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Chapter

Graph Models in Information
Hiding
Hanzhou Wu

Abstract

Information hiding allows us to hide secret information into digital objects such
as images without significantly distorting the objects. The object containing hidden
information will be transmitted to a data receiver via a probably insecure channel.
To securely transmit the object carrying hidden information, the distortion caused
by data embedding should be as low as possible, which is referred to as the rate-
distortion optimization problem. Many conventional methods optimize the data
embedding procedure by a heuristic fashion, which may be not optimal in terms of
the rate-distortion performance. In this chapter, we introduce novel approaches
that use graph theory for information hiding. These graph models are general and
can be used for improving the rate-distortion performance of information hiding
systems. In addition to rate-distortion optimization, recent graph models used for
system design of information hiding will be also reviewed. This chapter is intended
as a tutorial introducing advanced graph models applied to information hiding.

Keywords: Information hiding, steganography, steganalysis, watermarking,
graph theory, rate-distortion optimization, security, covert communication

1. Introduction

Information hiding [1] is referred to as the art of hiding secret data into a digital
object such as image and video without significantly distorting the object content.
The workflow of information hiding can be described as follows. A data hider uses a
secret key to embed secret data into a digital object (typically also called cover) by
modifying the cover content. The resulting object carrying secret data (typically
also called stego) does not introduce noticeable artifacts and will be transmitted to a
data receiver. During transmission, the stego may be attacked or analyzed by an
adversary. When the data receiver receives the probably altered stego, he will be
able to perfectly or near-perfectly reconstruct secret data from the stego. Different
from cryptography that leaves clear traces on encrypted data, information hiding
can be used to even conceal the existence of the current communication.

Information hiding is actually an emerging and interdisciplinary research area
covering various applications, among which watermarking [2] and steganography
[3] are two popular branches nowadays. In particular, the ease of use, reproduction,
edit and distribution of digital commercial products has led increasing concern to
copyright protection for digital media files, resulting in that, watermarking is still a
major activity in digital media processing. Different from watermarking that aims
to protect the copyright of digital product, steganography, as another important
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branch of information hiding, conceals the existence of the hidden information, and
therefore can be used for secret communication. It works by hiding a secret message
into an innocent cover such as text, image, video and audio, by modifying the noise-
like component of the cover in such a way that the resulting stego has a low
distortion to the cover and therefore will not arouse suspicion.

As mentioned above, information hiding requires us to select a digital object as
the cover to be embedded. A straightforward idea to categorize information hiding
algorithms is therefore based on the type of selected cover. For example, image is
still the most popular cover type due to its wide distribution over social networks. A
number of information hiding algorithms are originally designed for images, e.g.,
[4–6]. Other covers such as video sequences [7–10], speech [11], natural language
[12] are of increasing interest to researchers. Recently, studies have demonstrated
that even social behaviors [13, 14] can be exploited for information hiding. In terms
of data embedding strategies, information hiding can be roughly divided into four
categories, i.e., spatial domain, transformed domain, compressed domain and struc-
tural domain. Taking digital image for explanation, spatial domain is corresponding
to the most intuitive and efficient implementation, which allows us to directly
modify the spatial pixels of an image. Data embedding in transformed domain often
requires a higher computational complexity due to the transform operation. For
example, by applying the discrete cosine transform (DCT) operation to a gray-scale
image, one can use the DCT coefficients for hiding data. Comparing with data
embedding in spatial domain, embedding in the transformed domain is more robust
to malicious attacks. Data embedding in compressed domain is more complex and
challenging than that in the spatial/transformed domain because the entropy in the
compressed domain is high and therefore leads to small capacity for carrying secret
data. Structural domain means to embed secret data in the file structure of a cover,
implying that, no visual/auditory distortion will be introduced. However, from the
viewpoint of an adversary, clear marks in the reserved field of a file may reveal the
existence of information hiding, thus reducing the security.

From the information-theoretic view, information hiding can be modeled as a
communication task, which aims to securely transmit a secret message to a receiver
by embedding the secret message into a cover without significantly impairing the
cover. On the one hand, we expect to embed as many secret bits as possible so that a
sufficient payload can be carried by the cover. On the other hand, for a fixed size of
secret message, we expect to keep the distortion caused by data embedding as low
as possible so that the stego will be seemingly normal and thus will not arouse
suspicion. Accordingly, a most commonly used method for evaluating information
hiding algorithms is rate-distortion performance, where “rate” means the payload
size and “distortion” measures the difference between the stego and the cover.

Many information hiding algorithms optimize the rate-distortion performance
in a heuristic fashion. For example, reversible image watermarking [15, 16] allows
both secret data and the original cover to be reconstructed at the data receiver side.
A common approach to realize reversibility is shifting a so-called prediction-error
histogram (PEH) in a reversible way, i.e., the original PEH can be fully recovered
from the marked PEH. One has to select suitable shifting parameters such that the
distortion caused by shifting can be kept low, thus resulting in good rate-distortion
performance. Many works [17–19] heuristically select the shifting parameters for
embedding, which may be not optimal in terms of rate-distortion optimization due
to cover diversity. It motivates us to study deterministic optimization methods that
are applicable to various covers and lead to optimal/near-optimal performance.

Based on the aforementioned analysis, in this chapter, we will introduce graph
models that can be used for rate-distortion optimization of information hiding. All
these models follow the identical framework. That is, an optimization problem to be

2

Graph Theory



addressed in information hiding is first modeled as a graph problem. Then, by using
a graph algorithm, the optimal solution to the graph problem can be found, indi-
cating that, one can use the optimal parameters or strategies derived from the
optimal solution of the graph problem (under constraints) for information hiding.

