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Abstract

Bioenergy including biofuels from lignocellulosic biomass has immense 
potential to meet growing energy demand of the ever-growing world population. 
Bioenergy will help to mitigate the environmental problems arising due to burning 
of fossil fuels. Rice is the staple food for more than half of the world population 
and is grown in more than 100 countries. Rice straw is rich in lignocellulose and 
several technologies are available for efficient extraction and conversion of cellulose 
to ethanol. Thus, the surplus rice straw can be utilised to produce biofuel, so as to 
replace conventional fossil fuel sources. But it is reported that the present-day rice 
varieties showing high lignocellulosic straw biomass have low grain yield potential. 
Hence, it is important to re orient the breeding strategies for developing dual pur-
pose rice varieties that are bioenergy efficient without compromising grain yield.

Keywords: Rice, Bioenergy, Cellulose, Lignin, Cell wall architecture, Genomics, 
QTLs

1. Introduction

After the Paris climate change agreement in 2016, its signatories are making 
considerable efforts towards reducing carbon emissions into the atmosphere. 
Production of biofuel also called as ‘green energy’ will be a key target to achieve this 
by reducing the use of petrochemicals. Now focus is to harness ethanol from the 
existing ample quantity of lignocellulosic feedstocks such as rice and wheat straws, 
which are usually burnt in the fields thereby causing air pollution and health haz-
ards [1]. The bioenergy crops have tremendous potential to address the twin issues 
of climate change and energy security by eliminating the ‘food verses fuel’ disputes.

Of the various crops grown worldwide, rice has an immense potential to be used as 
a dual-purpose crop, due to it’s wide geographical distribution, covering entire tropi-
cal, subtropical and Mediterranean region of the globe [2]. High amount of cellulose 
(32–47%) and hemicellulose (19–27%) in rice straw, which can be converted to biofuel, 
has made it a potential future bioenergy crop [3–6]. But the cell wall polymers (cel-
lulose, hemicellulose and lignin) form a complex network by crosslinking with each 
other. Hence, various pre-treatments are employed in order to break this complex to 
ensure higher amount of cellulose availability for the activity of cellulosic enzymes 
to yield considerable sugars. These pre-treatments are costly and environment 
unfriendly, so various genetic approaches can be utilised to enhance cellulose availabil-
ity. Lignin, comprising three main types of monolignols, serves as a promising target to 
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alter the cell wall architecture in different ways in rice [7–9]. Cellulose synthases genes 
particularly, OsCesA4, OsCesA7 and OsCesA9, associating with specific phenotypes, 
can also be suitably engineered to enhance cellulose content without changing lignin 
and other polymers in cell wall [10]. So, breeding approaches that can alter plant cell 
wall architecture can be used to develop bioenergy efficient rice variety but, subjected 
to one condition that it should not affect yield contributing traits negatively.

Usually, a negative correlation has been observed between grain yield and 
biomass traits. Breeding for high grain yield is associated with developing cultivars 
with reduced plant height and short leaves and thereby, reducing the plant biomass 
as a whole. The plant breeding strategies have to be reoriented towards selection of 
higher yielding plants with moderate biomass traits including lesser ash & potassium 
content in vegetative biomass. Also, the role of stay green traits, fostering greater 
decomposition of vegetative biomass as well as rewarding higher yield, can never be 
underestimated in this regard. This chapter will deal with the above said issues and 
measures, with the prime focus on methods for developing rice genotypes for higher 
yield and greater biofuel production, in subsequent heads.

2. Ethanol production from rice straw

Ethanol production is primarily centered around the lignocellulosic fraction of the 
plant biomass. Among all the left-over waste of crop species, rice straw is the cheap-
est and most abundant source of lignocellulosic feed stock. Rice straw, possessing 
considerable amount of cellulose (32–47%), hemicellulose (19–27%), with relatively 
less lignin (5–24%), is considered as one of the potent bioenergy sources [3, 5]. Various 
enzymes have been identified in the biosynthesis of these polymers (Figures 1-3) 
which determine the type and amount of polymer production in the plant cells. The cell 
wall polymers form a complex network by crosslinking with each other inside the cell 
walls. Hence, various pre-treatments are employed in order to break these complexes, 
to reduce crystallinity of cellulose (crt), degree of polymerisation (DP), increase in 

Figure 1. 
Cellulose biosynthesis pathway in microbes and plants.
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biomass surface area, and breaking the lignin seal. Chemical pre-treatment of rice 
straw is practiced to enable enzymatic saccharification for ethanol production [13–26].

