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Abstract

Food waste is a global problem caused in large part by premature food spoilage. 
Seafood is especially prone to food waste because it spoils easily. Of the annual 4.7 
billion pounds of seafood destined for U.S. markets between 2009 and 2013, 40 to 
47 percent ended up as waste. This problem is due in large part to a lack of available 
technologies to enable rapid, accurate, and reliable valorization of food products 
from boat or farm to table. Fortunately, recent advancements in spectral sensing 
technologies and spectroscopic analyses show promise for addressing this problem. 
Not only could these advancements help to solve hunger issues in impoverished 
regions of the globe, but they could also benefit the average consumer by enabling 
intelligent pricing of food products based on projected shelf life. Additional tech-
nologies that enforce trust and compliance (e.g., blockchain) could further serve to 
prevent food fraud by maintaining records of spoilage conditions and other quality 
validation at all points along the food supply chain and provide improved transpar-
ency as regards contract performance and attribution of liability. In this chapter we 
discuss technologies that have enabled the development of hand-held spectroscopic 
devices for detecting food spoilage. We also discuss some of the analytical methods 
used to classify and quantify spoilage based on spectral measurements.

Keywords: Spoilage, valorization, spectroscopy, hyperspectral imaging,  
artificial intelligence

1. Introduction

Food waste is a significant problem in both developed and developing econo-
mies [1]. The global seafood industry faces unprecedented challenges as demand 
increases, consumer preferences change, and expectations of quality increase. 
Consumers are demanding more transparency and a commitment to sustainability 
while access to at-capacity or overfished fishery resources is strained and food pro-
duction and retail profit margins are thin. Global food supply chains can be a cause 
of improper food storage, which leads to by-product waste. Whether through a lack 
of quality control or a hold in the distribution process, food spoilage can occur even 
before the product reaches markets. Approximately 35% of fish are lost to waste 
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globally with between 30% and 35% loss in most regions of the world [2]. Seafood’s 
perishability is largely to blame.

A major goal to improve the overall valorization of food and reduce agro-food 
waste or diversion to by-products is earlier and rapid detection of spoilage. Like 
medical evaluations for disease, early detection can lead to quicker response 
from manufacturers or consumers to increase the shelf life of food products. 
Microbiologists and food scientists have developed a variety of methods to detect 
surface microbials and pathogenic microorganisms including culturing and colony-
counting methods, polymerase chain reaction (PCR)-based amplification for DNA 
analysis, immunoassay analysis, chromatography, and mass spectrometry [3, 4]. 
Unfortunately, these techniques have limited versatility and restrictive methodolo-
gies that are not practical with on-site and on-demand food quality and safety 
control [3–5]. However, spectroscopic technologies have shown great promise for 
enabling early detection of spoilage to help minimize food waste.

Another problem affecting consumers and contributing to global food waste 
is the lack of transparent pricing for food products as a function of shelf life. 
Alongside government and industry regulation, intelligent dynamic pricing based 
on projected shelf life at retail and other upstream points along the supply chain can 
encourage efforts to reduce waste. This requires new tools for tracking food prod-
ucts at all points along the supply chain. These tools must be easy to incorporate, 
objective, verifiable, and provide data on quality, provenance, and freshness.

A pioneer in the development of food quality and traceability technologies, 
SafetySpect is developing a new handheld quality, adulteration, and traceability 
(QAT) scanner to address many of these issues. Utilizing hyperspectral multi-mode 
technology to provide species identification and direct measurements of freshness/
spoilage in a handheld device can address challenges of waste and mislabeling. In 
seafood and meat processing, distribution, and storage supply chains in developed 
and developing economies, this is likely to meaningfully decrease food waste 
and increase sustainable access to safe, healthy, and nutritious foods. It will also 
decrease costs and increase profit within supply chains by providing better attribu-
tion of liability and verification of supply contract performance. This transpar-
ency will provide incentives to upstream supply chain participants to improve 
operational methods that can result in the degradation of product or unnecessary, 
accelerated spoilage.

1.1 Current trends for examining fish quality

The main approach to improving valorization and by-product management is 
early detection of spoilage. A common method for detecting spoilage in fish is the 
Torry Freshness Score [6]. This systematic scoring method was developed in the UK 
to provide an objective assessment of fish quality. It uses the human senses to exam-
ine specific parts of the fish. For example, an evaluator will observe gill odors, skin 
tension, opaqueness of the eyes, and overall smell of the fish and provide a fresh-
ness rating between 0 (lowest) to 10 (highest). However, this manual approach to 
evaluating fish samples is time consuming and may be more susceptible to evaluator 
bias or human error. This motivates the development of technologies that enable 
rapid evaluation of fish quality with minimal human interpretation.

