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Chapter

The Role of Apoptosis as a  
Double-Edge Sword in Cancer
Reyhaneh Farghadani and Rakesh Naidu

Abstract

The pathogenesis of many diseases is most closely related to inappropriate  
apoptosis (either too little or too much) and cancer is one of the situations where 
too little apoptosis happens, leading to malignant cells that highly proliferate. 
Defects at any points along apoptotic pathways may lead to malignant transforma-
tion of the affected cells, tumor metastasis, and resistance to anti-cancer drugs. 
Several major molecular mechanisms are involved in the evasion of apoptosis in 
cancer initiation and progression. Bcl-2 family of proteins and caspases are the 
central players in the apoptotic mechanism and regulate cell death. Their imperfec-
tions cause to the deficient apoptotic signaling and thereby the inadequate apoptosis 
in cancer cells and eventually carcinogenesis. Strategies targeting these master 
regulators in carcinoma cells has been a major focus of interest in cancer studies. 
Therefore, despite being the cause of problem, apoptosis can be targeted in cancer 
therapy. This chapter provides a comprehensive review of apoptotic cell death and 
how deficiencies in apoptotic master regulators, caspases and Bcl-2 family proteins, 
influence carcinogenesis and can be targeted in cancer treatment.

Keywords: apoptosis, cancer, Bcl-2, caspase, regulation, dysfunction,  
intrinsic pathway, extrinsic pathway, carcinogenesis

1. Introduction

Cancer as a complicated and heterogeneous disorder is the major threat to 
human beings and is still the significant leading cause of mortality around the 
world. According to the world health organization report, cancer is the second lead-
ing cause of death around the world with 9.6 million deaths in 2018.That is nearly 1 
in 6 of all global deaths [1, 2]. The incidence of cancer is expected to rise approxi-
mately 70% within the next two decades around the world, from 14 million new 
cases in 2012 to 25 million new cases a year [3–5]. Cancer development comprises 
of a multiple steps happening progressively and beginning with initial mutations 
that promote tumorigenesis and, eventually, metastasis. The genetic alterations 
ultimately cause to a disturbance in the balance between cell proliferation and 
programmed cell death or apoptosis [6].

Apoptosis is a process of the cell’s natural mechanism for death which occurred 
in multicellular organisms to maintain tissue homeostasis and act as a defensive 
strategy to remove infected, damaged or mutated cells. Apoptosis can be triggered 
through two major pathways, either mitochondrial- or death receptor-mediated 
pathways resulting from the intracellular (e.g. stress, DNA damage) and extracel-
lular signals (death-inducing signals by other cells), respectively. This machinery 
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mainly depends on caspases cascades for executing cell death that eventually 
cause proteolytic cleavage of thousands of target proteins within the cells that are 
essential for normal cellular function such as cytoskeletal and nuclear proteins. 
Consequently, the apoptotic cells undergo a series of morphological and biochemi-
cal alterations leading to recognition by macrophages and cell phagocytosis. 
Moreover, B-cell lymphoma-2 (Bcl-2) family of proteins has long been identified 
for their significant involvement in regulating the cellular program of apoptosis 
through mitochondrial outer membrane permeabilization, as the critical decision-
point at which cells commit to death, representing their vital role in protecting 
against cancer [7–9].

Deficiencies at any point along apoptotic pathways and dysfunction of the con-
trolling mechanisms may result in impaired apoptosis that cause to carcinogenesis, 
allowing cancer cells to survive over intended lifespans and eventually uncontrolled 
cell proliferation, tumor development and progression. Tumor cells evade apoptosis 
through a variety of mechanisms. Understanding these molecular mechanisms not 
only provide insight into the cancer pathogenesis, but also provide clues on cancer 
treatment [7, 10]. Besides, genomic instability, nutrient deficiency, cellular hypoxia 
and oncogenic stress may cause to continuous stress within cancer cells which 
make them more sensitive to apoptotic stimulation. Hence, the ability to target the 
molecular components of this machinery and restore an apoptotic pathway has long 
been considered as an intriguing approach in cancer drug discovery. Consequently, 
being as a double-edged sword, apoptosis plays a critical role in both tumorigenesis 
and cancer therapy [6, 11, 12]. Therefore, as evasion of apoptosis is well known as 
the hallmark of all types of cancers, this chapter will be mainly emphasizing the 
role of apoptosis in cancer, from pathogenesis and cancer development to cancer 
therapy and treatment with primarily focus on two key mediators of apoptosis, 
caspases and Bcl-2 family of proteins, which have been receiving great attention in 
targeted cancer therapies.

