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Chapter

Evaluating Steady-State Visually
Evoked Potentials-Based
Brain-Computer Interface System
Using Wavelet Features and
Various Machine Learning
Methods
Ebru Sayilgan, Yilmaz Kemal Yuce and Yalcin Isler

Abstract

Steady-state visual evoked potentials (SSVEPs) have been designated to be
appropriate and are in use in many areas such as clinical neuroscience, cognitive
science, and engineering. SSVEPs have become popular recently, due to their
advantages including high bit rate, simple system structure and short training time.
To design SSVEP-based BCI system, signal processing methods appropriate to the
signal structure should be applied. One of the most appropriate signal processing
methods of these non-stationary signals is the Wavelet Transform. In this study, we
investigated both the effect of choosing a mother wavelet function and the most
successful combination of classifier algorithm, wavelet features, and frequency
pairs assigned to BCI commands. SSVEP signals that were recorded at seven differ-
ent stimulus frequencies (6–6.5 – 7 – 7.5 – 8.2 – 9.3 – 10 Hz) were used in this study.
A total of 115 features were extracted from time, frequency, and time-frequency
domains. These features were classified by a total of seven different classification
processes. Classification evaluation was presented with the 5-fold cross-validation
method and accuracy values. According to the results, (I) the most successful
wavelet function was Haar wavelet, (II) the most successful classifier was Ensemble
Learning, (III) using the feature vector consisting of energy, entropy, and variance
features yielded higher accuracy than using one of these features alone, and (IV) the
highest performances were obtained in the frequency pairs with “6–10”, “6.5–10”,
“7–10”, and “7.5–10” Hz.

Keywords: steady-state visually-evoked potentials (SSVEP), brain-computer
interfaces (BCI), wavelet transform (WT), mother wavelet selection, pattern
recognition, machine learning (ML)

1. Introduction

Electroencephalogram (EEG) signals are one of the most widely used types of
biomedical signals for Brain-Computer Interfaces (BCIs), owing to their portability,
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high time resolution, ease of acquisition, and cost-effectiveness as compared to
other brain activity monitoring techniques [1–3]. There are four typical EEG-based
BCI paradigms: steady-state visual-evoked potentials (SSVEP), slow cortical poten-
tials (SCP), the P300 component of evoked potentials, and sensory-motor rhythms
(SMR) [4–6].

The SSVEP signal is a periodic response to a visual stimulator modulated at a
frequency greater than 6 Hz [7] or 4 Hz [8]. The amplitude and phase characteris-
tics of the SSVEP depend on stimulus intensity and frequency. SSVEP events can be
repeatedly produced if the stimuli are provided under controlled conditions [9]. For
instance, staring at a flickering light that flashes at a constant frequency stimulates
the human visual pathway. The flickering frequency is radiated throughout the
brain. This stimulation produces electrical signals in the brain at the base frequency
of the flashing light, as well as at its harmonics [10]. Practically, there is a marked
reduction in the power of the SSVEP signals from the second harmonics onwards.
This has been attributed to the low signal-to-noise ratio of the SSVEP signals at
high frequencies and can be accounted for the brain dynamics that act as a low
pass filter [11].

The analysis of EEG signals using machine learning (ML) methods is developed
to help physicians in accurate diagnosis and provides fast and valid tools in assistive
applications designed for individuals. Among the various approaches available in
the literature, the Wavelet Transform (WT) has proven to be an effective time-
frequency analysis tool for analyzing transient signals [12, 13]. Various wavelet
families are available to define and adapt signal characteristics [14]. However,
choosing an appropriate mother wavelet is very important for the analysis of these
signals. Research studies to date for EEG-signal classification using the wavelet
technique have mostly been done using the Daubechies (Db) family. The maximum
accuracy achieved in this study was 95.00% [15]. However, in this study, although
the signal was suitable for Discrete Wavelet Transformation (DWT), analysis was
performed using the Continuous Wavelet Transformation (CWT) method. Fur-
thermore, in the same study, analysis was performed for a single frequency. In this
chapter, a detailed analysis was performed using multiple frequencies. Also, in Ref.
[16], the SSVEP signal was used for a single wavelet type (Db40), but no mother
wavelet selection was made. Thus, the mother wavelet selection for SSVEP is still an
unanswered question.

The research presented in this chapter is especially about selecting the most
suitable wavelet function for signal analysis of SSVEP signals, detailed investigation
of energy, entropy, and variance attributes, and examining the appropriate fre-
quency(s) for SSVEP based BCI design.

There is not any, to our knowledge, in-depth study on the selection of stimula-
tion frequencies. It was noticed that higher accuracy rates could be obtained for
pattern recognition by examining the frequency selection and the differences
between the frequencies. The frequency or frequencies that might result in higher
higher accuracy rates and time advantages are considered to help design user-
friendly BCI systems. Due to the shortcomings in the literature mentioned above,
this study was considered to be conducted.

