z(X) = P,(X) + P,,(X) = Re(z) +i x Im(2) in the plane P,(X) =iP,,(X) + 1 or
z(X) plane in cyan. The curve of F / ma starts at the point J (P, = 0, P, = i,

X = L, = lower bound of X = 0) and ends at the point L (P, =1, P,, = 0, X = U}, = upper
bound of X = 16). The thick line in cyanis P,(X = L, = 0) =iP,,(X =L, = 0) + 1and it
is the projection of the F / ma curve on the complex probability plane whose
equation is X = L, = 0. This projected thick line starts at the point J (P, = 0, P,, = 1,
X =L, = 0) and ends at the point (P, =1, P,, = 0, X = L;, = 0). Notice the importance
of the point K corresponding to X = 6 and z = 0.5 + 0.5 when P, = 0.5 and P,,, = 0.5i.
The three points J, K, L are the same as in Figure 27.
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Figure 28.
The graphs of DOK and Chf and the deterministic veduced force F. / ma = P_ in terms of X and of each other for
this Poisson probability distribution.

8.2 Simulation of continuous probability distributions
8.2.1 The continuous uniform probability distribution

The probability density function (PDF) of this continuous stochastic
distribution is:

1 .
Flay = UCPER] ) =g, 1 Lysx<U,

0 elsewhere

and the cumulative distribution function (CDF) is:

x—Lb

CDF(x) = Pyop(X <x) = Jf(t)dt - Jf(t)dt _!u,-1L, if L, <x<U,p
e A

0 elsewhere
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Figure 29.
The graphs of F, / ma = P, and Fy, / ima = Py, /iand F. / ma = P_ in terms of X and of each other for this
Poisson probability distribution.

I have taken the domain for the continuous uniform random variable to be equal
to:x €L, = —3,U, = 3] and dx = 0.01.

x+3 .
Then CDF(x) = { § I I ="3)sx=(U)=3)
0 elsewhere

Note that:
Ifx =L, = —3&CDF(x) = Py (X< —3) =32 =0.
Ifx =U, =+3&CDF(x) =P,,(X< +3) =32 =1.

The mean of this continuous uniform random distribution is: u = L”Jg—Ub =
=343 _
2 ' 2 2
The variance is: 6% = (LbZZU b = (_31;3) = % =3.
fation dee r — Lo=Usl =33 _ 6 __ _
The standard deviation is: 6 = T B T Un V3 = 1.732050808.....

The median is Md = 0 = u since the distribution is symmetric.
Since the distribution is uniform then it has no mode.
The real probability P, (x) and force are:

52



The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On...
DOI: http://dx.doi.org/10.5772 /intechopen.98341

Figure 30.
The graphs of the reduced forces F. / ma = P, and F,, / ma = Py, and F | ma = z in terms of X for this Poisson
probability distribution.

P,(x) = CDF(x) :x;r3, Vx:—3<x<3
- - x+3\ -
& F,(x) = P,(x)ma = g |ma

The imaginary complementary probability P,,(x) and force are:

X

Po(x) = i[1— Py(x)] = i[1 — CDF(x)] =i |1— J Foyde| =i|1— J F(o)de

-3
— Tf(t)dt =i jf(t)dt =i(1—x23):i(3;x>,Vx:—3§xS3

The real complementary probability P, (x)/i and force are:
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The complex probability or random vector and force are:

2(x) = Py(x) + Pp(x) = (“6L3> +i(3;x>,\m L —3<x<3

F,(x) + Fps(x) = Py (x)md + Py (x)ma = [Py(x) + Py (x)jma = zmd
: 3>mz +i<3 ;x)mz
-|(62) +7) e

The Degree of Our Knowledge:

—

& F(x)

_|_

X

2 2
DOK(x) = ) = P2w) + (o) = (5] + (1-25°)

() ()

=1+ 2iP,(x)P,,(x) = 1 — 2P,(x)[1 — Py(x)] = 1 — 2P,(x) + 2P2(x)
:1_2(962—3) +2(x—6k3» 2, Vx: —-3<x<3

DOK (x) is equal to 1 when P, (x) = P,(L, = —3) = 0 and when P,(x) =
P(Uy,=3)=1.
The Chaotic Factor:

Chf (x) = 2iP, ()P, (x) = —2P,(x)[1 — P,(x)] = —2P,(x) + 2P?(x)

2
— _2(x-g3) +2(x-g3) , Vx:—-3<x<3

Chf (x) is null when P,(x) = P,(L, = —3) = 0 and when P,(x) = P,(U, =3) =1.
The Magnitude of the Chaotic Factor MChf:

MChf (x) = |Chf (x)| = —2iP,(x)Py (x) = 2P,(x)[1 = Py(x)] = 2P, (x) — 2P} (x)

2
:2(x+3) —2<x+3) . Vx:-3<x<3

6 6
MChf (x) isnull when P,(x) = P,(L, = —3) = O and when P,(x) = P, (U, =3) = 1.