2. The role of apoptosis in pathogenesis and treatment of cancer

2.1 Overview of apoptosis

The term “apoptosis” is derived from Greek, meaning “dropping off” or “falling 
off” as leaves from a tree, was first used in 1972 to describe a morphologically dis-
tinct form of cell death. Apoptosis also known as programmed cell death is a highly 
regulated energy-dependent process that occurs normally during development 
and aging. It plays an important role as a homeostatic mechanism to maintain cell 
populations in the tissue of multicellular organisms. In addition to its importance in 
biological process, defects in apoptosis mechanism has been implicated in the patho-
physiology of diseases including cancer [13, 14]. There are many factors, mostly 
proteins, involved in the activation and regulation of apoptotic mechanism. This 
highly complicated and regulated process involves an energy-dependent cascade of 
molecular events and includes the mitochondria-dependent (intrinsic) and death 
receptor-dependent (extrinsic) pathway. Caspases play a vital role in initiation and 
execution of both intrinsic and extrinsic pathways which is mediated through the 
cleavage of hundreds of proteins essential for normal cellular function. [15].

2.1.1 Caspases: key apoptotic proteins

Caspases are a family of cysteine protease enzymes that are able to selectively 
cleave proteins at aspartic acid residues using the sulfur atom of cysteine in their 
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catalytic site, hence, named as cysteine-aspartic proteases or caspases. They play 
an essential role in maintaining homeostasis through regulating cell death and 
inflammation. Caspases have been generally categorized by their known functions 
in apoptosis (caspase-2, -3, -6, -7, - 8, -9 and -10) and in inflammation (caspase-1, 
-4, -5 and -12) in human. Caspases involved in apoptotic cell death have been then 
subgrouped based on their position and mechanism of action in apoptotic signal-
ing cascades and are either initiator caspases (caspase-8, -9 and -10) or execu-
tioner caspases (caspase-3, -6, and -7) in apoptotic pathway. Therefore, caspases 
as a conserved family of cysteine proteases, which are essential in initiation and 
execution of intrinsic and extrinsic pathways, are the main emphasis of apoptosis 
studies [16–18].

Caspases are initially synthesized as an inactive monomeric proenzyme, 
named zymogens or procaspases, containing a large subunit, small subunit, and 
prodomain that is only activated through proteolytic cleavage and dimerization 
following an appropriate stimulus. Therefore, this post-translational level of 
control provides rapid and tight regulation of the caspase enzyme activities [19, 
20]. Initiator caspases have prodomains containing one of the two specific protein–
protein interaction domain including caspase recruitment domain (CARD) and 
death effector domain (DED) that promote caspase dimerization through binding 
to adapter proteins. Two examples of activating multiprotein complexes include 
death-inducing signaling complex (DISC) and the apoptosome, which are formed 
during extrinsic and intrinsic pathway of apoptosis, respectively [19].

Once properly assembled into dimers, pro-caspases undergo cleavage by autocatal-
ysis resulting in the removal of pro-domain and cleavage at the linker region between 
the large and small subunit resulting in the heterotetramer formation and provides 
the active-site loops to get a proper conformation for enzymatic activity [17, 19].

Although, initiator caspases are capable of autocatalytic cleavage and activa-
tion, effector caspases are cleaved by initiator caspases resulting in the formation 
of active heterotetramer. Each active caspase is a tetramer consists of two identical 
big subunits and two identical small subunits. Accordingly, activation of apoptotic 
caspases leads to the inactivation or activation of substrates, and therefore initia-
tion of a protease cascade events in the apoptotic signaling pathway resulting in 
rapid cell death. Activated caspases trigger cytoplasmic endonuclease, cleave many 
vital cellular proteins and break up the nuclear scaffold and cytoskeleton as well 
as activate DNase, which further degrade nuclear DNA into 180 to 200 base pair. 
Collectively, caspase activity results in various morphological and biochemical 
changes in apoptotic cells [19, 21, 22].

2.1.2 Morphological changes in apoptosis

Apoptotic cells are differentiated from healthy and necrotic cells based on 
certain cellular morphological changes. Characteristic features of apoptosis in 
the nucleus are chromatin condensation and nuclear fragmentation which are 
accompanied by cell shrinkage, membrane blebbing and formation of apoptotic 
bodies in the final stage of apoptosis which are rapidly engulfed by phagocytosis 
that avoids an inflammatory response in surrounding tissues [23–25]. The shrink-
age of the cell is one of the most common morphological changes in apoptotic cell 
death resulted from the extreme alteration in intracellular water. Intracellular water 
plays a critical role in apoptotic and necrotic cell death. Although necrotic cells 
absorb the water resulting in enlarging the size and finally burst, apoptotic cells lose 
water leads to reduction in cellular volume. Therefore, the apoptotic cells become 
smaller in size, the cytoplasm is dense and the organelles are more tightly packed. 
Consequently, due to the occurrence of cell shrinkage, the cell will lose its contact 



Regulation and Dysfunction of Apoptosis

4

with neighboring cells, or the extracellular matrix and acquire more rounded mor-
phology. Although the plasma membrane is intact during the entire process, at later 
stage of apoptosis, loss of membrane integrity and formation of the blebs at the cell 
surface due to the separation of the plasma membrane from cytoskeleton occur in 
apoptotic cells [26–28].