Biological pretreatment, an eco-friendly method, overcomes the disadvan-
tages of chemical pretreatment. White-rot fungi (Pleurotus ostreatus) of class 
Basidiomycetes are most promising microorganisms [27]. Basidiomycetes degrades 
lignin fraction in lignocellulosic biomass in rice straw. Patel and co-workers [28] 
in a study on rice straw reported that pretreatment involving Aspergillus niger and 
Aspergillus awamori, followed by Saccharomyces cerevisiae aided fermentation and 
recorded highest ethanol yield of 2.2 g/l. Cellulose upon hydrolysis produces glucose 
while hemicellulose produces hexose and pentoses [29]. Use of steam pretreat-
ment or hydrolysis of rice straw using H2SO4 has also been reported [30, 31]. 
Pretreatment with Aspergillus niger increased the glucose yield from 43 to 87% [32].

Cellulose contain glucans while hemicellulose is composed of polymers of 
xylan, mannan, glucan, galactan and arabinan. The general process of ethanol 

Figure 2. 
Hemicellulose monomer biosynthesis pathway.
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production involves conversion of cellobiose to ethanol by a series of steps of 
involving pre-treatment, enzymatic saccharification and fermentation as described 
earlier. These steps may include simultaneous saccharification and fermentation 
(SSF) or separate enzymatic hydrolysis and fermentation (SHF). SSF is generally 
used as cost incurred in the process is less [33]. In this process also, higher yield of 
ethanol is obtained. However, some drawbacks are observed in this process such as 
requirement of optimum temperature (40-50°C) for enzymatic hydrolysis, which 
the microorganisms cannot tolerate. This problem can be tackled by using thermo-
philic microorganisms such as Kluyveromyces marxianus, Candida lusitamiae and 
Zymomonas mobilos or mixed culture of Bettanomyces clausenii and Saccharomyces 
cereviseae [34, 35]. Shengdong and co-workers [36] employed the SSF of alkali 
and alkali/microwave pretreatment to generate ethanol using cellulase from 
Trichoderma reesei and Saccharomyces cereviseae. The ethanol concentration was 
29.1 g/l and yield were 61.3% under optimum condition. Chada and co-workers [37] 
mentioned that SSF was superior to traditional saccharification in production of 
ethanol as it can improve the ethanol content by removal of end product inhibition 
by saccharification process. In the fermentation process alcohol is mixed with the 
straw to produce fermentable sugars and this is referred to as mash. This mash is fed 
into fractional distillation unit which differentiates alcohol from other components. 
The alcohol thus produced is cleaned and dehydrated to remove the water content. 
After cleaning and drying bioethanol is produced with a purity of 99.7% V/V.

These chemical processes for saccharification are harmful to the environment. 
Hence now research should be focused towards minimising or eliminating these 
steps by developing rice genotypes with higher saccharification efficiency (SE).

3. Role of plant breeding and biotechnology to enhance SE

As mentioned earlier the lignocellulosic biomass is primarily a complex network 
of various cellular constituents including cellulose, hemicellulose, lignin and 
interaction of a wide array of compounds like chlorophyll, waxes, oils, terpenes 

Figure 3. 
Lignin biosynthesis pathways. The various enzymes are PAL [phenylalanine ammonia-lyase]; TAL [tyrosine 
ammonia-lyase]; C4H [cinnamate 4-hydroxylase]; C3H [4-hydroxycinnamate 3-hydroxylase]; COMT [caffeic 
acid 3-O- methyltransferase]; F5H [ferulate 5-hydroxylase]; 4CL [4-coumarate: CoA ligase]; CCoA-3H 
[coumaroyl-CoA 3-hydroxylase]; CCoAOMT [caffeoyl-CoA O-methyltransferase]; CCR [cinnamoyl-CoA 
reductase]; CAD [cinnamyl alcohol dehydrogenase]; LAC [laccase]; and PDX [peroxidase] (modified from 
Furtado et al. [11]; Vermerris and Abril [12]).
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and phenolics, called extractives [38, 39]. It is beneficial to have knowledge on the 
genetics as well as correlation between biomass traits and these cellular constitu-
ents. A greater insight into the composition, structure and the synthesis of cellular 
constituents will help in designing suitable breeding strategies for the genetic 
modification of cell wall architecture and in turn development of high energy 
efficient rice genotypes.