At any value of x: Vx : (L, = —3) <x < (U, = 3), the probability expressed in the
complex probability set € = R + M is the following:
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P2 (x) = [P(x) + Pr(x)/i]" = |g(x)|* — 2iP,(x)Pp ()

= DOK (x) — Chf (x)
— DOK (x) + MChf (x)
=1

P2 (x) = [Py(x) 4+ Pp(x)/i]* = {Py(x) + [1 — P,(x)]}* = 1> = 1 P.(x) = 1 always

& F.(x) = P.(x)ma =1 x ma = ma always also.
Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe € = R + M is permanently certain and perfectly deterministic

(Figure 31).

8.2.1.1 The complex probability cubes

In the first cube (Figure 32), the simulation of DOK and Chf as functions of each
other and of the random variable X for the continuous uniform probability
distribution can be seen. The thick line in cyan is the projection of the plane
P2(X) = DOK(X) - Chf(X) =1 =P.(X) = F./ ma on the plane X = L, = lower bound
of X = —3. This thick line starts at the point ] (DOK = 1, Chf = 0) when X = L, = —3,

Figure 31.
The graphs of F,. | ma, F,, / ima, and F. / ma and of all the CPP parameters as functions of the random
variable X for this continuous uniform probability distribution.
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reaches the point (DOK = 0.5, Chf = —0.5) when X = 0, and returns at the end to ]
(DOK =1, Chf = 0) when X = U, = upper bound of X = 3. The other curves are the
graphs of DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation
planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = —0.5,
X = 0). The point L corresponds to (DOK =1, Chf = 0, X = Uj, = 3). The three points
J, K, L are the same as in Figure 31.

In the second cube (Figure 33), we can notice the simulation of the real reduced
force F, / ma = P,(X) in R and its complementary real reduced force F,, / ima =
P,,(X)/i in R also in terms of the random variable X for the continuous uniform
probability distribution. The thick line in cyan is the projection of the plane
P*(X) =P,(X) + P,,(X)/i =1 =P.(X) = F./ ma on the plane X = L, = lower bound of
X = —3. This thick line starts at the point (P, = 0, P,,/i = 1) and ends at the point
(P, =1, P,/i = 0). The red curve represents F, / ma = P,(X) in the plane
P,(X) = P,,(X)/i in light gray. This curve starts at the point ] (P, = 0, P,,/i = 1,

X =L, = lower bound of X = —3), reaches the point K (P, = 0.5, P,,/i = 0.5, X = 0),
and gets at theend to L (P, = 1, P,,/i = 0, X = Uj, = upper bound of X = 3). The blue
curve represents F,, / ima = P,,(X)/i in the plane in cyan P,(X) + P,,(X)/i =
1=P.(X) = F./ma. Notice the importance of the point K which is the intersection of

Figure 32.
The graphs of DOK and Chf and the deterministic veduced force F. / ma = P_ in terms of X and of each other for
this continuous uniform probability distribution.
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Figure 33.
The graphs of F, | ma = P, and F,, / ima = P, / iand F. / ma = P in terms of X and of each other for this
continuous uniform probability distribution.

the red and blue curves at X = 0 and when P,(X) = P,,(X)/i = 0.5. The three points J,
K, L are the same as in Figure 31.

In the third cube (Figure 34), we can notice the simulation of the complex
resultant reduced force F/ ma = 2(X) in € = R + M as a function of the real reduced
tforce F, / ma = P,(X) = Re(z) in R and of its complementary imaginary reduced
force F,, / ma = P,,(X) =i x Im(zg) in M, and this in terms of the random variable
X for the continuous uniform probability distribution. The red curve represents
F, / ma in the plane P,,(X) = 0 and the blue curve represents F,, / ma in the plane
P,(X) = 0. The green curve represents the complex resultant reduced force F / ma =
F,/ma + F,,/ma = 2(X) = P.(X) + P,,(X) = Re(2) +i x Im(2) in the plane
P,(X) =iP,,(X) + 1 or 2(X) plane in cyan. The curve of F / ma starts at the point ]
(P,=0,P, =i, X = L, = lower bound of X = —3) and ends at the point L (P, =1,