2. Materials and methods

2.1 Data recording process and users

In this study, the dataset (AVI SSVEP Dataset) containing SSVEP signals
designed and recorded by Adnan Vilic was used [17]. The data set contains data that
include EEG measurements of healthy individuals (three men and one woman
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having ages range from 27 to 32) looking at the flickering target to trigger responses
of SSVEP signals at different frequencies, and the data set used for this study is
publicly available. Using the standard international 10–20 system for electrode
placement, the reference electrode is positioned in Fz with the signal electrode in
Oz and Fpz in the ground electrode. In this experiment, individuals had been seated
60 cm away from a monitor staring at a single flashing target whose color changed
rapidly from black to white. The test stimulus was a flashing box at seven different
frequencies (6–6.5 - 7 - 7.5 - 8.2 - 9.3 - 10 Hz) presented on the monitor. The data set
comprises of four sessions with four different participants. Each trial in a session
lasts 30 seconds and participants take a short break between trials. Experiments
were repeated at least three times for each frequency.

In Figure 1, a) the raw signal stimulated at a frequency of 10 Hz and b) the power
spectrum density computed signal (with its 1st and 2nd harmonics) are shown.

2.2 Feature extraction

It is possible to define the neurophysiology of the human visual system, the
neuronal activity of the visual cortex is replaced by visual stimulation, and varia-
tions of the brain response related to the features of the visual stimulus such as
brightness, contrast and frequency [18]. Neurons in the visual cortex synchronize
their flickering to the frequency of blinking of the visual stimulus. SSVEP signals
are generated when visual stimuli are repeatedly presented, creating almost sinu-
soidal oscillations [19]. Applying a visual stimulus flashing at a constant frequency
increases the energy of brain activities comparing to the case of applying a constant
visual stimulus [7]. The strongest response occurs in the visual cortex of brain
(occipital), but other areas of brain are also activated to different degrees [8, 9].
SSVEP marks can be detected even for narrow frequency bands around the visual
stimulation frequency with signal processing methods that take advantage of the
specific features of the signal such as timing, frequency, and rhythm [20]. For this
reason, this study is designed on accepted signal processing strategies that validate
the comprehensive scenarios analyzed.

2.2.1 Time-domain based feature extraction

The SSVEP time-domain features are extracted from available literature infor-
mation in the original field of the EEG signal. Table 1 describes the relevant and
distinctive SSVEP time-domain features we identified. These features are based on
the amplitude (e.g. average amplitude change value, root mean square, interquartile

Figure 1.
a) SSVEP raw signal b) power spectrum of the 10 Hz stimulated SSVEP signal and topography.
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ranges, etc.) and statistical changes of the EEG signal (e.g., mean, variance, skew-
ness, and kurtosis, etc.) [20].

2.2.2 Frequency-domain based feature extraction

SSVEP signals are identified by oscillations with frequencies synchronized with
the stimulus frequency [6, 21]. For this reason, many SSVEP-based BCI systems use
frequency information embedded in the signal in the feature extraction process
[22, 23]. Within the scope of this chapter, SSVEP frequency features were extracted
from the frequency domain representation of the SSVEP signal using a Fourier
transform. The relevant and distinctive SSVEP frequency characteristics we
detected are based on the spectral information of SSVEP signals for each EEG
rhythm, such as energy, variance and spectral entropy.

These features explain how power, variance, and irregularity (entropy) change
in certain related frequency bands. In practice, this implies that these features will
use their power in certain frequency bands [24].

Features based on power spectrum, energy of each frequency band,

F
fð Þ

1 ¼ Energy f ¼
X

M

k¼1

y kð Þ2 (1)

Here is the Fourier transform of the analytic signal y of a real discrete time EEG

signal x.F fð Þ
1 ¼ Energy f stands for the EEG features computed from y, and M

corresponds to the maximum frequency.
Features based on variance of each EEG frequency band,

F
fð Þ

2 ¼ Variance f ¼
1

M� 1

X

M

k¼1

yk � y
� �2 (2)

“y” in the formula stands for the average of the “y” signal.

EEG Time-domain features F
tð Þ
i

� �

No. Features No. Features

1. EEG minimum value 14. Kurtosis of EEG signal

2. EEG maximum value 15. Skewness of EEG signal

3. EEG mean value 16. Hjorth identifiers: 1) Activity

4. EEG standard deviation value 17. Hjorth identifiers: 2) Mobility

5. Integrated EEG value 18. Hjorth identifiers: 3) Complexity

6. Mean absolute value 19. Signal range (max-min.)

7. Simple square integral value 20. Inter-quarter intervals 1st Quartile

8. EEG variance value 21. Inter-quarter intervals 2nd Quartile (Median)

9. Root mean square value 22. Inter-quarter intervals 3rd Quartile

10. Waveform length value 23. Zero-crossing

11. Average amplitude change value 24. Slope-change value

12. Absolute difference in standard deviation 25. Mode value of the signal

Table 1.
EEG time-domain features (EEG signal is represented by x, and F

tð Þ
i
stands for the EEG features computed from x).
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Feature based on entropy of each EEG frequency band: Spectral entropy
measures the regularity of the power spectrum of EEG signal,

F
fð Þ

3 ¼ Entropy f ¼
1

log Mð Þ

X

M

k¼1

P y kð Þð Þ logP y kð Þð Þ (3)