3.1 Morphological and biochemical characterisation of biomass traits

In simple term, it refers to the study of various morphological, physiological, 
biochemical traits, associated with grain and biomass yield. Rigorous phenotyping 
is essential for the success of any crop improvement programme. In breeding for 
biofuel, although some noticeable work has been done in case of bioenergy crops 
like sorghum, maize and sugarcane, very limited information is available with 
respect to rice, which is considered as a hinderance in effective phenotyping in 
this regard.

It is reported that culm length, stem girth, tiller length and diameter, leaf char-
acteristics such as leaf length, width and angle as well as leaf, stem, tiller dry weight 
are few key biomass traits that can be used for indirect selection [40, 41]. These 
traits recorded at different developmental stages will help to decipher the genetic 
basis of biomass partitioning and accumulation in vegetative parts.

Biochemical characterisation of rice straw cell wall polymers (cellulose, lignin 
and hemicellulose) is an integral part of biomass phenotyping. Many methods like 
use of ultrasonicator, HPLC, microarrays, Infrared absorption spectroscopy, X- ray 
diffraction (XRD), transmission electron microscopy (TEM) and carbon-13 nuclear 
magnetic resonance (C-NMR) spectroscopy can be used for quantitative estimation 
of cell wall polymers [42, 43].

3.2 Polymer composition of rice biomass

Cellulose is the utmost abundant organic compound available on earth. It 
is a linear polymer of repeating units of cellobiose molecule. Cellobiose, a β 
(1–4)-linked residue, is produced when two glucose molecules (one in 180 deg. 
rotation) are in proximity to yield a β (1–4)-linkage. These cellulose fibres impart a 
greater rigidity and strength to the cell wall and hence, enabling plants to exhibit a 
wide spectrum resistance to various biotic and abiotic factors [12]. The non-cellu-
losic polysaccharides further enhance the rigidity and strength of plant cell walls by 
cross-linking with cellulose and lignin. Various reports have suggested this cellular 
constituent as a mixture of various monosaccharides such as xylose, arabinose, 
glucose, galactose and rhamnose as well as certain acids [44, 45]. This complex 
nature of non-cellulosic polysaccharides as well as their involvement in cross link-
ing with cellulose, possesses a major setback in the efficient enzymatic degradation 
of cellulose to produce biofuel.

Lignin, the second most abundant biopolymer after cellulose, is polymerised 
with three main types of monolignols namely, Syringyl alcohol (S), Coniferyl 
alcohol (H) and p-Coumaryl alcohol (H) [46, 47]. As a complex phenolic com-
pound, it improves cell wall rigidity and strength, imparts resistance to a wide array 
of microbes [48], fosters transporting of minerals through vascular bundles [49], 
involves in resistance against lodging as well as abiotic anomalies [50–52].

Cellulose and hemicellulose in rice straw can be subjected to fermentation for 
production of biofuels. However, their efficient conversion into fermentable sugars 
is hindered by presence of higher amount of lignin (5–24%), ash (10–17%), silica 
(75% of ash) and potassium [53].
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In rice, silica comprises 74.67% of the stem ash content. Both high ash and high 
silica (SiO2) silica content of ash negatively affect biochemical conversion of ligno-
cellulosic feedstock [11, 53]. High silica content reduces the availability of cellulose 
to enzymatic digestion and thus, reducing saccharification efficiency. Besides this, 
high silica accumulation in the cell walls disrupts the cellulosic microfibrils and such 
aberration hinders overall sugar release and ultimately, ethanol yields in subsequent 
stages. Therefore, considerable efforts are required to engineer silica content along 
with lignin and non-carbohydrate polysaccharides content to develop rice geno-
types, amenable to greater enzymatic digestibility.