2.1.3 Biochemical changes in apoptosis

Apart from structural alterations, several biochemical changes also play key 
events in apoptosis. Apoptotic cells generally display major types of biochemical 
modifications such as caspase activation, protein and DNA cleavage, and plasma 
membrane alterations, which lead to phagocytic recognition [13]. Disruption of 
plasma membrane asymmetry is a common feature of apoptotic cells, independent 
of the form of apoptotic stimulus. The maintenance of lipid asymmetry of plasma 
membrane is regulated through transporters named flippases and floppases. In 
addition, the activated scramblase enzymes have an important role in the loss of 
lipid asymmetry and enhanced phosphatidylserine (PS) exposure to the outer 
leaflet of plasma membrane [13, 29].

Therefore, in a healthy cell, PS is limited to the inner layer of the plasma mem-
brane. However, during apoptosis, effector caspases cleave and activate scramblase, 
as well as cleave and inactivate flippase, responsible for transmitting PS from the 
outer to the inner leaflet that lead to externalization of PS. Therefore, phospha-
tidylserine, which is normally localized in the inner membrane layer of cells is 
flipped out and externalized on the outer layer of the plasma membrane. This PS 
externalization not only is the indicator of loss of membrane asymmetry during 
apoptosis, but also allows early recognition by phagocytes and prevents the release 
of proinflammatory cellular components [29–31].

2.1.4 Pathway of apoptosis

As mentioned earlier, the mechanism of apoptosis involves an energy-
dependent cascade of molecular events. Apoptotic cell death machinery includes 
the mitochondria-dependent (intrinsic) pathway and death receptor-dependent 
(extrinsic) pathway. The intrinsic pathway arises from intracellular signals like 
cellular stress and DNA damage and relies on the release of proteins from the 
intermembrane space of mitochondria. However, the extrinsic pathway is activated 
through the binding of extracellular ligands to death receptors at the cell surface 
that trigger the multiprotein complex formation known as death-inducing signal-
ing complex (DISC). These two mitochondria- and death receptor-mediated 
pathways are interconnected and the molecules in one pathway can affect another 
pathway [32, 33].

2.1.5 The intrinsic mitochondrial pathway

As its name implies, the intrinsic pathway is activated in response to internal 
stimuli such as hypoxia, severe DNA damage and oxidative stress and mitochon-
dria play a critical role throughout this apoptosis signaling pathway [34, 35]. The 
intrinsic pathway is mainly controlled by the members of Bcl-2 family proteins, 
which regulate the permeabilization of mitochondrial outer membrane (MOM) 
and are structurally and functionally classified into three groups. BH3-only 
proteins, like Bim and Bik, that sense cellular stress and directly or indirectly 
activate the executioner proteins, like Bax, Bak, Bid, that are able to oligomerize in 
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and permeabilize the MOM. The oligomerization of these pro-apoptotic proteins 
leads to component release form the intermembrane space to the cytoplasm and 
activation of effector caspases of apoptosis. The first two groups are known as 
the pro-apoptotic proteins of Bcl-2 family. The third group is the anti-apoptotic 
proteins, like Bcl-2 and Bcl-xL that hinder the overall process by inhibiting pro-
apoptotic proteins. However, not the absolute quantity but rather the relative levels 
and balance between the pro- and anti-apoptotic proteins regulates whether the 
apoptosis event would be initiated. Although the excess of pro-apoptotic proteins 
makes the cells sensitive to apoptosis, excess of anti-apoptotic proteins makes the 
cells resistant and prevents the occurrence of apoptosis [36–38]. However, in the 
presence of apoptotic stimuli, the death signal is sensed initially by the BH3-only 
protein, which then interacts with the downstream mediators of apoptosis such as 
Bax. As the intrinsic mitochondrial pathway is initiated, Bax is translocated from 
cytosol to the outer mitochondrial membrane. The assembly of Bax proteins in 
mitochondrial outer membrane results in protein-lined channels or pore forma-
tion and intensely increase its permeability that cause a dramatic loss of electrical 
potential in mitochondria and cytochrome c release to cytoplasm. Subsequently, 
released cytochrome c binds to APAF-1 to facilitate the formation of the apopto-
some, a wheel shaped heptametrical complex, which can then recruit and activate 
pro-caspase-9. Consequently, caspase-9 activates effector caspases (caspase-3/-7) 
that eventually lead to apoptosis (Figure 1) [39–41].