The rest of this chapter is organized as follows. First, we provide basic concepts
and algorithms in graph theory in Section 2. Then, in Section 3, we introduce graph
models in information hiding. Finally, we conclude this chapter in Section 4.

2. Basic concepts and algorithms in graph theory

A graph G(V, E) is a non-linear structure that consists of two sets, i.e., node set
(or say vertex set) V = {v1, v2, … , vn} and edge set E = {e1, e2, … , em}, where n andm
represent the size of V and the size of E, respectively. One may write |V| = n and
|E| = m. Each edge ei in E connects two nodes vj and vk in V, namely, ei = (vj, vk).
The two nodes are typically different from each other, i.e., j 6¼ k. G(V, E) is either
directed or non-directed. The term “directed”means each edge in E is associated with
a direction, e.g., ei = (vj, vk) represent a directed edge from vj to vk. Therefore,
(vj, vk) is different from (vk, vj) for a directed graph. In contrast, in “non-directed”
setting, there has no difference between (vj, vk) and (vk, vj), i.e., they are equivalent
to each other. Unless mentioned, we will consider G(V, E) as a non-directed graph.
Many graph models and algorithms can be found in the literature. In this chapter,
for self-contained, we briefly review graph techniques that will be used latter.

2.1 Graph traversal and coloring

Graph traversal is referred to as the process of visiting each node in a graph. It
can be done by using depth-first search (DFS) or breadth-first search (BFS) [20].
Taking DFS for explanation, a node u is first randomly selected as the starting node
and marked to show that it has been previously processed (or visited). If there is a
node v that is adjacent to u and v has not been processed, v will be selected as the
new starting node and should be marked as processed. Here, a node is adjacent to
another node means that there is an edge connecting them. The above process will
be recursively performed until all the nodes are visited. In summary, when the DFS
procedure arrives at a certain node u, it tries to visit an adjacent node v of u, then an
adjacent node w of v, and so on. Notice that, if G(V, E) has multiple connected
components, the DFS procedure may be executed multiple times so that each time a
connected component can be processed. Unlike DFS, if the BFS procedure arrives at
a node u, it first processes all the adjacent nodes of u. Then, for each processed
adjacent node v, it will continue the similar procedure. Though DFS and BFS visit
nodes in a different way, they have the same time complexity, i.e., O(|V| + |E|).

During the DFS or BFS, each node can be assigned with a color, which refers to
graph (node) coloring [20]. We can use two different colors (say “red” and “black”)
for graph coloring so that each node is colored with either red or black. Meanwhile,
for each node (that is not isolated), there is always another adjacent node that has
the different color to the present node. It can be done during the visiting process.
For example, assuming that we have reached a node u from a node v, we can assign
a color that is different from v to u, i.e., if v is black, u will be colored with red.

2.2 Weighted bipartite graph matching

G(V, E) is called a bipartite graph if the node set V can be partitioned into two
disjoint node sets V1 and V2 that all edges in E connect a node in V1 and a node in V2.
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Namely, we can write V1∪V2 = V, V1∩V2 = ∅ and ∀ (u, v) ∈ E, u ∈ V1, v ∈ V2. A
matching of G is such a subset of E that no two edges in the subset share a common
node. A node is matched if it is connected by one edge in the matching. Otherwise,
the node is said non-matched. A maximum matching of G is such a matching that it
has the largest size, i.e., the total number of edges in the matching is maximum. A
weighted bipartite graph means that each edge in E is assigned with a weight. The
minimum weighted maximum matching of a weighted bipartite graph is such a
maximum matching that the sum of weights of edges is minimum. One can use
Hungarian algorithm or minimum cost maximum flow algorithm [20] to compute
the minimum weighted maximum matching.

3. Graph models in information hiding

Figure 1 shows the general framework of information hiding, where an image is
used as the cover. In this chapter, unless mentioned, we will use a grayscale image
as the cover object. Referring to Figure 1, let x = {x1, x2, … , xN} be a cover
sequence, where N is the total number of cover elements. For example, if the
cover is a 8-bit gray-scale image, all possible xi ∈ x will be in range [0, 255], i.e.,
x ∈ {0, 1, … , 255}N. Given secret datam = {m1,m2, … ,mL} ∈ {0,1}L and secret key
k ∈ {o, 1}T, the goal of data embedding is to modify x as a new sequence y = {y1, y2,
… , yN} (also called stego sequence) that m can be carried by y. Namely, we can
write.

y ¼ Embed x,m,kð Þ: (1)

For data extraction, a data receiver should be able to extract m from y, i.e.,

m ¼ Extract y,k
� �

: (2)

In some applications, e.g., reversible watermarking [16], it is further required
that x should be perfectly recovered from y. For a fixed size of m, it is necessary to
keep the distortion due to data embedding as low as possible. Namely, we expect to
minimize the distortion between x and y, denoted by D(x, y), for a fixed m. In
other words, for a fixed D(x, y), we hope to embed as much secret data as possible,
i.e., the size of m is expected to be as large as possible. Many advanced information
hiding algorithms are designed along this line. In the following subsections, we will
introduce graph methods that can be used to deal with the above optimization task.