P,, = 0,X = U, = upper bound of X = 3). The thick line in cyan is
P,(X=L,=-3)=iP,,(X =L, = —3) + 1and it is the projection of the F / ma curve on
the complex probability plane whose equation is X = L, = —3. This projected thick
line starts at the point J (P, = 0, P, =i, X = L, = —3) and ends at the point (P, = 1,
P, =0,X =L, = —3). Notice the importance of the point K corresponding to X = 0
and z = 0.5 + 0.5 when P, = 0.5 and P,, = 0.5i. The three points ], K, L are the same
as in Figure 31.
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Figure 34.
The graphs of the reduced forces .. / ma = P, and F, | ma = P, and F / ma = z in terms of X for this continuous
uniform probability distribution.

8.2.2 The standard Gaussian normal probability distribution

The probability density function (PDF) of this continuous stochastic
distribution is:

flx) = 4 [Clzf(x)] = \/12_” exp (—%Cz) ,for —oco<x<oo

and the cumulative distribution function (CDF) is:

CDF(x) = Pyyy (X <x) = T F()de = J \/Lz_ﬂ exp (—%2) dt

—00 —00

The domain for this standard Gaussian normal variable is considered in the
simulations to be equal to: x € [L, = —4, U}, = 4] and I have taken dx = 0.01.

In the simulations, the mean of this standard normal random distribution is
u=0.

The variance is 6* = 1.
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The standard deviation is 6 = 1.

The median is Md = 0.

The mode for this symmetric distribution is = 0 = Md = p.
The real probability P, (x) and force are:

T 2 T 2
P,(x) = CDF(x) = J—exp <—%) dt = J\/%exp (—%) dt,Vx : —4<x<4
4

—00 —

- 2
& F.(x) = Py(x)ma = J % exp (—% ) dt|ma

; “Tp (-£) dt] =

The imaginary complementary probability P, (x) and force are:

Po(x) = i[1 — P,(x)] = i[1 — CDF(x)] = i [1 - J f(t)dt]

_ [Tf(t)df] =i Ufz? =P <_§2> dt] - [

X

The complex probability or random vector and force are:
x 4

J \/% exp (—;2> dt] i U‘/lﬂ exp (—22> dt] Vi —4<x <4

4

2(x) = Py(x) + Pp(x) = [
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{'Iz—ﬂexp<f> 1]

The Degree of Our Knowledge:

DOK (x) = |2(x)[> = P2(x) 4 [P (x)/i]* = T —— exp <_§ ) dt] 2

()4

=1+ 2P, (x)Py(x) =1 — 2P, (x)[1 — Py(x)] = 1 — 2P,(x) + 2P*(x)

X X 2
=1-2 Jiex < tz) dt| +2 Jiex < tz) dt Vx : —4<x<4

DOK (x) is equal to 1 when P,(x) = P,(L, = —4) = 0 and when P,(x) =
P (U, =4)=1.
The Chaotic Factor:

Chf (x) = 2iP,(x)P,,(x) = —2P,(x)[1 — P,(x)] = —2P,(x) + 2P2(x)

x X 2
1 L 1 £2

Chf (x) is null when P, (x) = P,(L, = —4) = 0 and whenP,(x) = P,(U, = 4) = 1.
The Magnitude of the Chaotic Factor MChf:

MChf (x) = |Chf (x)| = ~2iP,(x)Pm(x) = 2P, (x)[1 = Pr(x)] = 2P,(x) — 2P} (x)

(] e (5) 0] | o (5) ] v ssess

MCHhf (x) is null when P,(x) = P,(L, = —4) = 0 and when P,(x) =
P.(U,=4)=1.

At any value of x: Vx : (L, = —4) <x < (U, = 4), the probability expressed in the
complex probability set € = R + M is the following:
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P2 (x) = [P(x) + Pr(x)/i]" = |g(x)|* — 2iP,(x)Pp ()

= DOK (x) — Chf (x)
— DOK (x) + MChf (x)
=1

P2 (x) = [Py(x) 4+ Pp(x)/i]* = {Py(x) + [1 — P,(x)]}* = 1> = 1 P.(x) = 1 always

& F.(x) = P.(x)ma =1 x ma = ma always also.
Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe € = R + M is permanently certain and perfectly deterministic

(Figure 35).