2.1.6 The extrinsic death receptor pathway

The extrinsic pathway is activated through the interactions between the trans-
membrane death receptors of the tumor necrosis factor (TNF) superfamily and 
their related ligands. The TNF receptor family has common cysteine-rich extracel-
lular domains and cytoplasmic death domains that involve in transmitting the 
death signal from the cell surface to the intracellular signaling pathways. Ligation 
of death receptors with death ligands causes conformational change in death 
domain and consequently recruits apoptosis-related adaptor proteins that associate 
with procaspase-8/-10. At this point, a death-inducing signaling complex (DISC) 
consisting of the death receptor, an adaptor molecule, and pro-caspase-8/−10 is 
formed, resulting in the auto-catalytic activation of procaspases (Figure 1). The 
activated form of the caspase-8/-10 enzyme, as an initiator caspase, subsequently 
cleaves and activates other downstream or executioner caspases [42, 43]. Finally, 
both apoptotic pathways result in the activation of effector caspases (caspase-3/-7) 
causing the cleavage of key cellular macromolecules which are required for nor-
mal cellular function. They cleave the structural proteins in the cytoskeleton and 
nuclear proteins such as DNA repair enzymes and activate degradative enzymes 
such as DNases, which together contribute to the typical morphological changes 
and promote cell death [44, 45].

2.2 Dysregulation of apoptosis in carcinogenesis

The pathogenesis of many diseases is most closely related to inappropriate apop-
tosis (either too little or too much) and cancer is one of the situations where too 
little apoptosis happens, leading to malignant cells that highly proliferate. Defects 
at any points along apoptotic pathways may lead to malignant transformation of 
the affected cells, tumor metastasis, and resistance to anti-cancer drugs [12, 46]. 
Defects in Bcl-2 family of proteins and caspases are well-known chief factors to be 
involved in the evasion of apoptosis by tumor cells.
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2.2.1 Dysfunction of the Bcl-2 family of proteins in apoptosis

The Bcl-2 family of proteins consist of pro-apoptotic and anti-apoptotic proteins 
that act as a master regulator of initiation of apoptosis through intrinsic pathway 
and function chiefly at the mitochondrial level. The first protein of this family, 
B-cell lymphoma 2 (Bcl-2), was recognized almost 30 years ago. Currently 25 
members of the Bcl-2 family have been determined and based on the presence of 
conserved Bcl-2 homology (BH) domains and their role in mitochondrial-mediated 
apoptosis, they are categorized into the following three subfamilies [47, 48]. 
Anti-apoptotic subgroup consisting of Bcl-2, Bcl-w, Bcl-xL, A1/Bfl-1, Mcl-1and 
Bcl-B/Bcl2L10 proteins contain four BH domains designated as 1–4 and inhibit the 

Figure 1. 
Apoptosis signaling pathways. Abbreviations: TRADD, TNF receptor-associated death domain protein; FADD, 
Fas-associated death domain protein; Bid, BH3 interacting-domain death agonist; Bak, Bcl-2 homologous 
antagonist/killer; tBid, truncated BID; Bax, Bcl-2 associated X protein; APAF-1, apoptotic protease activating 
factor-1; Bcl-2, B-cell lymphoma 2, Bcl-xL; B-cell lymphoma-extra large.
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apoptosis occurrence so named pro-survival proteins. However, second group, 
known as apoptosis effectors, belongs to pro-apoptotic members of this family 
containing BH 1–3 and missing the BH4 domain. Some example of this group are 
Bak, Bax, and Bok/Mtd. The last group that can be considered as subdivision of 
pro-apoptotic proteins including Bik, Bid, Bim, Bmf, Puma, Bad, Hrk and Noxa are 
named “BH3-only”’ proteins as they contain only the BH3 domain. The members 
of this group function as initiators of apoptosis and the major mediators of the 
interaction with anti-apoptotic proteins [47, 49, 50]. Structural studies have deter-
mined that BH1, BH2 and BH3 areas together form a hydrophobic pocket that can 
be filled by the amphipathic a-helical BH3 domain of pro-apoptotic Bcl-2 proteins. 
Consequently, Bcl-2 family interactions regulate mitochondrial outer membrane 
(MOM) integrity and function and eventually onset of mitochondrial-mediate 
apoptosis [37, 51].