Figure 1.
General framework of information hiding.
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3.1 Multi-bit mapping using graph coloring

A simplest information hiding method is least significant bit (LSB) replacement,
which enables us to modify x by replacing the LSBs of all elements in x with secret
bits. The data embedding operation for LSB replacement can be described as:

yi ¼ xi– xi mod 2ð Þ þmi, (3)

where 1 ≤ i ≤N = L, “mod”means the modulo operation, andmi is the i-th secret
bit to be embedded. For example, if the value of the i-th cover pixel is 247 (i.e.,
xi = 247), after embedding, the pixel value will be still 247 (i.e., yi = 247) if the secret
bit to be embedded is 1 (i.e.,mi = 1). Otherwise, if the secret bit to be embedded is 0
(i.e., mi = 0), the pixel value will become 246, i.e., yi = 247 – (247 mod 2) + 0 = 246.
For data extraction, by extracting the LSBs of y, m can be recovered, i.e.,

mi ¼ yi mod 2, 1≤ i≤N: (4)

For example, a secret bit 1 (i.e., mi = 1) can be extracted from a pixel whose
value is 247 (i.e., yi = 247) because mi = yi mod 2 = 247 mod 2 = 1. In LSB replace-
ment, there are two ways to modify a cover element, i.e., keeping the cover element
unchanged or flipping the LSB of the cover element. It indicates that, from the
information-theoretic view, each cover element can carry exactly one secret bit,
meaning that, the maximum payload size for x is N (bits). Obviously, when the
number of ways of modifying a cover element is larger than two, the cover element
will be able to carry more bits. This can be analyzed in a graph. Clearly, each cover
element is corresponding to a node in a graph. The edges between the nodes denote
the modification relationship between the nodes. For example, Figure 2(a) shows
the graph for LSB replacement. Each even cover element is corresponding to v1 and
the odd cover elements correspond to v2. v1 and v2 are respectively mapped to “0”
and “1”. During data embedding, if a cover element corresponding to v1 matches the
secret bit, the cover element will be unchanged. Otherwise, it will be replaced with
a new value so that the new value is corresponding to v2, matching the bit.

Let A(v) represent the adjacent set of the node v, e.g., A(v1) = {v1, v2} in Figure 2
(a). Notice that, we consider a node itself as an element of the adjacent set. It can be
inferred that, the total number of modifications to a node is equal to the size of the
adjacent set. Moreover, a larger number of modifications means that the node can
be used to carry more bits. For example, in Figure 2(b), for each node, the size of
adjacent set equals 4, indicating that, each node can carry 2 bits. Obviously, given a
graph, we can assign a bit-stream to each node, representing that the node can carry
the assigned bit-stream (whose size may equal 1). In order to ensure that the

Figure 2.
Examples of analyzing information hiding in a graph: (a) two nodes {v1, v2} are mapped to “0” and “1”, (b)
four nodes {v1, v2, v3, v4} are respectively mapped to “01”, “10”, “00” and “11”, (c) four nodes {v1, v2, v3, v4}
are respectively mapped to “11”, “10”, “0” and “0”.
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associated bit-streams can be used for information hiding, it is required that, for
each non-isolated node, we should be able to select at least one node from its
adjacent set such that the assigned bit-stream matches the secret data, i.e., the bit-
stream should match a prefix of the secret data. For example, in Figure 2(b), for all
nodes, the adjacent set is {v1, v2, v3, v4}, which is mapped to {“01”, “10”, “00”,
“11”}. It can be inferred that, any secret data must start with a bit-stream belonging
to {“01”, “10”, “00”, “11”}. Therefore, we say the graph associated with bit-streams
shown in Figure 2(b) can be used for information hiding. In contrast, the graph in
Figure 2(c) cannot be used for information hiding. The reason is that, for v4, the
adjacent set is {v3, v4}, whose elements are all mapped to “0”, which cannot match
those secret streams starting with “1”. Therefore, given a graph, how to assign bit-
streams to nodes (so that all nodes can be utilized to carry data) is the key problem.

Mathematically, given a connected graph G(V, E), the goal is to map each node to
a bit-stream such that for each node, we can always select such a node from the
adjacent set that the selected node matches the prefix of the secret data. Meanwhile,
it is desirable that the assigned bit-streams can effectively exploit the modification
relationship between nodes. It is defined as the multi-bit mapping problem, which
can be addressed by multi-layer graph coloring [4], whose goal is to append a new
bit (if any) to the end of previously assigned bits of each node during each layer so
that all nodes can be finally mapped to a bit-stream. Below gives the details.

In the first layer, by using DFS or BFS, each node in the original graph G can be
colored with either “red” or “black”. Moreover, for each u ∈ V, there always exists
such v ∈ A(u) that v has a different color to u. We can assign a secret bit “0” to all
red nodes and “1” to all black nodes. In this way, for each u ∈ V, there always exists
one node v ∈ A(u) that v has the opposite bit to u. In other words, for any cover
element corresponding to u ∈ V, we can always modify the cover element such that
the new value of the cover element corresponds to v ∈ A(u) and the mapped bit of
v is equal to the secret bit to be embedded.

Assuming that, the k-th layer coloring procedure has been completed, meaning
that the maximum number of assigned bits for a node is k, we are to perform
(k + 1)-th layer coloring. The detailed steps for (k + 1)-th layer coloring are as
follows.

Step 1) Collect all nodes that have been previously mapped to a bit-stream with
a length of k. For example, after executing the first layer coloring procedure, each
node is mapped to one bit (“0” or “1”), i.e., the bit-stream has a length of 1. It means
that, all nodes will be used in the second layer coloring since they are all mapped to
a bit-stream with a length of 1.