Although, different enzymatic and chemical pre-treatment methods are being 
employed for the disruption of this complex network but these procedures are 
energy intensive, costly and harmful to the environment. Hence, genetically modi-
fying the cell wall architecture by employing conventional and modern breeding 
methods are beneficial for sustainable biofuel production [11, 54].

3.3 Modifications in polymer composition for elevating cellulose utilisation

As discussed earlier, lignin serves as a key element in cross linking of cellulose 
and hemicellulosic polysaccharides. This feature is beneficial to the rice plant as it 
helps it to counteract biotic and abiotic stress but it is a limiting feature for biofuel 
production. The cross linking creates a barrier for the cellulose degrading enzymes 
to freely access cellulose for conversion. So, efforts are being made towards reduc-
ing the degree of lignification and cross linking through various approaches so as to 
enhance the efficiency of cellulose degrading enzymes.

3.3.1 Modification of lignin

Some noticeable work has been done to alter the plant cell wall architecture with 
the help of biotechnology in model dicot plants such as Arabidopsis and tobacco 
(Table 1). The purpose behind these experiments has been the downregulation of 
key genes involved in monolignol biosynthesis, as well as the essential enzymes 
involving in polymerisation thereof. Nearly 40% reduction in total lignin content 
was achieved by downregulating laccases and peroxidases in the Arabidopsis [61] 
and tobacco mutants [62], respectively. So, these available reports documenting 
successful reduction of lignin composition in model dicot plants can be judiciously 
used by the researchers to favourably alter the cell wall architecture of the less 
exploited prospective biofuel crops such as rice. The japonica rice ‘Nipponbare’ har-
bouring an Arabidopsis TF (SHN), was found to be deficient in total lignin content. 
Expression of essential genes such as CAD (cinnamyl alcohol dehydrogenase) and 
4-CL (4- coumarate- CoA ligase) were reported to be repressed, which might have 
contributed in producing lower lignin content [9].

Alternatively, there is another way of altering the plant cell wall architecture, 
by curbing the expression of essential genes involved in lignin monomers synthesis 
(Figure 3). In rice, flexible culm (fc1) mutant with repressed CAD gene, a cinnamyl 
alcohol dehydrogenase gene, was reported to synthesise reduced level of H and 
G lignin monomers [7]. Zhang and co-workers, [60] were able to produce some 
transgenics with improved saccharification efficiency as compared to wildtype 
by targeting same OsCAD2 gene in rice. Apart from these genes, few other genes 
including caffeoyl-CoA- methyl transferase (CCoAOMT) and caffeic acid o-methyl 
transferase (COMT) were genetically engineered in different species such as alfalfa, 
canola, maize, poplar, tobacco and sugarcane, to alter the lignin monomers composi-
tion [63–66, 70–74]. Several reports enumerating the modifications of some key TFs 
such as OsMYB103L are also available for improved plant architecture in rice [58, 59].
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Cell wall 

polymer 

regulation

Genes Approach Phenotypes Reference(s)

Cellulose 

synthesis

OsCesA4 Bc11 (G858R), 

NE1031, ND5658 

(TOS17)

Reduce cellulose; 

affect growth

[10]

OsCesA7 NC0258, ND8759 

(TOS17)

Reduce cellulose; 

affect growth

[10]

OsCesA9 ND2359 (TOS17) Reduce cellulose; 

affect growth

[10]

OsGH9B Osfc4; Osfc11 

(T-DNA)

Reduced 

Cr1(Cellulose 

crystallinity)

[55]

OsGH9B 1; 

OsGH9B 3

pCAMBIAI11300: 

OsGH9B

Reduced Cr1; 

DP (Degree of 

Polymerisation)

[56]

Fc17 (OsCESA4) F2 (fc17 × MH 63) Reduced Cr1 [57]

Cellulose 

regulation

OsMYB103L pUbi:: OsMYB103L 

(OE)

Increased 

secondary cell wall

[58]

OsMYB103L: 

NAC29,31

pUbi:: OsMYB61; 

NAC29, 31 (OE)

Increased 

secondary cell wall

[59]

Lignin 

synthesis

OsCAD2 CRISPR/Cas9 Altered H and G 

residues; reduced 

lignin

[60]

Fc1 (Cinnamyl-

alcohol 

dehydrogenase)

Fc1 (T-DNA) Reduced H and G 

residues; reduced 

lignin

[8]