Spectroscopic approaches offer a robust, non-destructive means of detecting 
and evaluating the extent of food quality issues. In recent decades, advancements 
in micro-electro-mechanical systems (MEMS) and micro-electro-opto-mechanical 
systems (MEOMS) have enabled the development of miniaturized spectroscopic 
devices that can be used for analysis at all points along the food supply chain, from 
farm fields to distribution centers to retail markets. Hyperspectral imaging (HSI) 
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combines spectroscopy and imaging to enable evaluation of an object’s spectro-
scopic composition at a high spatial resolution, thus providing a more comprehen-
sive evaluation tool for any given sample [7–9]. As the scale and complexity of food 
supply networks continues to grow, there is an ever increasing need for low-cost, 
portable, analytical devices to combat the corresponding growth in vulnerability of 
food products to adulteration, contamination, and fraud [10]. In the next section, 
we discuss a variety of technologies that have enabled the recent development 
of portable and handheld spectroscopic devices that can and have been used for 
evaluating the quality of food products.

2. Spectroscopy and hyperspectral imaging technologies

2.1 Infrared spectroscopy

One of the most common approaches used for quality control of food products 
involves the analysis of vibrational spectra via infrared spectroscopy. The spec-
tral peaks and valleys formed by the fundamental vibrational modes (and their 
harmonics) of key structures within organic molecules can be used to detect the 
presence of abnormalities or measure the abundances of specific chemical compo-
nents. The near infrared (NIR) and mid-infrared (MIR) spectral regions are of high 
interest in food analysis applications.

2.1.1 Infrared detectors

The rapid proliferation of visible digital camera technology over the past few 
decades is due in large part to the use of inexpensive silicon-based detectors which 
can sense wavelengths in the visible region and in the infrared region up to about 
1050 nm. For longer wavelengths, however, detectors composed of different materi-
als are required. Indium gallium arsenide (InGaAs) detectors have become the 
dominant technology for detectors on the market, surpassing germanium (Ge), lead 
sulfide (PbS), and lead selenide (PbSe) detectors [11]. Unfortunately, these detec-
tors are generally more costly than silicon-based detectors. Furthermore, for wave-
lengths beyond 1700 nm, the noise in these detectors becomes so high that cooling 
is required to keep it to a manageable level [12]. To minimize the cost of these more 
expensive detectors, developers of handheld infrared spectrometers have sought to 
simplify detector designs by reducing the number of elements required.

2.1.1.1 Near-infrared spectroscopy (NIRS)

NIRS covers the approximate wavelength spectrum of 780 to 2500 nm. Within 
this range lie signals from the vibration of organic chemical bonds such as oxygen-
hydrogen (O-H), carbon-hydrogen (C-H), nitrogen-hydrogen (N-H), and sulfur-
hydrogen (S-H), as well as their overtones [13]. Instrument cost and robustness is 
generally better for NIR than for MIR [14]. However, NIR spectral peaks tend to 
be weak and broad with significant overlapping of absorption peaks because of a 
combination of vibrational spectra from multiple chemical bonds, making straight-
forward interpretation difficult, if not impossible [15]. Spectral preprocessing 
techniques (e.g., smoothing, detrending, and taking derivatives) and multivari-
ate statistical methods (e.g., nonlinear partial least squares, Fisher determinant 
analysis, and artificial neural networks) are invoked to extract the information 
hidden in the spectra. Despite these disadvantages, the advantage in terms of lower 
cost, increased safety for the environment and operators, and superior chemical 
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specificity and applicability to a broad range of sample types has made NIR spec-
troscopy a popular approach for food analysis [11, 15]. These advantages have in 
turn encouraged the development of numerous portable NIR spectrometers based 
on a variety of designs.

2.1.1.2 Dispersive NIR spectrometers

In conventional dispersive spectrometer designs, broadband light is passed 
through the sample and into an entrance slit to create a narrow line of light which 
is imaged onto a detector. A dispersive grating is inserted in the path causing the 
image of the narrow line to be spread out into a spectrum where the light is sepa-
rated into its various wavelengths. These are then focused onto an array detector. 
Figure 1 shows a basic dispersive spectrometer based on the Czerny-Turner design 
which uses mirrors to minimize the overall size of the design.