Step 2) All collected nodes in Step 1) will be divided to 2k sets according to the
values of the bit-streams. For example, all the collected nodes will be divided to 2
subsets in the second layer. Namely, one set contains nodes that are mapped to “0”,
and the other set contains nodes that are mapped to “1”. Let Cs represent the set
including all nodes that are mapped to a bit-stream with a value of s, where 0 ≤ s
< 2k. For example, a node belongs to C15 if it is mapped to a bit-stream “001111”,
where k = 6. It is possible that Cs is an empty set. For each non-empty set Cs, all
nodes belonging to Cs and all edges connecting two nodes belonging to Cs can be
used to construct a graph Gs(Vs, Es), which should be a subgraph of G(V, E).

Step 3) Gs may contain multiple connected components. We apply DFS or BFS
to Gs so that each node in Vs can be assigned with one more bit. The use of DFS or
BFS is similar to the first layer. Obviously, for each node in Vs, if we append the bit
to the end of the previous bit-stream, the new bit-stream will have a length of k + 1.
To ensure that the new bit-streams are suited to information hiding, some assigned
bits in this step should be canceled, i.e., the bits assigned to some nodes (if any) in
Vs will be canceled. In other words, the lengths of the new bit-streams of some
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nodes in Vs will not become k + 1 because their assigned bits in this step are
canceled. The details are given in the next step.

Step 4) Let Bs = {v | (u, v)∈ E, u ∈ Vs, v ∈ V-Vs} represent the check-set. It can
be inferred that Bs∩Vs = ∅, Bs ⊂ V and Vs ⊂ V. For each node v ∈ Bs, if all adjacent
nodes of v in Vs are assigned with the same bit in Step 3), we randomly select one
node among these adjacent nodes and cancel the newly assigned bit in Step 3) to the
selected node. By processing all nodes in Bs, the newly assigned bits to some nodes
in Vs can be canceled. The remaining assigned bits are regarded as the (k + 1)-th bit
of the corresponding nodes. Repeat Step 3–4) until all Cs are processed.

The multi-layer graph coloring algorithm is finished when there has no new bit
produced in a certain layer. For example, if there are 64 nodes in the original graph,
the number of layers will be at most 6 since 64 = 26. For better understanding the
multi-layer coloring procedure, we provide an example in Figure 3, in which there
are six nodes and nine edges in the graph. Our goal is to map each node in the graph to
a bit-stream with an indefinite length. First of all, we can use DFS to assign either “0”
or “1” to each node. In detail, assuming that the visiting order by DFS is v1 ! v2 ! v4
! v5 ! v6 ! v3, we can assign “0” to {v1, v4, v6, v3} and “1” to {v2, v5}. Notice that,
here, v3 is visited from v5. When v5 has been previously mapped to “1”, v3 will be
mapped to the opposite bit “0”. {v1, v4, v6, v3} and {v2, v5} are two subsets that will be
processed in the second layer. For the subset {v1, v4, v6, v3}, the visiting order by DFS
is v1 ! v3 ! v4 ! v6, allowing us to assign “0” to {v1, v4} and “1” to {v3, v6}. The
check-set is {v2, v5}. For v5, cancelation of any new bit is not needed, while for v2, the
bit “0” assigned to v1 is pseudo-randomly canceled since all adjacent nodes of v2 in {v1,
v4, v6, v3} are mapped to the same bit. For the subset {v2, v5}, the DFS order can be v2
! v5, allowing us to assign “0” to v2 and “1” to v5. In this case, the check-set is {v1, v4,
v6, v3}. For v4, cancelation of any new bit is not needed, while for v1, v3 and v6, “0” and
“1” respectively assigned to v2 and v5 should be all canceled. In the third layer, since all
nodes are isolated according to the previously assigned bits, the assignment is termi-
nated. Figure 3 has shown the final results, e.g., v4 is finally mapped to “00”.

It is inferred from Figure 3 that, for each node, we can always select such a node
from the adjacent set that the selected node must match a prefix of the secret bit-
stream to be embedded, namely, the graph in Figure 3 can be used for information
hiding. For example, assuming that we have a cover sequence x, which corresponds
to a node sequence (v1, v3, v5, v2, v4, v4) (it is possible that two cover elements in x
are corresponding to the same node), we can modify the node sequence as a new
one (v1, v3, v6, v2, v3, v4) if the secret data is m = [0010110100]. Based on the new
node sequence and x, we can construct the stego sequence y. For data extraction,
we first reconstruct the node sequence (v1, v3, v6, v2, v3, v4) from y. Then, by
orderly concatenating the bit-streams of the nodes in the sequence, we can recon-
struct m without error. Notice that, the data hider and the data receiver should
perform the same multi-layer graph coloring. Otherwise, the data receiver cannot
retrieve m.

Figure 3.
Example for multi-layer graph coloring.
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Remark: The multi-bit mapping by graph coloring enables us to map each cover
element to a bit-stream with an indefinite length, which has effectively utilized the
replacement relationship between different values of cover elements and therefore
can achieve a high embedding rate (i.e., more secret bits can be hidden).

3.2 Reversible embedding using graph matching

Reversible (data) embedding, also called reversible watermarking or reversible
data hiding, not only allows a data receiver to extract secret data from the stego, but
also enables the cover to be perfectly reconstructed from the stego. It is quite useful
for sensitive applications that require no permanent distortion of the cover such as
military imaging. A straightforward idea to realize reversible embedding is lossless
compression, which losslessly compresses the noise-like component of the cover to
reserve extra room for data embedding, i.e., the extra room will be used to carry the
secret data and the compressed code. As shown in Figure 4, by extracting the
losslessly compressed code from the stego, one can reconstruct the original cover
without any error. However, since it is not easy to significantly compress the noise-
like component in a lossless way, the size of the secret data will be low.