4CL; CAD p35S::AtSHN2 (OE) Reduced lignin [9]

Bc1 (COBRA like 

protein)

bc1 (ᵧ-rays) Reduced lignin [7]

Laccases LAC4/LAC7 

(T- DNA)

Reduced lignin; 

hinderance in 

deposition of G 

subunits

[61]

Peroxidases TP60 (RNAi) Reduced lignin; 

reduced G and S 

residues

[62]

COMT pWFOsC4H::Bg4CLi 

(RNAi)

Reduced lignin; 

reduced S/G ratio

[63]

CCoAOMT CCoAOMT (RNAi) Altered lignin 

subunit 

composition

[64–66]

Hemicellulose 

synthesis

OsXAX1 (GT61) axa1 (T-DNA) Reduced xylose, 

ferulic acid, 

coumaric acid

[67]

BAHD acetyl 

transferase

pUbi: OsAt10 Reduction in 

matrix bound 

ferulic acid

[68]

OsIRX10 (GT47) OsIRX10 

(RGT6229D)

Reduced X/A; 

affect growth

[69]

Table 1. 
Candidate genes for preferable altering the cell wall polymers (cellulose, hemicellulose and lignin) in plant 
system.
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3.3.2 Modification of hemicellulose

A general trade-off has been discovered between saccharification efficiency 
and ferulic acid [75, 76]. Bartley and co-workers, [68] reported the possible role of 
OsAt10, a BAHD acetyltransferase gene in achieving higher sugar release by favour-
ably modifying glucuronoarabinoxylan (GAX) in rice. Young leaf tissues of the 
genetically engineered plants were found to be deficient in ferulic acid (FA). The 
possible role of other genes such as OsXAX1 and OsIRX10 were known to recipro-
cate similar results in rice [67, 68].

3.4 Role of cellulose synthase genes

Cellulose synthase enzymes are pivotal for cellulose synthesis. These proteins 
organise to form a hexameric ‘rosette’ structure approx. 25–30 nm diameter [77]. 
The plant cellulose synthase (Ces A) genes were first identified during random 
sequencing of cotton ESTs [78] and its role in cellulose synthesis was first reported 
in Arabidopsis Ces A mutants [10, 79]. The Ces A gene family was also identified in 
rice, maize, barely and poplar [57, 80–92].

Tanaka and co-workers [10] generated four different introgressed lines, showing 
brittle culm phenotypes by suitably introgressing Tos17, a retroposons in the genetic 
background of rice wildtype. They identified three cellulose synthase genes namely, 
OsCesA4, OsCesA7 and OsCesA9 on three different chromosomes. The mutant Osfc16 
with a mutation on CesA9- conserved sequence was found with altered cellulose 
crystallinity (crt1), which possibly enhanced the saccharification efficiency [93]. In 
a similar experiment, conserved site of another potential cellulose synthase CesA4 
is mutated to alter cellulose crystallinity (crt1) for enhanced cellulose synthesis in 
fc17 mutants [57]. Considerable efforts have been made to alter various structural 
properties of cell wall constituents including cellulose crystallinity (crt1) and 
degree of polymerisation (DP) which usually negatively affect the saccharification 
potential. In this regard, some noticeable work has been done to identify and char-
acterise few genes of glycoside hydrolase family (OsGH9B 1, 3 and 16), promising 
candidate genes for favourably modifying structural properties of cell wall poly-
mers as well as cellulose synthesis in rice [55, 56]. Beside cellulose synthase genes, 
other genes including KORRIGN [94–96], COBRA-like protein [7] and KOBITO 
[80] need to be explored properly to develop energy efficient elite cultigens in rice.