2.2.3 Wavelet transform based feature extraction

2.2.3.1 Wavelet decomposition

SSVEP signal is non-stationary [18]. Consequently, WT has been used to exam-
ine not only spectral analysis of the signal but also the spectral behavior of the signal
over time. This method is characterized by a smooth and fast oscillating function
that is well localized in frequency and time [12]. WT can be applied as a specially
designed dual Finite-Impulse Response (FIR) filter. The frequency responses of FIR
filters separate the high frequency and low-frequency components of the input
signal. The point of dividing the signal frequency is usually between 0 Hz and half
the data sampling rate (Nyquist frequency). In the Multi-resolution Algorithm
(MRA) of the WT, the identical wavelet coefficients are used in both low-pass (LP)
and high-pass (HP) filters. The LP filter coefficients are associated with scaling
parameter, which will determine the oscillatory frequency and the length of the
wavelet. At the same time, the HP filter is associated with the wavelet function. The
outputs of the LP filters are called the approximation (a) coefficients, and the
outputs of the HP filters are called the detail (d) coefficients. In MRA of WT, any
time-series signals can be entirely decomposed in terms of a and d coefficients
based on decomposition level. Implementation of DWT on raw signal produces an
MRA of various statistical and non-statistical parameters across time and frequency
[24]. The subsets of the wavelet coefficients of the decomposition tree were selected
as input vectors to the classifier. The SSVEP signals are decomposed into 9 decom-
position levels, and i = 1, 2,. .., 9 for 512 Hz sampling frequency.

2.2.3.2 Parameters for feature extraction

Using different DWT functions (Haar, Db2, Sym4, Coif1, Bior3.5, Rbior2.8),
SSVEP signals are subdivided into frequency bands (delta, theta, alpha, beta,
gamma), and the energy, entropy and variance were calculated for each band
[13, 14]. Every DWT frequency band is associated with one or two EEG rhythms.
Thus, a number of features represented in the frequency bands were obtained.

Energy at each decomposition level was calculated using the following
Equations [24]:

F
wð Þ
1 ¼ Edi ¼

X

N

j¼1

dij
�

�

�

�

2
, i ¼ 1, 2, 3, … , l (4)

F
wð Þ
1 ¼ Eai ¼

X

N

j¼1

aij
�

�

�

�

2
, i ¼ 1, 2, 3, … , l (5)

where dij and aij represent detail and approximate coefficients, respectively,
formed by the wavelet level corresponding to each EEG band (delta, theta, alpha,
beta, gamma).i ¼ 1, 2, 3, … , l is the wavelet decomposition level from levels 1 to l.
Finally, N stands for the number of detail and approximate coefficients at each
decomposition level.
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Another feature, the entropy at each decomposition level is calculated using the
following Equation [25]:

F
wð Þ
2 ¼ Enti ¼ �

X

N

j¼1

dij
2 log dij

2� �

, i ¼ 1, 2, 3, … , l (6)

The variance at each decomposition level was calculated using the following
Equation [24]:

F
wð Þ
3 ¼ Vari ¼

1
N � 1

X

N

j¼1

dij � μi

� �2, μi ¼
1
N

X

N

j¼1

dij, i ¼ 1, 2, 3, … , l (7)

Extracted features, which consist of different combinations, (l +1) dimensional
are used as input vectors. In other words, for an ‘l’ level decomposition, the feature
vector of any parameter can be represented as Feature = [xd1, xd2, … , xdl, xal],
where x stands on energy, entropy, and variance.

2.3 Machine learning classification algorithms

The most important use of machine learning (ML) methods is classification [26].
After feature extraction, classification is performed to recognize an SSVEP signal
and convert it to command, that is, to use it as output [27]. For the classification
process, the “datasets” formed by a certain number of feature vectors, of which
class it belongs, are passed through the training period required by the classification
type. As a result of this training, a decision mechanism algorithm is created, which
is used to assign the unknown signal to the appropriate class [28, 29].

The extracted feature vectors have been tested with seven well-known and
commonly-used basic classifiers. These selected classifier algorithms are Decision
Trees, Discriminant Analysis, Logistic Regression, Naive Bayes, Support Vector
Machines, k-Nearest Neighbors, and Ensemble Learner. The classifier performances
were examined to determine which combination of mother wavelet function,
wavelet features, and classifier algorithm gives the highest accuracy.

2.4 Evaluation of machine learning algorithms performance

While training ML algorithm to classify SSVEP signals is an important step, it is
essential to consider how the algorithm is generalized on unprecedented data (test
set) [30]. We need to know if the algorithm works correctly and whether we can
trust its predictions. The machine learning algorithm can only memorize the train-
ing set. Therefore, it can make reasonable predictions about future examples or
examples that it has not seen before. Thus, it is one of the essential steps for BCI
systems to know and apply the techniques used to evaluate how well a ML model
generalizes to new, unprecedented data [31, 32]. For this goal the “k-fold cross-
validation” and “confusion matrix” evaluation criteria were used to evaluate the
performance of the ML algorithms used in this study.

2.4.1 k-fold cross-validation

In this method, the data set is randomly divided into k segments. Among these
segments, k-1 parts are used for the training, and the remaining part is used for the
testing. This process is repeated until all parts are used for testing separately. The
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test errors are recorded each time, and the average of the errors after the last part is
reported. The performance of each classifier algorithm used is measured by carry-
ing out this approach [30, 31]. In this study, the data set is divided into five equal
parts.