Unlike lossless compression, histogram shifting (HS) [21] embeds secret data
into a histogram determined from the cover by reversibly modifying the histogram.
Figure 5 shows an example of HS based reversible embedding in a gray-scale image.
In Figure 5, a histogram determined from the original image is used to embed data.
We first select two bins (peak bin/zero bin) from the histogram. The peak bin has
the maximum occurrence, and the zero bin has no occurrence. Obviously, in
Figure 5, the peak bin is “1” and the zero bin is “3”. Then, we shift all bins between
the two bins towards the zero bin by one step, i.e., the bin “2” will be shifted to the
right. It is equivalent to modifying all pixels having a value of 2 as that have a new
value of 3. Thereafter, we use the peak bin “1” to carry secret data. Assuming that,
the secret data is “0100”, for each pixel having a value of 1, it will be unchanged if
the present secret bit to be embedded is “0”; otherwise, it will be replaced with a
new value of 2 if the secret bit is “1”. In this way, the secret data can be embedded,
resulting in a new image containing secret data (also called marked image). It is easy
for a data receiver to extract secret data and reconstruct the original image. First of
all, secret data can be retrieved by processing all pixels having a value of 1 or 2 in the

Figure 4.
Sketch for lossless compression based reversible embedding.

Figure 5.
An example of using HS for reversible embedding.
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marked image. Then, all pixels that have a value of 2 in the marked image will be
modified with a value of 1. Finally, for those pixels having a value of 3, they will be
modified with a value of 2. In this way, the resulting image will be equal to the
original image. We refer a reader to [21] for more details about HS based reversible
embedding.

Figure 5 corresponds to the classical HS operation, which can be improved by
using two techniques. The first one is using a prediction-error histogram (PEH) for
reversible data embedding, rather than the histogram directly determined from the
original cover. The second one is using more histogram bins for data embedding,
rather than only one peak bin in Figure 5. For better understanding, Figure 6 shows
an example for constructing a PEH. In Figure 6, one can determine a histogram
directly from the cover image, i.e., “Histogram I”. It can be seen that, the maximum
occurrence is less than 3000, meaning that, we can embed no more than 3,000 bits
if we use only one peak bin. However, it can be significantly improved if we can
produce a PEH, e.g., by dividing the pixels into two sets (i.e., cross set and dot set),
the pixels in the dot set (which are unchanged during data embedding) can be used
to predict the pixels in the cross set (e.g., using the average value of the four
adjacent pixels to predict the present pixel), allowing us to determine the prediction
errors (PEs) of all pixels in the cross set. The PEs can be then used to build a PE
histogram (PEH), i.e., “Histogram II”, from which we can find that the maximum
occurrence is more than 150,000, indicating that, we can embed more than 150,000
secret bits by using a single PE bin. Obviously, we can use more PE bins for data
embedding, which will result in the better rate-distortion behavior.

Mathematically, given a PEH H, let h(v) be the frequency of the PEH bin with
value v, which is assumed in the range (vmin, vmax). One may write vmax =�vmin = L,
e.g., L = 256 for a 8-bit grayscale image. Let A and B be a set including all PEH bins
and a set containing all non-zero occurrence bins. It means that, A = {v|-L < v < L}
and B = {v|h(v) > 0} ⊂ A. The above HS operation can be mathematically described
as [22]: For a peak-bin set P = {p1, p2, … , ps} ⊂ B, we build two injective functions
g0 and g1 such that G0 = {g0(p1), g0(p2) … , g0(ps)} ⊂ A, G1 = {g1(p1), g1(p2) … ,
g1(ps)} ⊂ A and G0 ∩ G1 = ∅. We also construct a third injective function f: B\P !
A\(G0 ∪ G1). Assuming that, the size of the secret data is exactly equal to h(p1) + h
(p2) + … + h(ps), for reversible embedding, we first use f to shift all PEH bins in B\P
into A\(G0 ∪ G1). Then, secret bits can be embedded into the PEH by further
shifting the PEH bins in P into G0 ∪ G1. Since g0, g1, f are injective, the original PEH
can be reconstructed from the marked PEH (i.e., the PEH containing hidden infor-
mation). Figure 7 shows the relationship between three sets A, B, P and three

Figure 6.
An example for constructing a PEH: (a) predicting pixels marked as “cross” with pixels marked as “dot”, (b)
two PE histograms, where “Histogram I” is determined directly from the original image shown in (a), and
“Histogram II” is determined by collecting the prediction errors for all possible u{i,j} shown in (a).
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functions g0, g1, f. For better understanding, we take Figure 5 for example. In
Figure 5, we have A = {0, 1, 2, 3, 4}, B = {0, 1, 2, 4}, P = {1} ⊂ B, G0 = {g0(1) = 1}
and G1 = {g1(1) = 2}. Moreover, we have f(0) = 0, f(2) = 3 and f(4) = 4. Notice that,
though Figure 5 does not use any prediction procedure, one may assume that the
prediction value of each pixel is exactly equal to zero. Thus, “Histogram I” is
actually a special case of PEH.