3.5 Genomics and QTL identification for biomass traits

Correlation between biomass traits and grain yield in rice is negative. Breeding 
varieties for high grain yield usually involves designing the varieties for medium 
plant height with short erect flag leaves which in turn affect the total biomass 
yield. This can be addressed to some extent by crossing rice cultivars, showing high 
polymorphism for grain yield potential as well as biomass traits and identify the 
candidate genes or QTLs involved. After the successful mapping of genes or, QTLs, 
the linked markers can be used for marker assisted selection (MAS) as well as can 
be used to screen the existing wild types or landraces for dual characteristics. As 
we have discussed earlier, cell wall polymers i.e., cellulose, hemicellulose and lignin 
composition can be altered for improved saccharification traits, hence, it is essential 
to search for the genetic link between cell-wall polymer composition and grain yield 
in order to breed dual purpose rice cultigens [97–103]. Gui- Fu and co-workers [97] 
identified few major QTLs associated with three plant traits namely, total biomass 
yield, straw yield and grain yield by developing suitable doubled haploid popula-
tion. A QTL co-associated with both cell wall polymer composition and heading 
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date (HD17) has also been identified by crossing parents with considerable poly-
morphism for the dual characters [102]. Recently, Genome wide association survey 
(GWAS) involving high throughput molecular markers (SNPs) were employed 
to identify the genomic regions exhibiting significant association between mark-
ers and phenotypic trait and characterise the candidate genes involved [101]. 
Dissecting the genomic fragments involving lignin and cellulose biosynthesis is 
possible now with the application of GWAS technique [100].

3.6 Plant breeding strategies for improving biomass traits

Pre- existence of variability is of paramount importance in any crop improve-
ment programme. Selection, being the core stone of plant breeding activities, is 
employed to harness the existing variability present in various germplasms including 
wild types and landraces, before creating additional variability by mutation.

A preferred high HI for good yield reduces the vegetative biomass of the rice as 
a whole including reduction in plant height. There is a trade-off for plant height 
vs. biomass yield. Hence, the role of long- culm rice cultivars in breeding high 
energy efficient varieties has been given due consideration [104–108]. However, 
an increase in culm length may increase the risk of plant lodging, which is a major 
factor influencing rice grain yield stability especially in direct-seeded rice. A thick 
culm with tolerable lignin content in cell wall will decrease the risk of plant lodging. 
So, there should be a balance between the cell wall constitution and morphological 
characters. Hence, judicious selection of genotypes for increased plant height with 
thick culm along with high grain yield can address the negative impact exerted by 
short culm height on overall biomass production. Few researches have enumerated 
the importance of selecting certain traits such as stem girth, plant height, leaf, 
sheath and stem weight for higher biomass yield in rice [40, 108, 109].

Another way for breeding dual purpose cultigens is to incorporate ‘stay green’ 
traits in cultivated type [110, 111]. Varieties possessing these traits are able to main-
tain higher photosynthetic activity at post-flowering stage, increasing yield thereof. 
At the same time, higher decomposability of these traits could serve the dual objec-
tives as discussed above. Hence, there is a possible opportunity to exploit this stay 
green character in developing dual purpose rice genotypes as it has been exploited 
in other biofuel/bioenergy crops. Also, this character genetically enhances the pho-
tosynthetic efficiency, there may be no need to apply extra N inputs. Nevertheless, 
more research is required in this aspect. As of till date there are no reports of this 
strategy being exploited in breeding rice varieties for dual purpose.

Next it is important to identify the genetic loci (QTL) associated with these 
stay green trait and the markers flanking those regions [112–115]. Various bio-
technological tools can then be employed for their successful integration into the 
plant genome or alternatively, marker aided selection (MAS) can be employed for 
varietal improvement. Also, heterosis breeding can be used to exploit the pos-
sible heterotic gene combinations in remodelling the plant architecture for higher 
biomass yield in rice, as it has been done in sorghum which possesses similar 
architectural traits [116–119].

4. Conclusion

There is an urgent need to address greenhouse gas emissions (GHGs) and 
climate changes occurring due to rampant use of fossil fuels. Rice straw, being 
an abundant source of lignocellulosic feedstock, has the potential to produce 
green energy to address the above said global concerns. Lignin and hemicellulose 
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complexes act as hinderance to produce energy efficient cultigens and hence, vari-
ous studies are being made to down regulate the gene involved in their biosynthesis 
without affecting the plant system and cellulose concentration. Directly engineer-
ing cellulose synthase genes also provides an alternative opportunity in designing 
plant cell wall architecture. Stay green traits and heterosis breeding enhance the 
opportunity of developing energy efficient varieties to a greater extent. Thus, the 
role of plant breeding can never be bypassed as careful selection of individuals for 
dual traits will be highly rewarding in achieving the goal of growing dual-purpose 
rice varieties.
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