2.4.2 Confusion matrix

Confusion matrix is, at first, calculated to evaluate the classifier performance.
The confusion matrix is generated by comparing the responses of the classification
algorithm to the test set with the actual values in the data set. In case of two-state
problems, it is a table consisting of four different situations [26]. These are True
Positive (TP) value, True Negative (TN) value, False Positive (FP) value, and False
Negative (FN) value.

Accuracy value (ACC) is calculated as classifier performance based on these
values [27]:

ACC ¼
TPþ TN

TPþ FNþ FPþ TN
(8)

2.5 Experimental design and implementation details

In accordance with the objective of our study, we have designed it in a two-fold
manner for time-frequency domain features. First, we measured the accuracy of
each (feature, mother wavelet function) pair. As the second part, we combined the
set of three features with each mother wavelet function in order to discover which
mother wavelet function yields the best performance in terms of accuracy. Three
important features (i.e. energy, variance, and entropy) have been extracted for EEG
bands (i.e. delta, theta, alpha, beta, and gamma) using six different mother wavelet
families (Haar, db, sym, coif, bior, rbio). To this purpose, algorithms were
implemented using Signal Processing Toolbox and Wavelet Toolbox in Matlab
2019a. All the classifiers and performance analyses were implemented using the
Classifier Learner App tool from Matlab version 2019a.

3. Results and discussion

Characterized as an increase in the amplitude of the stimulating frequency, the
photic driver response results in significant baseline and harmonics [33]. Thus, it is
possible to determine the stimulus frequency based on the SSVEP measurement.
For this purpose, 115 feature vectors were extracted from the SSVEP signals
recorded using seven different frequencies. The extracted feature vectors were run
with seven basic ML algorithms. Simultaneously, the frequencies that constitute the
SSVEP data set were evaluated with multiple, selected three-class, and binary clas-
sifications. Also, the effect of the increase in the difference between frequencies on
the accuracy criterion was investigated, and the results are shown in detail between
Figures 2–17, and Tables 2–5.

3.1 Time-domain features results

The multiple and binary classification results of 25 feature vectors extracted
from SSVEP signals using time-domain properties are given below, respectively.
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Figure 2.
Binary classification performance of the time-domain features.

Figure 3.
Percentage of classifier where the best result is the most often obtained as a result of running the algorithms
2,520 times in total.

Figure 4.
Results of selected 3-class classifications for frequency-domain features.

8

Brain-Computer Interface



Figure 5.
Binary classification performance of the frequency-domain features.

Figure 7.
Classification performance of energy, entropy, and variance as separate features.

Figure 6.
Percentage of successful classifiers that give the highest accuracies from 2,520 runs in total.
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Figure 8.
Classification performance of energy, entropy, and variance together as a feature set (all features together).

Figure 9.
Percentage of classifier where the best result is the most often obtained as a result of running the algorithms
2,520 times in total a) energy, entropy, and variance as separate features, b) energy, entropy, and variance as a
feature set.

Figure 10.
Binary classification performance of the features for bior 3.5 mother wavelet function.
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Figure 11.
Binary classification performance of the features for coif 1 mother wavelet function.

Figure 12.
Binary classification performance of the features for Db 4 mother wavelet function.

Figure 13.
Binary classification performance of the features for Haar mother wavelet function.

Figure 14.
Binary classification performance of the features for Rbio 2.8 mother wavelet function.
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3.1.1 Multiple classification results

Presented in Table 2 are accuracy results for multiple classification. In regard to
these results, the highest performance was shown by the Ensemble Learning
classifier with 52.40%.

Figure 15.
Binary classification performance of the features for Sym 4 mother wavelet function.

Figure 16.
Change of accuracy value according to the differences between frequencies for mother wavelet functions.
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3.1.2 Binary classification results

According to the binary classification results shown in Figure 2, the best per-
formance was obtained with an accuracy value of 91.68% in 6–10 Hz frequency

Subjects ACC Classifier

Subject 1 25.90 LDA

Subject 2 50.00 Ensemble

Subject 3 52.40 Ensemble

Subject 4 42.90 Ensemble

Mean 42.80

Table 2.
Results of multiple classification for time-domain features.

Subjects ACC Classifier

Subject 1 29.20 Ensemble

Subject 2 50.00 Ensemble

Subject 3 57.10 Ensemble

Subject 4 47.60 Ensemble

Mean 45.98

Table 3.
Results of multiple classification for frequency-domain features.

Figure 17.
Percentage of classifier where the best result is the most often obtained as a result of running the algorithms
2,520 times in total (for Haar wavelet function).
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pairs based on the average of the subjects. Simultaneously, when the subjects are
considered separately, a classification performance up to 100% were obtained. In
addition, there is no definitive finding related to the increase in the accuracy value
parallel to the difference between frequencies for the time-domain.

The results of classifiers to be expressed in the pie chart in Figure 3 are the
number of hits of the classifiers obtained. These numbers were obtained by running
all algorithms 2,520 times in total. The best classification performance is shown by
the Ensemble learning classifier.