Shifting PEH bins requires us to accordingly modify the image pixels so that the
marked image is corresponding to the shifted PEH. Regardless of the detailed steps
of modifying the image pixels, it can be easily inferred that, in Figure 7, for a fixed
P, it is necessary to find the optimal (g0, g1, f) so that the distortion introduced by
data embedding can be minimized. If this problem can be well addressed, one can
enumerate P to find optimal (P, g0, g1, f) so that the distortion is globally minimum.
Fortunately, we can use bipartite graph matching to deal with the former problem.
It requires us to model all involved PEH bins as graph nodes and the three injective
functions as sets of edges. For example, Figure 8 shows the bipartite graph for the
example shown in Figure 5. It can be inferred that, for the bipartite graph G(V, E),
the node set V consists of two disjoint subsets V1 and V2, where V = V1 ∪V2, V1 = B ∪

Pc = (B\P)∪ P∪ Pc and V2 = A. Moreover, the edge set E can be divided to three
subsets E1, E2 and E3, where E1 = {(u, v) | u ∈ B\P, v ∈ V2}, E2 = {(u, v) | u ∈ P, v ∈

V2}, and E3 = {(u, v) | u ∈ Pc, v ∈ V2}. The three injective functions (g0, g1, f) will be
then corresponding to the subsets (E2, E3, E1), respectively. Notice that, though A
and B have the common elements, they correspond to different nodes. Moreover, P
and Pc include the same elements though they correspond to different nodes.

Each edge in E tells us how to process the corresponding PEH bin, e.g., in
Figure 8, the edge (u2, v4) means that the PEH bin with a value of 2 will be shifted
to the PEH bin with a value of 3. Obviously, shifting a PEH bin will introduce

Figure 7.
Relationship between three sets A, B, P and three functions g0, g1, f.

Figure 8.
Building a (weighted) bipartite graph for the example in Figure 5.
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distortion. If the distortion is additive, i.e., the overall distortion caused by data
embedding is defined as the sum of distortion caused by each cover element, each
edge could be associated with a weight representing the distortion of shifting the
corresponding PEH bin, resulting in that the overall distortion should be the sum of
weights of all edges. For example, in Figure 8, we can determine a weight for each
edge, e.g., w(u1, v1) denotes the distortion caused by shifting the PEH bin “0” to “0”
(i.e., unchanged) and can be therefore assigned to the edge (u1, v1). Thus, the
overall distortion due to HS in Figure 5 is equal to the sum of weights of edges
shown in Figure 8. Here, we ignore the steps to determine the weights since it is not
the main interest of this chapter. We refer a reader to [22] for more details about the
weight determination.

Therefore, we can conclude that, once g0, g1 and f are determined, we can easily
construct the corresponding bipartite graph. However, (g0, g1, f) can be optimized
from the viewpoint of rate-distortion optimization. Different (g0, g1, f) correspond
to different bipartite graphs. All these bipartite graphs have the same node set, and
the only difference is that the edge set is different from each other. Obviously, by
merging all the nodes and edges, we can construct a new bipartite graph G*(V*, E*).
G(V, E) is therefore a subgraph of G*(V*, E*), meaning that, arbitrary (g0, g1, f) can
be modeled as a subset of E*. In terms of rate-distortion performance, we expect to
find such (g0, g1, f) that they introduce the minimum distortion. How to find such
optimal (g0, g1, f) is very important. Rethinking Figure 8, We can further infer that,
g0, g1 and f ensure that, each node in V1 can be matched by exactly one node in V2,
i.e., (g0, g1, f) is corresponding to a maximum matching of G. Since V = V* and E ⊂

E*, we can find that (g0, g1, f) should be also a maximum matching of G*. Since we
expect that the distortion caused by (g0, g1, f) is minimum, it is further inferred that
the optimal (g0, g1, f) is corresponding to the minimum weight maximum matching of
G*. Thus, once we have built G*, by applying any graph algorithm that solves the
minimum weight maximum matching (MWMM) of a bipartite graph, we can find the
optimal (g0, g1, f) with respect to rate-distortion optimization. In order to build G*,
we first initialize V* = V = V1 ∪ V2, V1 = B ∪ Pc = (B\P)∪ P∪ Pc and V2 = A. Then, for
each PEH bin, we collect all the possible shifting operations, which allows us to add
the corresponding edges to G* so as to construct E* [22].

For better understanding, Figure 9 shows an example for searching the optimal
(g0, g1, f). In Figure 9(a), each node in V1 involves multiple edges, implying that,
the corresponding PEH bin can be shifted to any one among multiple candidates.
For example, the node u1 is connected by four different edges, i.e., (u1, v1), (u1, v2),
(u1, v3), (u1, v4), indicating that, there are four possible ways to shift “-5”, i.e.,
shifting “-5” to any one in {“-6”, “-5”, “-4”, “-3”}. By solving the MWMM, we can
construct a subgraph as shown in Figure 9(b), from which we can identify the
optimal (g0, g1, f), e.g., in Figure 9(b), g0 is corresponding to {(u8, v6), (u9, v8)}, i.e.,
g0(�1) =�1 and g0(1) = 1, which means that, for those pixels with a PE value of “-1”
or “1”, a part of them will be unchanged so as to carry secret bits “0”s.

Remark: Reversible embedding by weighted graph matching enables us to find
the optimal HS parameters from the viewpoint of rate-distortion optimization, i.e.,
the optimal HS parameters can be obtained by determining the MWMM, providing
a different perspective to the conventional optimization approaches. However, it is
admitted that, in the graph matching model, it is required that P has been fixed in
advance. If we relax this requirement, the time complexity will become very high
since enumerating all possible P is time consuming [22]. For example, there are a

total of
100

4

 !

ways to construct P if we have |P| = 4, |B| = 100 (notice that, P ⊂

B). Therefore, for a large |P|, when P is also required to be optimized, how to reduce
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the overall computational complexity needs further investigation. Heuristic search
strategies would be desirable for dealing with this problem.