One major disadvantage of the design shown in Figure 1 is the need for an 
array InGaAs detector which can be expensive. Alternative designs requiring only 
a single-element detector have been developed to help mitigate this expense. For 
example, instead of collecting all wavelengths simultaneously, spectrometers based 
on the Fabry-Perot interferometer design shown in Figure 2 collect the wavelengths 
sequentially. This design features one fixed and one moveable half-silvered mir-
ror aligned along the same optical axis. As the light bounces between the mirrors, 
constructive and destructive interference determines the spectrum of light that 
passes through the other side of the moveable mirror and onto the detector. When 
the spacing between the fixed and moveable mirrors equals an integer number of 
half wavelengths, maximum constructive interference occurs leading to a peak in 
the output spectrum at that wavelength. As with the Michelson interferometer, 
the spectral range of interest is thus examined by translating the moveable mir-
ror over a specific spatial extent. An example of a compact instrument based on 
the Fabry-Perot design is Spectral Engines’ MEMS Fabry-Perot spectrometer, the 
NIRONE [18].

Figure 1. 
Dispersive spectrometer based on the Czerny-Turner design [16].
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2.1.1.3 Linear variable filter (LVF) NIR spectrometers

One problem common to all dispersive designs like the Czerny-Turner is that 
the light must be allowed to disperse over a given spatial extent such that the 
wavelengths can separate before reaching the detector. This causes limitations in 
designing for compactness [19]. One way to surmount this problem is with the use 
of LVFs which are generally formed from wedge-shaped optics and behave much 
like a Fabry-Perot interferometer but scan by lateral position along the filter instead 
of by movement of a mirror along the optical axis [12]. The LVF can be applied 
directly to a detector array, leading to a simple and compact mechanical design with 
no moving parts (see Figure 3). Viavi’s MicroNIR OnSite features an LVF applied to 
a 128-pixel InGaAs array [21].

2.1.1.4 Hadamard spectrometers

The Hadamard spectrometer design has a couple of key advantages over the con-
ventional dispersive design. First, it overcomes the slow scanning process of disper-
sive techniques where individual wavelengths must be collected one after another. 
This is often referred to as the multiplexing or Fellget advantage. Additionally, 
Hadamard spectrometers tend to be more sensitive and the sensors themselves have 
a higher optical throughput, resulting in what is termed the Jacquinot advantage 
[22]. Figure 4 shows the basic layout for this type of spectrometer, the key compo-
nent of which is the mask positioned just before the focusing lens. This mask blocks 
out a certain portion (usually ~50%) of the diffracted light at a time. The blocking 
elements are moved in discrete steps to form a binary matrix where the elements 

Figure 2. 
Fabry-Perot spectrometer design [17].

Figure 3. 
Diagram showing the operating principle behind the LVF used in the MicroNIR OnSite [20].
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of each successive row are shifted by one position to the left. The detector readings 
are recorded with each shift and pieced together to form a data vector. A Hadamard 
transformation using the binary matrix is applied to the data matrix to yield the 
measured spectrum [12].

Figure 4. 
Basic design layout for a Hadamard spectrometer [23].

Figure 5. 
Hadamard spectrometer designs and devices. (a) a coil and magnet [23] mask design; (b) layout of Texas 
Instruments’ DLP® DMD-based NIRscan Nano optical engine [12].
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The Hadamard mask itself can be implemented in a variety of ways. Early 
designs used a coil and magnet to move the mask linearly in front of a separate 
entrance slit (see Figure 5(a)). The microPHAZIR NIR spectrometer by Thermo 
Fisher Scientific uses a programmable MEMS diffraction grating as the Hadamard 
mask. Texas Instruments offers two NIR Hadamard spectrometer devices based on 
its Digital Light Projection (DLP®) digital micromirror device (DMD) technology, 
the DLP NIRscan and the DLP NIRscan Nano (see Figure 5(b)) [12]. The DMD 
contains an array of individually pivotable micromirrors which can be aligned and 
flipped in sequence to form the Hadamard mask [12].

2.1.1.5 Applications of handheld NIR spectrometers for food analysis

Advancement in MEMS technology and LVFs has led to the rapid miniaturiza-
tion of NIR spectrometers, thus enabling the development of portable NIR spec-
trometers. Portable NIR spectrometers have been used to evaluate the quality of 
fruits and vegetables primarily during the pre-harvest stage while on the vine/tree. 
Such analyses focus on maturity parameters to enable determination of optimal 
harvest dates and include measurements of soluble solids content (SSC), titratable 
acidity, pH, weight, size, firmness, juice content, juice weight, pericarp thickness, 
and others [15].