8.2.2.1 The complex probability cubes

In the first cube (Figure 36), the simulation of DOK and Chkf as functions of each
other and of the random variable X for the standard Gaussian normal probability
distribution can be seen. The thick line in cyan is the projection of the plane
P2(X) = DOK(X) - Chf(X) =1=P.(X) = F./ ma on the plane X = L, = lower bound
of X = —4. This thick line starts at the point ] (DOK =1, Chf = 0) when X = L, = —4,

Figure 35.
The graphs of F,. | ma, Fy,, / ima, and F. / ma and of all the CPP parameters as functions of the random
variable X for the continuous standard Gaussian normal distribution.
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Figure 36.
The graphs of DOK and Chf and the deterministic reduced force F. [ ma = P in terms of X and of each other for
the standard Gaussian normal probability distribution.

reaches the point (DOK = 0.5, Chf = —0.5) when X = 0, and returns at the end to ]
(DOK =1, Chf = 0) when X = U, = upper bound of X = 4. The other curves are the
graphs of DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation
planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = —0.5,
X = 0). The point L corresponds to (DOK =1, Chf = 0, X = U, = 4). The three points
J, K, L are the same as in Figure 35.

In the second cube (Figure 37), we can notice the simulation of the real reduced
force F, / ma = P,(X) in R and its complementary real reduced force F,, / ima =
P,,(X)/i in R also in terms of the random variable X for the standard Gaussian
normal probability distribution. The thick line in cyan is the projection of the plane
P*(X) =P,(X) + P,,(X)/i =1 = P.(X) = F./ ma on the plane X = L, = lower bound of
X = —4. This thick line starts at the point (P, = 0, P,,/i = 1) and ends at the point
(P, =1, P,/i = 0). The red curve represents F, / ma = P,(X) in the plane
P,(X) = P,,(X)/i in light gray. This curve starts at the point ] (P, = 0, P,,/i = 1,

X = L, = lower bound of X = —4), reaches the point K (P, = 0.5, P,,/i = 0.5, X = 0),
and gets at theend toL (P, = 1, P,,,/i = 0, X = U,, = upper bound of X = 4). The blue
curve represents F,, / ima = P,,(X)/i in the plane in cyan P,(X) + P,,(X)/i =1 =
P.(X) = F,/ ma. Notice the importance of the point K which is the intersection of the
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Figure 37.
The graphs of F. / ma = P, and F., / ima = P,, / iand F. / ma = P in terms of X and of each other for the
standard Gaussian normal probability distribution.

red and blue curves at X = 0 and when P,(X) = P,,(X)/i = 0.5. The three points J, K, L
are the same as in Figure 35.

In the third cube (Figure 38), we can notice the simulation of the complex
resultant reduced force F/ ma = 2(X) in € = R + M as a function of the real reduced
torce F, / ma = P,(X) = Re(z) in R and of its complementary imaginary reduced
force F,, / ma = P,,(X) =i x Im(z) in M, and this in terms of the random variable X
for the standard Gaussian normal probability distribution. The red curve represents
F, / ma in the plane P,,(X) = 0 and the blue curve represents F,, / ma in the plane
P,(X) = 0. The green curve represents the complex resultant reduced force F / ma =
F,/ma + F,,/ma = 2(X) = P.(X) + P,,(X) = Re(2) +i x Im(2) in the plane
P,(X) =iP,,(X) + 1 or 2(X) plane in cyan. The curve of F / ma starts at the point ]
(P,=0,P, =i,X = L, = lower bound of X = —4) and ends at the point L (P, = 1,

P,, = 0,X = U, = upper bound of X = 4). The thick line in cyan is

P,(X=Lj,=—4) =iP,(X = L, = —4) + 1and it is the projection of the F'/ ma curve on
the complex probability plane whose equation is X = L, = —4. This projected thick
line starts at the point J (P, = 0, P,, =i, X = L, = —4) and ends at the point (P, = 1,
P, =0,X =L, = —4). Notice the importance of the point K corresponding to X = 0
and z = 0.5 + 0.5 when P, = 0.5 and P,, = 0.5i. The three points ], K, L are the same
as in Figure 35.
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Figure 38.
The graphs of the reduced forces F, / ma = P, and F,,, | ma = Py, and F / ma = z in terms of X for the standard
Gaussian normal probability distribution.

9. Conclusion and perspectives

In the current research work, the original extended model of eight axioms (EKA)
of A. N. Kolmogorov was connected and applied to Isaac Newton’s classical mechan-
ics theory. Thus, a tight link between classical mechanics and the novel paradigm was
achieved. Consequently, the model of “Complex Probability” was more developed
beyond the scope of my seventeen previous research works on this topic.