3.2 Frequency-domain features results

For the frequency-domain characteristics used in the problem of determining
seven different frequencies, firstly, spectrum analysis was performed to detect the
stimulus frequencies more clearly than the signal. This analysis is often used to
obtain frequency information in evoked SSVEP responses. The power spectrum of
SSVEP signals was determined by FFT using MATLAB software to calculate its
power, entropy, and variance for each band in the frequency range corresponding
to the frequencies. For this purpose, the signal received FFT is divided into EEG
bands (delta, theta, alpha, beta, gamma), and energy, entropy, and variance values
of each band are calculated. A total of 15 feature vectors are generated.

3.2.1 Multiple classification results

According to the multiple classification results of the seven frequencies
presented in Table 3, it was determined that the best performance was in the

Subject 1 Subject 2 Subject 3 Subject 4

Mother

wavelet

ACC Classifiers ACC Classifiers ACC Classifiers ACC Classifiers

Coif 1 29.20 KNN 34.60 Ensemble 33.30 Ensemble 33.30 LDA

Bior 3.5 55.60 LDA 23.10 Ensemble 42.90 Ensemble 28.60 Naive
Bayes

Db 4 37.50 SVM 23.10 SVM 33.30 Naive
Bayes

33.30 Ensemble

Sym 4 29.20 LDA 30.80 Decision
Tree

38.10 Ensemble 28.60 LDA

Haar 37.50 KNN 23.10 LDA 42.90 LDA 23.80 LDA

Rbio 2.8 33.30 Naive
Bayes

23.10 SVM 38.10 Ensemble 28.60 Ensemble

Mean 37.05 26.30 38.10 29.37

Table 4.
Multiple classification results of wavelet features.

Frequency pair Energy Entropy Variance Mean All features together

6–10 95.83 94.45 100.00 96.76 97.23

6.5–8.2 92.85 95.83 95.83 94.83 100.00

6.5–10 100.00 84.50 95.83 93.44 100.00

Table 5.
Classification results of the most successful frequency pairs of the Haar mother wavelet.
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Ensemble Learning classifier with an accuracy value of 57.10%. Another remarkable
finding here is that the results of the classifier from all individuals are the same. This
shows us that, like the time-domain, the Ensemble Learning classifier performs
better than others. In addition, when multiple classification results of frequency-
domain features are compared with multiple classification results of time-domain
features, it has been determined that there is an increase of 4.70% on an individual
basis and 3.18% on average.

3.2.2 Selected three class classification results

In this part, three frequencies (6 Hz - 8.2 Hz - 10 Hz), which are considered to
increase the classification performance, were chosen among the seven frequencies
present in the data set, during the feature extraction phase. The reason for choosing
these frequencies are the results of the study done in Ref. [12, 13, 20].

According to the results obtained (Figure 4), the highest classification perfor-
mance for the first participant was 83.30% in the Ensemble Learning classifier, the
highest 100% classification performance for the second participant was in the KNN
and SVM classifiers, and 88.90% for the third participant in the KNN classifier.
Finally, in the fourth participant, it was seen again in the Ensemble Learning
classifier with 77.80%.

When the results are evaluated considering the classifiers, the performance of
the six different classifiers was calculated by taking the average of the four partic-
ipants and the highest performance was found in the Ensemble Learning classifier
with an accuracy of 79.73%.

3.2.3 Binary classification results

Considering the averages of the binary classification results of frequency fea-
tures, the performances obtained vary between the lowest 70.85% and the highest
100%. Accordingly, the highest performance was determined with 100% accuracy
value in 7.5–10 frequency pairs.

When the results are evaluated in terms of classifiers, it is clearly seen in
Figure 6 that the classifier with the highest accuracy rate is the Ensemble Learning
classifier. Runner-up classifier is the SVM classifier. Other classifiers following
Ensemble Learning and SVM were identified as KNN, Logistic Regression and
Naive Bayes classifiers, in order. It is also seen that no successful results have been
obtained in the LDA and Decision Tree classifiers.

3.3 Wavelet transform features results

This section aims to analyze three crucial features, such as energy, variance, and
entropy, which are frequently used in DWT studies, have been extracted from the
bands (delta, theta, alpha, beta, and gamma) of the EEG signal. These features were
generated for six different mother wavelets (Haar, db4, sym4, coif1, bior3.5,
rbio2.8) commonly used in the literature. The results of each were evaluated in
detail for multiple, binary, and three selected frequencies.

3.3.1 Multiple classification results

On the basis of mother wavelet selection, the results in (Table 4), reveal that
Bior3.5 and Coif1 mother wavelets were relatively successful, although there is no
dominant wavelet type. Experimenting with a larger sample size (number of
subjects), in order to generalize, can help obtain more precise results.
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In contrast to the mother wavelet selection, when the classifiers are evaluated,
the success of Ensemble learning and LDA classifiers is clearly seen.