3.3 Graph steganography in social networks

Many conventional algorithms use media objects as the cover. Recently, social
behaviors are exploited for steganography. Comparing with media objects, social
behaviors can be more easily concealed by the very large number of normal social
activities. Moreover, both the data sender and the data receiver can easily integrate
into the social networks. It is possible for the data receiver that he observes social
behaviors for data extraction, without taking any other actions, which can well
protect the real identify of the data receiver. From the point of algorithm design,
one can extend existing methods originally designed for media objects to social
behaviors, which may not well exploit the characteristics of social networks. On the
other hand, by modeling social networks as graphs, we can use graph theory for
conveying secret data, which is referred to as graph steganography [13, 14].

Figure 10 shows the general framework for graph steganography. In Figure 10,
the data sender (or say data hider) first converts secret data to a (directed) graph.

Figure 10.
General framework for graph steganography.

Figure 9.
Example for finding optimal (g0, g1, f): (a) G

*(V*, E*), (b) the MWMM. In (b), all nodes in V1 should be
matched by exactly one node in V2, and it is possible that some nodes in V2 may be not matched since |V1| ≤ |V2|,
e.g., v4 and v13 are not matched in this example.
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Then, the graph will be embedded into social network by producing a sequence of
seemingly-normal social interactions. For data receiver, he can retrieve the secret
graph by observing the interactions without taking any other actions. In this way,
he can finally recover secret data from the graph by inverting the graph generation
procedure. In the following, we show the core steps for the general framework.

Given secret data m, the graph generation procedure first converts m to a non-
directed graph G1(V1, E1). Then, G1(V1, E1) is extended to a directed graph G2(V2,
E2) that can be released in a social network platform by orderly producing a
sequence of interactions. In detail, given n nodes indexed from 1 to n, we can

construct 2

n

2

� �

different graphs, each of which is corresponding to a binary string

that has a length of
n

2

� �

. Suppose that m ⊂ {0, 1}L, where L here represents the

size ofm, i.e., |m| = L. One can append “0” (if necessary) to the end ofm so that L =
n

2

� �

. In other words, we can always assume that n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Lþ 1
p

þ 1
� �

=2. In order to

construct G1(V1, E1), we first initialize V1 = {v1, v2, … , vn} and E1 = ∅. Then, for
each mk ∈ m, we add an edge (vx, vy) to E1 if and only if mk = 1, where x and y are
determined as:

x ¼ min j j 0< j< n,
X

j

i¼1

n� ið Þ≥ k

( )

, (5)

and

y ¼ xþ k�
X

x�1

i¼1

n� ið Þ: (6)

In this way, G1(V1, E1) can be finally obtained. Figure 11 shows an example for
constructing G1(V1, E1), from which we can find that each bit inm is corresponding
to the existence of the corresponding edge, e.g., m1 = 1 implies that there is an edge
between v1 and v2, and m8 = 0 indicates that there has no edge between v3 and v4. It
can be easily inferred that, G1 may contain multiple connected components. One
can directly release G1 in a social network platform by producing social operations.
For example, a set of social bots can be used for producing social behaviors so that
G1 can be carried by these social behaviors. The social bots will be corresponding to
V1, and the social behaviors are corresponding to E1. Since G1 is a non-directed
graph and may contain multiple connected components, it typically requires the
data sender and the data receiver to share the mapping relationship between social

Figure 11.
An example of converting secret data to a non-directed graph.

13

Graph Models in Information Hiding
DOI: http://dx.doi.org/10.5772/intechopen.98592



bots and nodes in V1 so that the data receiver can reliably extract m by observation.
Actually, G1 can be extended to a directed graph so that there has no need for the
data sender and the data receiver to share the mapping relationship between social
bots and graph nodes. In other words, by extending G1(V1, E1) to a directed graph
G2(V2, E2), the social bots can orderly produce social behaviors based on G2 so that
the data receiver can perfectly reconstruct G2 by observation without knowing the
mapping relationship between nodes in G2 and social bots in advance (because the
mapping relationship can be determined during observation).

In order to construct G2(V2, E2), we first initialize V2 = {u1, u2, … , un + 1} and E2

= ∅. Then, we update E2 by orderly processing V1 = {v1, v2, … , vn}. In detail, for
each vi ∈ V1, 1 ≤ i ≤ n, we update E2 = E2 ∪ {(ui, un + 1)} if there does not exist such
j < i that (vj, vi) ∈ E1. Otherwise, for all possible j < i, we add an edge (ui, uj) to E2

if (vj, vi) ∈ E1. Notice that, G2 is a directed graph, meaning that, each edge in E2 will
be associated with a direction, e.g., (uj, ui) is an edge with a direction from uj to ui.
For better understanding, Figure 12 shows an example for constructing G2 based on
G1. It can be observed that, if we ignore the directions of edges, G1 will be a
subgraph of the connected graph G2. It can be further inferred that, during the
generation, each edge in E2 can be associated with an index, representing the time
of inserting the edge, e.g., an index value of 1 is assigned to (u1, u6) since this edge is
the first one added to E2. G2 will be released in the social network by producing a
sequence of social interactions. Each interaction is corresponding to an edge in E2.
The social interactions are orderly produced according to the index value of each
edge, which means that an interaction with a smaller index will be preferentially
produced. The social interactions are dependent of the social network platform,
e.g., “forwarding”, “commenting”, and “liking” another user’s tweet. A requirement
is that, for each edge (ux, uy) in E2, the interaction should be produced by the
starting node ux, e.g., in Figure 12, by using “forwarding” as the interaction, u5 is
required to “forward” the tweet of u4 to represent the directed edge (u5, u4). The
advantage is that, by taking into account the producer of the interaction, one can
identify the direction of the corresponding edge, which will be beneficial to the
construction of G2.