NIR analyses of meat and fish are typically performed for shelf-life estimation 
and freshness evaluation. Examples include traceability analysis of pasture-fed 
lambs and stall-fed lambs, authenticity testing for pork and pork fat in veal sau-
sages, moisture, protein, and fat analysis in Iberian pork muscles, fat characteriza-
tion in Iberian ham, freshness evaluation in beef sirloin and beef eye of round, shelf 
life estimation of pork meat, and monitoring and control of the drying process in 
fermented sausages [13].

Portable NIR spectrometers have also been used to measure quality factors 
in milk and beverages. Components such as fat, protein, lactose, and moisture 
percentages have been measured to determine milk quality [15], and NIR spectral 
differences have been exploited to distinguish between organic and non-organic 
milk products [24]. Quality of rice wine, tea drinks, and beers have been evaluated 
via NIR measurement of alcohol, nitrogen, apparent extract, and non-sugar solids 
percentages, polyphenol and free amino acid concentrations, and bitterness and 
beer distinction factors [15].

2.2 Mid-infrared spectroscopy

The mid-infrared (MIR) spectrum covers a range of wavelengths from 
~2500 nm to ~5000 nm and contains many of the fundamental absorption bands of 
organic components. Spectra in this range are very sensitive to chemical composi-
tion, leading to high specificity. Furthermore, organic functional groups produce 
well-delineated absorption bands in this region, a feature that can be exploited to 
individually separate different components present in a mixture by their unique fin-
gerprints in the absorption spectrum [14]. Given the high cost of InGaAs detectors 
and the need for cooling to lower noise to a manageable level, MIR spectrometers 
generally feature single-element detector designs. Most exploit a technique based on 
the Fourier transform.

2.2.1 Fourier transform infrared spectrometer (FTIR)

One subset of FTIR spectrometers is based on the Michelson interferometer 
design that was used for Michelson and Morley’s speed of light measurements. 
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This interferometer consists of two optical pathways oriented perpendicular to 
one another (see Figure 6). A collimated broadband light source enters from the 
left and strikes a half-silvered mirror (i.e., beam-splitter) oriented at 45°. Half of 
the beam then passes through this mirror and strikes a stationary mirror at the end 
of the pathway where it is reflected back toward the beam-splitter. The other half 
of the incident beam is directed toward a mirror that is allowed to move back and 
forth along this pathway. Upon reflection from this mirror and arrival at the beam-
splitter, the two reflected beams produce an interference pattern which is focused 
on a single-element detector. The sample is typically inserted between the beam-
splitter and the detector. After the moving mirror is swept through its full range of 
motion and the full interferogram recorded, these patterns are processed to produce 
the spectrum. Processing in this case is done with a Fourier transform which 
converts the sensor response as a function of spatial mirror position to a function 
of frequency. The Fourier transform accomplishes this by determining the optimal 
mixture of sine and cosine functions that can replicate the sensor response.

Like Hadamard spectrometry, FTIR spectrometry has several advantages over 
dispersive spectrometry such as that used in most NIR spectrometers. It enjoys both 
the multiplexing (Fellget) advantage and the throughput (Jacquinot) advantage. 
This latter characteristic serves to significantly reduce the noise in the sensor 
output. As this design includes only one moving component, the mirror in the 
path with the variable length, FTIR instruments have a mechanical design that it is 
highly robust to breakdown. Finally, many FTIR instruments include a HeNe laser 
that acts as an internal calibration standard, eliminating the need for calibration 
during operation (Connes advantage) [26]. SiWare Systems’ NeoSpectra-Scanner 
is an FTIR NIR spectrometer with a MEMS-based Michelson interferometer 
design [27].

Another popular design for FTIR spectrometers is based on the property of 
attenuated total reflection (ATR). As shown in Figure 7, broadband infrared light is 
directed into a high refractive index crystal typically made of germanium, silicon, 
zinc sulfide, or diamond [28]. The ends of this crystal are cut such that the angle 
of incidence for the light will result in total internal reflection through the crystal. 
Although the light wave does not propagate outside of the crystal, an evanescent 
wave can still pass through the top of the crystal where the sample is placed. This 
evanescent wave interacts with the sample and absorbs portions of the infrared 
light, resulting in an attenuation of the light that reaches the detector. One of 
the primary advantages of this technique is that the light does not have to travel 
through the entire sample as it does for other designs, which often results in severe 

Figure 6. 
Diagram of an FTIR spectrometer based on the Michelson interferometer [25].
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attenuation and loss of signal. An example of a handheld FTIR spectrometer based 
on the ATR design is the Ocean MZ5, a miniature ATR-FTIR spectrometer produced 
by Ocean Optics [29].