3.3.2 Classification results for three selected frequencies

In this analysis, as in the classification of frequency-domain features (Section
3.2.2), multiple classification was made by selecting 3 selected frequencies (6 Hz -
8.2 Hz – 10 Hz) where the differences between the frequencies were higher among
the seven frequencies. However, unlike the analysis made in the frequency-domain,
the selected features are classified and evaluated both they are used together, that is,
when energy, variance and entropy features are used as a single feature vector (all
features together, and they are used as separate features. Thus, detailed information
about the power, irregularity and bias of the signal was obtained. At the same time,
it is learned how to use these three features, which have the indispensable proper-
ties of the signal, more effectively. And the contribution of these features, which are
frequently used in the literature, as a new form of features is wanted to be shown.

In Figure 7, the ACC values obtained by classification of the energy, entropy,
and variance features extracted using each wavelet family are presented. Mean,
minimum and maximum values of the classification results were also shown.
According to these results, the values given by the Haar wavelet function for
energy, entropy, and variance feature groups, which yield more successful results
than other wavelet functions, were 75.85%, 73.08%, and 73.75%, respectively. There
were no major differences between the mean values of the features extracted based
on the Haar wavelet. However, it was seen that the entropy feature group had a
100% success rate compared to the others.

In Figure 8, the extracted features based on wavelet were used as a feature set,
and the successful performances of the wavelet families were compared in this way.
It was seen that the most successful wavelet family was the Haar wavelet function.
The ranking of success in other wavelet families has not changed. The accuracy
values are as follows: 75.85% with Haar mother wavelet, 67.53% with bior3.5 mother
wavelet, 60.85% with db4 mother wavelet, 56.25% with coif1 mother wavelet,
52.35% with rbio2.8 mother wavelet and 44.73% with sym4 mother wavelet
obtained. It was seen that some mother wavelet performances increased when
compared with the ACC values in which the features in Figure 7 were handled
separately. Mean values of coif1, db4, and sym4 mother wavelet functions
increased.

As a result of the classification processes performed separately for each subject,
when the performances of both feature groups were examined, the most successful
wavelet function was found as the Haar wavelet. When the average accuracy values
of the feature groups are examined, the results in the case that the three features are
used as a single feature vector gave higher results for all wavelet functions than the
other feature group. Although there is no dominant result in the comparison of
energy, entropy, and variance features among themselves, the highest result was
seen in the entropy feature in Subject 3 with 100%.

The results of classifiers to be expressed in the pie chart in Figure 9 are the
number of hits of the classifiers obtained. With reference to results obtained, it is
obvious that the most successful and also the most frequent classifier in the
classification was obtained as the Ensemble classifier.

3.3.3 Binary classification results

In this analysis, feature vectors are treated as a single feature vector and indi-
vidual (separate) feature vectors, similar to those in Section 3.2.3. The resulting
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feature vectors were then evaluated by binary classification in order to analyze
frequencies in detail. As the results of the experimental design, the classification
performances are obtained for:

• three features separately (energy, entropy and variance),

• average of the three features separately (Mean),

• the extracted features were grouped as a single feature set (All features
together).

Each feature (energy, entropy, variance and all features together) extracted
using each wavelet family. All values of the classification results are presented in
Figures 10–15 for each mother wavelet, respectively.

According to these results, features obtained from the Haar wavelet function
yielded higher accuracies than those obtained from the other wavelet functions.
Maximum accuracy performances were obtained in the frequency pairs “6–10”,
“6.5–8.2”, “6.5–10” in the Haar wavelet (Table 5). When the features are evaluated,
it is realized that the “All features together” feature generally has better results for
all mother wavelet functions.

And another researched hypothesis results are presented in Figure 16 for
each mother wavelet, respectively. The purpose here is to show the change in
the accuracy value according to the increase in the difference between the
frequencies.

Finally, classification results obtained are presented in Figure 17. Since the
classification results of all the features ranking are similar for all the wavelet
functions, the classification result of the “All features together” for Haar wavelet
function is presented. According to these results, the most successful classifier was
obtained as the Ensemble classifier.

4. Conclusions

This chapter aimed to achieve significant optimization of cortical visual
responses, signal processing methods, and ML algorithms, as well as the accuracy
and reliability of the superior multi-command SSVEP-based BCI system. New
approaches have been explored using existing methods to develop an accurate,
reliable, comfortable SSVEP-based BCI that can offer people with severe motor
neuron diseases a communication alternative using attention modulation without
requiring neuromuscular activities or eye movements.

As a result, the following research objectives were achieved in this study:

• When the results of the time-domain features are evaluated first, it can be seen
that these features give usable (noteworthy) results in the classification of
SSVEP signals. However, given the natural structure of the SSVEP signal, it is a
fact that the results obtained are not sufficient for a real-time SSVEP-based BCI
design, since the time-domain properties do not reflect the characteristics of
the signal alone.

• According to the classification results of the frequency-domain features, were
evaluated alone, satisfactory results were obtained. Higher accuracy values
were obtained in both multi-classification and binary classification compared
to time-domain.
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• And when the last feature group time-frequency domain features are used,
using mother DWT functions, SSVEP signals are divided into frequency bands
and energy, entropy and variance values of each band are calculated. In this
way, feature vectors were created and feature vectors were used as, both
separately and also together. Extracted feature vectors were tested with a
binary, multiple and three selected classes classification method to see the
relationship between seven different classifiers and each frequency in detail.
Although multiple classification results seem to be low for all feature groups,
there is no study with 7 frequencies (by command) when the literature is
searched according to the best knowledge of the author, but high results were
obtained compared to studies with 3 and 4 frequencies.