The balance disturbance of anti-apoptotic and pro-apoptotic proteins cause to 
dysregulated apoptosis in the affected cells. Altered expression of these proteins 
frequently occurs in cancers. Overexpression of anti-apoptotic proteins such as 
Bcl-2 or Bcl-xL occurs in a huge number of human cancers [52–55]. In one study, 
targeted proteomic analysis have revealed the contribution of Bcl-2 overexpression 
to cell survival of laryngeal carcinoma (LC) though its interaction with Hsp90β 
and formation of Bcl-2 Hsp90β complex involving in the anti-apoptotic progres-
sion of LC [56]. In cervical cancer SiHa cells, overexpressing Bcl-2 gene, the sup-
pression of down-regulation of HPV16 E7 and c-myc gene expression may inhibit 
the induction of apoptosis [57]. Besides, high levels of Bcl-2 have been reported 
in hematological malignancies. Various mechanisms such as gene amplification, 
chromosomal translocations and dysregulation of miRNAs involved in Bcl-2 RNA 
degradation may cause to Bcl-2 upregulation [58–60]. Furthermore, there have been 
a number of studies reporting the involvement of Bcl-xL anti-apoptotic protein in 
tumorigenesis. The increased level of Bcl-xL gene expression determined in human 
cancers such as colorectal cancer, breast cancer, gastric adenomas and carcinomas, 
hepatocellular carcinoma and prostate cancer promotes cancer cell survival [61–65]. 
In addition, several attempts have revealed the association of enhanced levels of 
Bcl-xL and MCL1 with the malfunction of miRNAs that usually diminish their 
expression such as miR-29, miR-125b, miR-193 [66–68]. Furthermore, overexpres-
sion of anti-apoptotic Bcl-2 and its close relatives have been recognized as chief 
components of chemoresistance [69–72].

Deficiency in pro-apoptotic members of the Bcl-2 family has also been exten-
sively studied in tumorigenesis and cancers. Pro-apoptotic gene Bim is frequently 
silenced in human Burkitt’s lymphoma [73, 74]. Homozygous deletion and the 
loss of mRNA and protein expression have also been determined in mantle cell 
lymphoma and renal cell carcinoma. Hence, blocking Bim expression caused by 
gene deletion or epigenetic silencing is mainly contributed to pathogenesis of 
these tumors [75, 76]. Furthermore, a number of researchers have reported that 
down-regulation and mutation of Bax plays a significant role in tumor resistance 
to apoptosis. Reduced Bax expression was reported to be correlated with acquiring 
resistance to 5-FU in colorectal cancer cell line and cisplatin in ovarian carcinoma 
[77, 78]. Sensitivity of non-small cell lung cancer to Zoledronic was also found to be 
Bax dependent [79]. Suppressed Bax activity is one of the major reasons of TRAIL 
resistance in melanoma [80–82]. Besides, inactivated mutation in gene Bax such 
as frameshift mutations, loss of function mutations and point mutations has been 
reported in colon cancers, certain hematopoietic malignancies and acquired resis-
tance to antineoplastic drugs [83–85]. Additionally, cells lacking both Bax and Bak 
have confirmed to be completely resistant to truncated Bid (t-Bid)-induced cyto-
chrome c release and apoptosis [86]. Therefore, all these abnormalities regarding 
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Bcl-2 family protein members affect the ratio and equilibrium of pro-apoptotic 
to anti-apoptotic proteins which result in apoptosis dysfunction and resistance to 
cell death.

2.2.2 Dysfunction of caspases in apoptosis

Caspases are a family of cysteine proteases that play crucial role in initiation and 
execution of apoptosis signaling pathway. During tumorigenesis, altered caspase 
activity or deficiency in their functions may lead to impairing apoptosis induction 
resulting in intense misbalance in the growth dynamics that eventually cause to 
decreased apoptosis, irregular growth of cancer cells and carcinogenesis [17, 87]. 
Human cancer cells dysregulate caspase activity through a different mechanism 
such as inactivated mutation, down-regulation and epigenetic alteration blocking 
their apoptotic activity [88–90].

Caspase-3/-7 is a critical executioner molecule in apoptotic mechanism through 
cleaving a variety of key cellular proteins. Many studies have demonstrated the 
close association of altered caspase-3 expression and various cancers such as cervi-
cal adenocarcinoma, colon cancer, glioma and breast cancer [91–97]. However, the 
role of caspase-3 in breast cancer patients has been an area of controversy. Meta-
analysis study of 3091 cases have revealed that enhanced expression of caspase 3 is 
related to poor overall survival in patients [98].