The data receiver has the ability to perfectly reconstruct G2 from observations.
Let (ai, bi, ci), 1 ≤ i ≤ Me = |E2|, denote all orderly collected interactions. (ai, bi, ci)
means the user ai produces an interaction ci to another user bi. The following steps
[13] will be then performed to reconstruct G2.

Step 1) Set i = j = 1 and initialize V2 = {u0} and E2 = ∅.
Step 2) Insert a new node uj to V2 and map ai to uj if ai has not been previously

mapped to a node in V2. Map bi to u0 if bi has not been previously mapped to a node
in V2. Set j = j + 1 if uj is in V2.

Figure 12.
An example for constructing G2 according to G1.
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Step 3) Insert a new edge (ux, uy) to E2, where ux and uy are the mapped nodes of
ai and bi. Mark ai and bi as “processed”. Set i = i + 1, and go to Step 2) if i < Me.

Step 4) Replace u0 with un + 1 to build G2(V2, E2), and terminate the procedure.
After constructing G2, by removing vn + 1 and the involved edges from G2,G1 can

be obtained by further eliminating the directions of all edges. With G1, secret data
m can be perfectly extracted. In this way, graph steganography is finally realized.

Remark: Graph steganography exploits social behaviors for conveying secrets.
The graph steganographic scheme introduced in this subsection enables us to send
n

2

� �

secret bits to the receiver, which can be further improved if more interactions

are performed among users. In terms of security, directly releasing G2 in the social
network may allow an attacker to reveal the existence of steganography since G2 is
dependent of other social behaviors. In other words, G2 is an isolated graph, i.e., if
an attacker finds a node in G2, by applying DFS, he can further reconstruct G2. To
this end, by adding edges connecting nodes in G2 and outside nodes (i.e., innocent
users that does not join steganography), the above problem can be solved [13].

3.4 Other graph strategies in information hiding

In addition to the aforementioned graph models, graph theory can be also used
for other purposes in information hiding. The reason is that graph theory enables us
to model various types of relations and processes.

Content Prediction and Selection: In information hiding, the data hider has to
select the suitable cover elements out from a cover for data embedding. We can use
DFS or BFS (for a built graph) to deal with this problem. For example, in reversible
image watermarking, it is expected to use as many smooth pixels as possible since
smooth pixels can provide better rate-distortion performance. For a smooth pixel, it
is very likely that its adjacent pixel is also smooth. By modeling pixels as graph
nodes, we can use an edge to connect adjacent smooth pixels. Thus, selecting
smooth pixels is equivalent to determining connected components. For instance, in
Figure 6(a), the pixels in the cross set are used for data embedding. The pixels in
the dot set are unchanged. Each pixel in the cross set can be predicted by the
adjacent pixels in the dot set, e.g., using the average value of adjacent pixels for
prediction. We can build such a graph that the node set consists of all pixels in the
cross set. For any two pixels in the cross set, they are adjacent to each other if their
Manhattan distance is lower than a threshold, e.g., 2. Thus, for any two adjacent
pixels, if the difference between their prediction values is lower than a given
threshold, the corresponding nodes can be connected by an edge. In this way,
we can use DFS or BFS to compute the maximum connected component of G
and only use the corresponding pixels for carrying secret data. It relies on the
assumption that two adjacent pixels having the close prediction values are equally
smooth [5].

Information Hiding in Graphs: Unlike media objects that are organized into a
formatted repository whose elements can be effectively processed, increasing data
are captured as graphs such as social networks, deep learning models. These data
have very high commercial value, e.g., social network data can be used for mining
valuable information of users so as to improving the quality of service, deep neural
network models have achieved great success in visual computing. How to protect
the ownership of these graph data has been an important task. This requires us to
hiding information into graph data without impairing the value of the graph data.
One can extend conventional media based algorithms to graph data, e.g., [23]. On
the other hand, similar to graph steganography in social networks, secret data can
be first translated as graphs and then embedded into the host graph data, e.g., [24].
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4. Conclusion and discussion

This chapter has introduced advanced graph models applicable to information
hiding. In detail, we first model the data embedding operation in a graph, in which
all cover elements are mapped to nodes and the modification relationship between
cover elements are mapped to edges between the corresponding nodes. In this way,
by applying the graph coloring technique to nodes, each node can be mapped to a
bit-stream with an indefinite length, which allows a data hider to modify the cover
elements according to the mapped bit-streams. Since the mapped bit-streams have
fully exploited the modification relationship, a high data-embedding capacity can
be achieved. We also model the parameter optimization task of HS based reversible
watermarking as a weighted graph matching problem. In the built bipartite graph,
the nodes are corresponding to the PEH bins to be shifted, and the edges show all
the possible shifting operations. The weight of an edge equals the distortion caused
by shifting one node in the edge to the other. By finding the MWMM in the built
weighted bipartite graph, we can identify the optimal shifting solution for a fixed
peak-set. In addition, we have also introduced graph steganography, which uses a
graph to represent secret data and sends the graph via a social network platform by
producing a sequence of ordered interactions such as “liking” and “forwarding”. In
summary, all the above graph models first use nodes to denote cover elements and
use edges to represent somehow relationship between nodes. Then, the target
problem to be addressed is modeled as a graph optimization problem. By solving the
graph optimization problem, the optimal or near-optimal information hiding strat-
egies can be determined, accordingly providing superior information hiding per-
formance. We have also discussed other potential graph strategies that can be used
in information hiding. Since graph theory enables us to model various types of
relations and processes in information hiding, it is believed that, graph models and
methods will play an increasingly important role in information hiding.
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