Additionally, as it was proved and verified in the novel model, before the
beginning of the random phenomenon simulation and at its end we have the chaotic
factor (Chf and MChf) is zero and the degree of our knowledge (DOK) is one since
the stochastic fluctuations and effects have either not started yet or they have
terminated and finished their task on the probabilistic phenomenon. During the
execution of the nondeterministic phenomenon and experiment we also have:
0.5<DOK <1, -0.5< Chf < 0,and 0 < MChf < 0.5. We can see that during this
entire process we have incessantly and continually P,> = DOK — Chf =
DOK + MChf =1 = P,, that means that the simulation which behaved randomly and
stochastically in the set R is now certain and deterministic in the probability set
€ = R + M, and this after adding to the random experiment executed in R the
contributions of the set M and hence after eliminating and subtracting the chaotic
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factor from the degree of our knowledge. Furthermore, the probabilities of the real,
imaginary, complex, and deterministic forces acting on a body and that correspond
to each value of the random variable X have been determined in the three proba-
bilities sets which are R, M, and € by P,, P,,, 2z and P, respectively. Consequently, at
each value of X, the novel classical mechanics and CPP parameters F,, F,,, F, F,, P,,
P,., Py, /i, DOK, Chf, MChf, P,, and z are surely and perfectly predicted in the
complex probabilities set € with P. maintained equal to one permanently and
repeatedly. Also, as it was shown and proved in the equations above that if the real
probability P, is equal to one then we will return directly to the classical determin-
istic Newtonian mechanics theory which is a special deterministic case of the
stochastic complex probability paradigm general case.

In addition, referring to all these obtained graphs and executed simulations
throughout the whole research work, we are able to quantify and to visualize both
the system chaos and stochastic effects and influences (expressed and materialized
by Chf and MChf) and the certain knowledge (expressed and materialized by DOK
and P.) of the new paradigm. This is without any doubt very fruitful, wonderful,
and fascinating and proves and reveals once again the advantages of extending A. N.
Kolmogorov’s five axioms of probability and hence the novelty and benefits of this
inventive and original model in the fields of prognostics and applied mathematics
that can be called truly: “The Complex Probability Paradigm”.

Moreover, it is important to mention here that one very well-known and impor-
tant random distribution was considered in the current work which is the discrete
and uniform random distribution that was used to prove an important and essential
result at the foundation of statistical mechanics and physics, knowing that the novel
CPP paradigm can be implemented to any probability distribution that exists in
literature as it was shown in the simulation section. This will lead without any doubt
to analogous and similar conclusions and results and will confirm certainly the
success of my innovative and original model.

As a future and prospective research and challenges, we aim to more develop the
novel prognostic paradigm conceived and to implement it to a large set of random
and nondeterministic events like for other probabilistic phenomena as in stochastic
processes and in the classical theory of probability. Additionally, we will apply CPP
to the random walk problems which have huge and very interesting consequences
when implemented to chemistry, to physics, to economics, to applied and pure
mathematics.
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Nomenclature

real set of events

R
M imaginary set of events
e complex set of events
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the imaginary number where i = V—lori®=-1

Extended Kolmogorov’s Axioms

Complex Probability Paradigm

probability of any event

probability in the real set R = probability of the real random force
inR

probability in the imaginary set M corresponding to the real prob-
ability in R = probability of the imaginary random force in J
probability of an event in R with its associated complementary
event in J = probability of the real deterministic force in the
complex probability set €

the real stochastic force in R

the imaginary stochastic force in M
the resultant complex stochastic force in C
the real deterministic force in €

complex probability number = sum of P, and P, = complex random
vector = probability of the resultant complex stochastic force in €
the degree of our knowledge of the random system or experiment,
it is the square of the norm of 2

the chaotic factor of 2

magnitude of the chaotic factor of 2

number of random vectors = number of random atoms or particles
or molecules

the resultant complex random vector = lezlz j

the degree of our knowledge of the whole stochastic system

the chaotic factor of the whole stochastic system

magnitude of the chaotic factor of the whole stochastic system
the resultant complex random vector corresponding to a uniform
random distribution

the degree of our knowledge of the whole stochastic system
corresponding to a uniform random distribution

the chaotic factor of the whole stochastic system corresponding to
a uniform random distribution

the magnitude of the chaotic factor of the whole stochastic system
corresponding to a uniform random distribution

probability in the complex probability set € of the whole stochastic
system corresponding to a uniform random distribution
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