As mentioned earlier, the activation of executioner caspases involves 
their proteolytic cleavage through mature and functioning initiator caspases. 
Therefore, deficiency in initiator caspases activity has been determined in cancer 
development and progression [99, 100]. Caspase-9 plays a critical role in the 
initiation phase of the intrinsic apoptosis pathway. Decreased levels of caspase-9 
was reported in patients with stage II colorectal cancer associated with poor 
clinical outcome [90, 101]. Inhibition of caspase 9 activity has been reported to be 
involved in acquired cisplatin resistance in head and neck squamous cell carci-
noma cells [102]. Several functional polymorphism of caspase-9 has also been 
determined which may influence its expression or activity and therefore alter 
susceptibility to cancer [103–106].

Since extrinsic signaling of apoptosis mechanism after external stimulation of 
the death receptors is mediated through initiators caspase-8 and caspase-10, their 
deregulated expression or function can block death receptor signaling pathway 
contributing to cancer development. Expression of caspase-10 was found to be 
reduced in rectal cancer [107]. The cDNA array analysis has also detected the 
reduced co-expression of initiator caspases of extrinsic pathway, caspase 8 and 10, 
that might contribute to the pathogenesis of choriocarcinoma [108]. In previous 
investigations, expression analysis of caspase-8 has shown its down regulation in 
breast cancer cell lines and tumor tissues of breast cancer and revealed significant 
association between altered caspase-8 expression and status of HR in breast cancer 
patients [109]. Some studies also revealed that loss of caspase-8 expression not 
only cause to reduced apoptosis, but also involved in enhanced cell migration, 
tumor microenvironment and amplification of MYCN oncogene which highlight 
its contribution in carcinogenesis. The lack of caspase-8 expression happens very 
commonly in neuroendocrine cancers such as glioblastoma, medulloblastoma, 
neuroblastoma [110–112]. Furthermore, the correlation between caspase-8 with 
cancer prognosis, cancer stage and therapy resistance has been reported [109, 110]. 
Loss of initiator caspase-8 protein expression has been shown to be related with 
undesirable survival outcome in medulloblastoma and gynecological tumors such 
as ovarian and breast cancers and stage of head and neck squamous cell carcinoma 
(HNSCC) [113, 114].
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2.3 Targeting cellular apoptosis machinery in cancer treatment

Since inhibition of apoptosis lies at the heart of all abnormal malignant growth, 
metastasis and conferring therapeutic failure, targeting the apoptosis mechanism 
players is of vital importance in cancer therapy. In this regard, Bcl-2 family of 
proteins as gate-keepers of intrinsic apoptotic pathway mediating the pro- and 
anti-apoptotic function at the mitochondrial level and caspases as the central player 
in the initiation and execution of apoptotic cell death have been the center of attrac-
tion for drug discovery studies and development of anticancer agents [10, 115, 116]. 
Here, various therapeutic strategies designed to target them have been reviewed.

2.3.1 Therapeutic opportunities based on Bcl-2 family proteins modulation

In view of the critical role of Bcl-2 proteins in regulation of mitochondrial path-
way of apoptosis, targeting various members of this family have been considered 
amongst the most promising therapeutic strategies in cancer, a well-known dysfunc-
tional apoptosis disorder [117]. Numerous attempts have been carried out to target 
the modifications in Bim expression and therefore regulate tumor cell response to 
apoptosis. Histone deacetylase inhibitors have been shown not only cause to up regu-
lation of Bim in transformed cells, but also they are able to reverse silencing of Bim in 
cancer cells and consequently restored their sensitivity to various anticancer-agents 
reported in leukemia and Burkitt’s lymphoma cells [118]. The proteasome inhibitors 
are also recognized to promote accumulation of Bim and enhance the lethality of 
cancer cells [119, 120]. Another approach is through diminishing its degradation by 
blocking its phosphorylation. Ras/Raf/MEK/ERK pathway have a key role in regulat-
ing the expression and function of Bim through its phosphorylation and triggering 
its proteasomal degradation. MEK1/2 Inhibitors has been applied to disrupt this pro-
cess leading to accumulation of Bim and consequently apoptosis. MEK1/2 Inhibitors 
are also able to modify the interaction between BIM and other Bcl-2 family members 
contributing to cell death [118, 121, 122].

Furthermore, structure-based drug design can be applied to discover anti-
cancer agents which are able to effectively activate a pro-apoptotic Bcl-2 protein 
through changing its conformation promoting cell death. Bax as a unique entry 
point for intrinsic apoptotic signaling is another major pro-apoptotic member of 
the Bcl-2 family proteins which has been greatly getting attention to be targeted 
in order to control apoptosis. Recent studies have revealed that direct binding and 
activation of Bax can be a promising approach for cancer treatment. Discovery of 
small-molecule functioning as a Bax activators may result in selective induction of 
tumor cell apoptosis and overcome chemoresistance which has been proved through 
invitro and invivo studies [117, 123]. Besides, some studies targeting a regulatory 
site in Ser184 of Bax protein have determined that its agonists SMBA1–SMBA3 
can effectively bind to and trigger its oligomerization through the suppression of 
its phosphorylation that eventually lead to cyrochrome c release and induction of 
apoptosis in mouse lung cancer xenografts [124] . Similar results were also reported 
with other Bax agonists as promising Bax direct activators in breast cancer, glio-
blastoma and acute myeloid leukemia cells. These drug candidates demonstrated 
noteworthy in vivo efficiency inhibiting xenograft tumor growth though induction 
of apoptotic cell death [125–127].