• For stimulation frequency detection in the SSVEP signal, a new form has been
proposed that has been proven to be more effective with respect to the use of
energy, entropy and variance features than the properties derived from the
frequency domain and time-frequency domain. According to this form, instead
of the energy, entropy and variance properties used separately, the feature
vector, which is all features together, gave better results than the others.

• By conducting detailed research on stimulation frequencies, frequency pairs
estimated with the highest accuracy were determined. Although this result
showed small differences between the mother wavelet functions, the highest
performance was obtained in the frequency pairs in which the difference was
generally high (6–10, 6.5–10, 7–10, and 7.5–10 Hz).

• In the literature, the performances of the classifier types that were not
compared before were evaluated in terms of SSVEP detection and the most
successful classifier was found to be the “Ensemble Classifier”.

• Also, does system performance increase in parallel with the differences
between frequencies? Based on this hypothesis, the relationship between
frequencies was investigated in pairs. A decrease in “Sym4” function was
observed, where only the lowest performances were obtained.

• Finally, the most successful mother wavelet selection was made. Accordingly,
it was the Haar wavelet function that gave the best results compared to others.

Conflict of interest

The authors declare no conflict of interest.

Thanks

We would like to thank Adnan Vilic for his support in providing SSVEP records.

18

Brain-Computer Interface



Author details

Ebru Sayilgan1*, Yilmaz Kemal Yuce2 and Yalcin Isler3

1 Izmir University of Economics, Izmir, Turkey

2 Alanya Alaaddin Keykubat University, Antalya, Turkey

3 Izmir Katip Celebi University, Izmir, Turkey

*Address all correspondence to: ebru_drms@hotmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

19

Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System…
DOI: http://dx.doi.org/10.5772/intechopen.98335



References

[1]Wolpaw JR, Boulay CB. Brain signals
for brain–computer interfaces. In:
Graimann B., Pfurtscheller G., Allison B,
editors. Brain-Computer Interfaces. The
Frontiers Collection. Springer:
Heidelberg; 2009. p. 29-46. DOI:
10.1007/978-3-642-02091-9_2

[2] Graimann B, Allison B,
Pfurtscheller G. Brain–computer
interfaces: A gentle introduction. In:
Graimann B., Pfurtscheller G., Allison B,
editors. Brain-Computer Interfaces. The
Frontiers Collection. Springer:
Heidelberg; 2010. p. 1-27. DOI: 10.1007/
978-3-642-02091-9_1

[3]Mason SG, Birch GE. A general
framework for brain-computer interface
design. IEEE Transactions on Neural
Systems and Rehabilitation Engineering.
2003;11(1): 70-85. DOI: 10.1109/
TNSRE.2003.810426

[4] Ramadan RA, Vasilakos AV. Brain
computer interface: Control signals
review. Neurocomputing. 2017;223:
26-44. DOI: 10.1016/j.
neucom.2016.10.024

[5] Abiri R, Borhani S, Sellers E, Jiang Y,
Zhao X. A comprehensive review of
EEG-based brain-computer interface
paradigms. Journal of Neural
Engineering. 2019;16 011001. DOI:
10.1088/1741-2552/aaf12e

[6] Basar E. EEG-brain dynamics:
relation between EEG and brain evoked
potentials. 1st ed. Brain Lang Elsevier;
1980. 411 p.

[7]Wang Y, Gao X, Hong B, Jia C, Gao S.
Brain-computer interfaces based on
visual evoked potentials. IEEE
Engineering in Medicine and Biology
Magazine. 2008;27(5): 64-71. DOI:
10.1109/MEMB.2008.923958

[8]Regan D. An effect of stimulus colour
on average steady-state potentials

evoked in man. Nature. 1966;210:1056–
1057.

[9] Gao S, Wang Y, Gao X, Hong B.
Visual and auditory brain-computer
interfaces. IEEE Transactions on
Biomedical Engineering. 2014;61(5):
1436–1447. DOI: 10.1109/
TBME.2014.2300164

[10]Zhang Y, Xie SO,Wang H, Zhang Z.
Data analytics in steady-state visual
evoked potential-based brain–computer
interface: A review. IEEE Sensors
Journal. 2021;21(2):1124-1138. DOI:
10.1109/JSEN.2020.3017491

[11]Huang X, Xu J, Wang Z. A novel
instantaneous phase detection approach
and its application in SSVEP-based
brain-computer interfaces. Sensors.
2018; 18(12):4334. DOI:10.3390/
s18124334

[12] Sayilgan E, Yuce YK, Isler Y.
Evaluation of wavelet features selected
via statistical evidence from steady-state
visually-evoked potentials to predict the
stimulating frequency. Journal of the
Faculty of Engineering and Architecture
of Gazi University. 2021;36(2):593-605.
DOI:10.17341/gazimmfd.664583

[13] Sayilgan E, Yuce YK, Isler Y.
Evaluation of mother wavelets on
steady-state visually-evoked potentials
for triple-command brain-computer
interfaces. Turkish Journal of Electrical
Engineering & Computer Sciences.
2021;29(3). DOI:10.3906/elk-2010-26

[14] Sayilgan E, Yuce YK, Isler Y.
Investigating the effect of flickering
frequency in steady-state visually-
evoked potentials on dichotomic brain-
computer interfaces. Innovation and
Research in BioMedical Engineering.
2021;Under Review.

[15] Zhang Z, Li X, Deng Z. A CWT-
based SSVEP classification method for

20

Brain-Computer Interface



brain-computer interface system. In:
2010 International Conference on
Intelligent Control and Information
Processing; 13-15 Aug. 2010; Dalian,
China. 2010. pp. 43-48. DOI: 10.1109/
ICICIP.2010.5564336

[16] Bian Y, Li H, Zhao L, Yang G,
Geng L. Research on steady state visual
evoked potentials based on wavelet
packet technology for brain-computer
interface. Procedia Engineering. 2011;15:
2629-2633. DOI: 10.1016/j.
proeng.2011.08.494

[17] Vilic A. AVI steady-state visual
evoked potential (SSVEP) signals
dataset 2013 [Internet]. Available from:
https://www.setzner.com/avi-ssvep-da
taset/. [Accessed 15th August 2018].

[18] Sutter EE. The brain response
interface-communication through
visually induced electrical brain
responses. Journal of Microcomputer
Applications. 1992;15(1):31-45.

[19] Bisht A, Srivastava S,
Purushothaman G. A new 360° rotating
type stimuli for improved SSVEP based
brain computer interface. Biomedical
Signal Processing and Control. 2020;57:
101778. DOI:10.1016/j.bspc.2019.101778

[20] Sayilgan E, Yuce YK, Isler Y.
Prediction of evoking frequency from
steady-state visual evoked frequency.
Natural and Engineering Sciences. 2019;
4(3): 91-99.

[21] Sayilgan E, Yuce YK, Isler Y.
Estimation of three distinct frequencies
using fourier transform of steady-state
visual-evoked potentials. Duzce
University Journal of Science and
Technology. 2020;8(4):2337-2343. DOI:
10.29130/dubited.716386

[22] Liu W, Zhang L, Li C. A method for
recognizing high-frequency steady-state
visual evoked potential based on
empirical modal decomposition and
canonical correlation analysis. In: 2019

IEEE 3rd Information Technology,
Networking, Electronic and Automation
Control Conference (ITNEC); 15–17
March 2019; Chengdu, China. 2019.
p. 774-778. DOI:10.1109/
ITNEC.2019.8729005

[23] Chen YF, Atal K, Xie SQ, Liu Q. A
new multivariate empirical mode
decomposition method for improving
the performance of SSVEP-based brain-
computer interface. Journal of Neural
Engineering. 2017;14(4):046028. DOI:
10.1088/1741-2552/aa6a23

[24]Gandhi T, Panigrahi KB, Anand S. A
comparative study of wavelet families
for EEG signal classification.
Neurocomputing. 2011;74(17):
3051-3057. DOI: 10.1016/j.
neucom.2011.04.029

[25] Cao Z, et al. Extraction of SSVEPs-
based inherent fuzzy entropy using a
wearable headband EEG in migraine
patients. IEEE Transactions on Fuzzy
Systems. 2020;28(1):14-27. DOI:
10.1109/TFUZZ.2019.2905823

[26] Alpaydin E. Introduction to Machine
Learning: MIT Press; 2004. 712 p.

[27]Duda RO, Hart PE, Stork DG. Pattern
Classification: JohnWiley& Sons;2001.

[28] Lotte F, Bougrain L, Cichocki A,
Clerc M, Congedo M,
Rakotomamonjy A, Yger F. A review of
classification algorithms for EEG-based
brain-computer interfaces: A 10-year
update. Journal of Neural Engineering.
2018;15(3):1-28. DOI: 10.1088/
1741-2552/aab2f2

[29] Sayilgan E, Yuce YK, Isler Y.
Determining gaze information from
steady-state visually-evoked potentials.
Karaelmas Science and Engineering
Journal. 2020;10(2):151-157. DOI:
10.7212/zkufbd.v10i2.1588

[30]Narin A, Isler Y, Ozer M.
Comparison of the effects of cross

21

Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System…
DOI: http://dx.doi.org/10.5772/intechopen.98335



validation methods on determining
performances of classifiers used in
diagnosing congestive heart failure.
DEÜ Mühendislik Fakültesi
Mühendislik Bilimleri Dergisi. 2014;16
(48):1-8.

[31] Jung Y, Hu J. A k-fold averaging
cross-validation procedure. Journal of
Nonparametric Statistics. 2015;27:1-13.
DOI: 10.1080/10485252.2015.1010532

[32] Jiao Y, Du P. Performance measures
in evaluating machine learning based
bioinformatics predictors for
classifications. Quantitative Biology.
2016;4(4): 320–330. DOI: 10.1007/
s40484-016-0081-2

[33] Cetin V, Ozekes S, Varol HS.
Harmonic analysis of steady-state visual
evoked potentials in brain computer
interfaces. Biomedical Signal Processing
and Control. 2020;60(2020):101999.
DOI: 10.1016/j.bspc.2020.101999.

22

Brain-Computer Interface