The next emerging strategy in cancer drug discovery was the BH3 mimetics 
which are able to antagonize the function of Bcl-2 and selectively kill cancer cells. 
In this approach, BH3 mimetics are antagonists of the anti-apoptotic Bcl-2 proteins. 
These small molecules acting as the competitive inhibitors induce apoptosis though 
binding to their hydrophobic cleft and therefore affect the interactions between 
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anti- and pro-apoptotic proteins [128]. Various BH3 mimetics with different level 
of specificity and efficiency have been reported. For instance, TW-37 derived from 
phenolic aldehyde gossypol has been showing high affinity to bind MCL-1, Bcl-2 
and Bcl-xL anti-apoptotic proteins and induce apoptosis in B-cell lymphomas and 
pancreatic cell lines along with decreasing tumor size in xenograft models [129–131]. 
As ABT-737 mimicked the BH3 domain of Bad protein, it was able to bind selectively 
to Bcl-2, Bcl-xL and Bcl-W. It also demonstrated poor affinity to other member of 
ani-apoptic proteins including MCL-1 and BFL-1. ABT-737 has shown efficacy in the 
killing of several cancer cell lines including leukemia, lymphoma, multiple myeloma, 
glioma and small cell lung cancer cell lines as well as primary samples. Also, these 
two inhibitors of Bcl-2 families are currently in clinical trials [132–134].

Another approach to antagonize the function of Bcl-2 anti-apoptotic proteins is 
focusing on the protein interaction among members of Bcl-2 family through their 
essential death domain. In this regard, peptide-based inhibitors have been signifi-
cant achievements in targeting and regulating intracellular protein–protein interac-
tion. Stapled peptides are synthetic, bioactive α-helical peptides locked into their 
bioactive structure that have brought new hope to target drug discovery [135, 136]. 
For instance, stabilized alpha-helix of Bcl-2 domains, SAHBs, is the peptide having 
the ability to penetrate leukaemia cells and trigger induction of apoptosis through 
its binding to the Bcl-xL which its function has been further confirmed though 
invivo mouse xenograft models of leukaemia [137]. Another research study has 
also revealed that exclusive MCL-1 stapled peptide inhibitor (MCL-1 SAHBD) can 
effectively resensitize cancer cells to caspase-mediated apoptosis through directly 
targeting of MCL-1 and suppress its inhibitory interaction with Bak protein [138].

2.3.2 Therapeutic opportunities based on caspase modulation

Given the vital role of caspases in the regulation of apoptosis, it is not surprising 
that numerous therapeutic opportunities targeting caspase activity demonstrate 
great promise for the cancer treatment. Different strategies have been investigated to 
upregulate caspase-8 expression to restore its function in tumors. As hypermethyl-
ation of its promotor has been recognized as the main mechanism of silencing, one 
approach for its reactivation is using demethylation agents. Azacytidine, decitabine 
and nucleoside analogs promoting the demethylation of caspase-8 promotor have 
been successfully applied in neuroblastoma, medulloblastoma, breast cancer and lung 
carcinoma [139, 140]. Another interesting strategy is designing the small molecules 
that selectively and directly target and trigger caspase-8 activation. These small mol-
ecules has been reported to potentiate TRAIL-induced cell death [141]. Proteosomal 
inhibitors such as bortezomib has been also reported to increase total cellular cas-
pase-8 levels apparently by blocking its degradation [111, 142]. Some studies have 
also reported that the use of interferons can elevate the caspase-8 expression through 
modification at transcriptional level. This strategy targeting interferon-sensitive 
response elements within the caspase-8 promoter leading to sensitize cancer cell to 
apoptotic cell death in cancer chemotherapy or irradiation therapy [139, 143, 144].

Besides, developing molecules that are able to directly activates caspase 3 have 
been of research interests as well. For this purpose, particular sequence of inactive 
procaspase-3 consisting of the triplet of aspartic acid residues has been targeted. In 
vitro studies have exhibited that PETCM, gambonic acid and its derivatives have the 
potential to effectively activate caspase 3 leading to apoptotic cell death in cancer 
cell lines [145–147]. Furthermore, procaspase-activating compound1 (PAC-1) has 
been shown to induce anticancer activity through promoting the procaspase-3 
activation. PAC-1 exerted its effect by chelation of inhibitory labile zinc ions and 
currently is in phase I clinical trial for cancer treatment [148].
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In order to sensitize tumor cells to apoptotic stimuli, caspase −9 can be also 
regarded as a potential target in cancer therapy. There are a wide range of molecules 
such as protein kinase, microRNAs and heat shock protein that have been identified 
to modulate caspase-9 expression and hence have been getting interest as candidates 
for new drug development though regulating intrinsic apoptosis in cancer cells [149, 
150]. Targeting caspase-9 have been also initiated in clinical trials (phase I) against 
several cancer including Chronic Myeloid Leukemia, non-Hodgkin’s lymphoma, 
Acute Lymphoblastic Leukemia, [151, 152].

In addition, several attempts have also been conducted on cancer gene therapy 
focusing on apoptotic caspases. Gene transfer technologies may restore caspase gene 
expression resulting in selectively induction of apoptosis in various tumor types 
[153–155]. In this regard, caspase-9 and caspase-3 has been suggested for being used 
in gene therapy strategies. A main benefit of involving these caspases is that they 
start apoptosis at the downstream of the mitochondrial outer membrane potential 
and they will not be affected with the enhanced expression of anti-apoptotic of 
Bcl-2 proteins. The researchers conducted on inducible version of these caspases 
have shown encouraging results related to remarkable reduction in size of lung and 
gastric tumors, respectively [156–158].

Other than directly targeting of caspases, another area of research has focused 
on discovery of anticancer agents that trigger the caspases activity indirectly. In 
this approach, certain members of the inhibitors of apoptosis proteins (IAP) are 
targeted. IAPs are functioning as the endogenous caspase inhibitors and prevent 
apoptosis event by binding and inhibiting caspases through the degradation of 
active caspases or keeping them away from their substrate. In this regard, numer-
ous researches have investigated various IAP inhibiting agents, accomplishing a 
breakthrough in cancer treatment [159, 160]. Some of these agents are acting as the 
IAP antagonist and exert their effect via suppression of their activity, while others 
are analogs of the endogenous IAP inhibitor Smac. Several Smac mimetics such as 
LCL161 and birinapant IAP inhibitors have currently being tested in phaseI/II in 
clinical trials, with promising outcomes [161–164]. Besides, IAP inhibitors have 
been reported to exert the synergistic effect in combination chemotherapy and 
sensitize the cancer cells to radiotherapy which is of particular interest in malignant 
gliomas [165–167].

3. Conclusion

It is well established that the apoptosis dysfunction promotes the malignant 
transformation and renders the cancer cell resistant to treatment. Targeting 
apoptotic pathways in tumor cells has been a main clinical interest as the evasion 
of apoptosis is a hallmark of all cancers regardless of their causes or types. There 
are numerous defects found in apoptotic mechanism contributing to inhibition of 
cancer cell death. As demonstrated in this chapter, impaired activation of caspases 
and disturbance in the balance between anti-apoptotic and pro-apoptotic members 
of Bcl-2 family proteins are remarkably involved in tumorgenesis. The enhanced 
knowledge about their critical roles in apoptosis and cell fate in recent years has 
eventually made them promising therapeutic targets. This also has facilitated the 
generation of more specific anticancer agents and led to shifting in anticancer 
therapy form typical cytotoxic approaches to the designing and development of 
apoptosis-inducing drugs that particularly target the cancer cells. An exciting 
development in successful eradication of cancer cells involves structure-based 
drug design of small molecules such as BH3 mimetics, specifically targeting Bcl-2 
proteins, that is currently being tested in clinical trials with promising effects of 
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selective induction of tumor cell apoptosis and overcoming chemoresistance as 
well. These inhibitor molecules are in continuous development and a great deal of 
effort is required to discover the most efficient ones having more specificity for 
individual Bcl-2 proteins and offer maximal clinical efficacy. Besides, new thera-
peutic applications targeting apoptotic caspases including gene therapy approaches 
and small molecules suppressing inhibitors of caspases are beginning to show 
some promise through selectively and directly targeting of individual caspases 
and eventually triggering their activity. Caspase-targeted approaches, epigenetic 
modulators and their combinations with established therapies may have the poten-
tial to overcome the limitation of previous strategies through exerting synergistic 
pro-apoptotic activity and may enhance the effectiveness of conventional cancer 
therapy, worthy of further investigation in preclinical advanced models and clinical 
trial. Apoptosis-targeted therapies are now remarkably advancing and remain a 
promising approaches in future clinical practice of oncology.
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