2.2.2 Applications of handheld MIR spectrometers for food analysis

MIR spectrometers have long been used for food analysis, but most have been 
conducted in a laboratory setting. Examples include detection of food spoilage 
bacteria in meat and dairy produce, brand authentication of a range of Trappist 
beers, and adulteration of milk and of beef burgers [10]. More recently, portable 
MIR devices have been used for the simultaneous analysis of sugar and amino  
acid concentrations in raw potato tubers, the measurement of quality factors in 
tomato juices, and the measurement of fatty acid content of marine oil dietary 
supplements [30].

2.3 Raman spectroscopy

Raman spectroscopy is often seen as complimentary to infrared spectroscopy 
given the relative nature of the phenomena involved. While infrared spectroscopy 
measures the absorption of energy, Raman spectroscopy measures the exchange of 
energy with radiation provided by a monochromatic light source (usually a laser 
with a wavelength in the ultraviolet to NIR range). This exchange causes a shift in 
the source’s wavelength. Molecules are infrared active only if the vibration induced 
by the source results in a change to the dipole moment, whereas the Raman shift 
is caused by changes in the molecules’ polarization [10]. Thus, these two methods 
provide mutually exclusive information. Raman peaks tend to be much sharper 
than infrared peaks and data collection tends to be faster, but the Raman effect is 
inherently weaker. Furthermore, Raman spectrometers tend to be more expensive 
to manufacture than their infrared counterparts.

2.3.1 Raman spectrometers

Figure 8 shows an example design for a Raman spectrometer. Light from the laser 
is directed to the sample and the output is passed through a notch filter to separate 
out all but the Raman scattered light. A spectrograph grating then disperses this light 
into its constituent wavelengths and onto a detector. Metrohm’s Mira M-1 is an exam-
ple of a portable Raman spectrograph with a 785 nm laser [32]. Laser wavelengths for 
other Raman spectrometers can range from the ultraviolet (UV) to the NIR bands. 
Since spectral sensitivity and resolution increase with decreasing laser wavelength, 
UV lasers tend to be optimal for applications featuring bio-molecules [33].

Figure 7. 
Diagram illustrating the ATR concept [28].
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2.3.2 Applications of handheld Raman spectrometers for food analysis

Recent applications of portable and handheld Raman spectrometers for food analy-
sis include the detection of organophosphate and organothiophosphate pesticides on 
apple skins, the detection of fungicides and parasiticides on citrus fruits and bananas, 
authenticity and origin of vegetable and essential oils, detection of marker compounds 
for illegal alcoholic beverages, detection of adulteration in beef burgers, identification 
of rapid meat spoilage, and prediction of pork quality on a slaughterhouse line [10].

3.  Artificial intelligence and machine learning techniques for spectral 
analysis

Once the spectroscopic data has been collected, sophisticated algorithms, and 
capable processors to host these algorithms, are needed to convert this data into 
useful information. The microchip revolution that started back in the 1960’s has 
continued unabated [34] and silicon vendors continue to innovate with even mature 
technologies such as field programmable gate arrays (FPGAs) [35] with transistor 
counts that exceed one billion in number. This growth of computing power coupled 
with advances in spectroscopy have enabled modern machine learning algorithms 
to be implemented that can lead to significant positive changes to food safety, 
adulteration and fraud.

In this section, we discuss key machine learning algorithms that have been 
applied to spectroscopy in general and to food valorization applications specifi-
cally. We first examine methods used to extract from the data features that are 
non-redundant and information-rich and can be used for accurate classification and 
quantification of food spoilage and food quality.

3.1 Feature extraction

Most spectral datasets contain subsets of features that are highly redundant or 
subject to high amounts of noise. The inclusion of such features in a classification or 
regression algorithm generally leads to suboptimal performance. Feature extraction 
is the process by which redundant or noisy features are removed from the dataset, 
leaving a smaller set of features with a high amount of signal content. Here, we dis-
cuss popular methods for feature extraction that have been used for spectroscopic 
applications.

Figure 8. 
Basic diagram of a Raman spectrometer [31].
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3.1.1 Principal component analysis (PCA)

PCA is a common method of feature extraction enabled through dimen-
sionality reduction. PCA provides dimensionality reduction by representing 
the variance in the data within the smallest number of components possible. 
Each principal component is a linear combination of the original components 
and is calculated in an iterative fashion by identifying the weight vector that, 
when applied to the original data components, contains that largest amount of 
the remaining variance and is orthogonal to the previously calculated principal 
components. As a result, the majority of the variance (typically ~99% or more) is 
contained within the first few (typically 3–5) principal components, meaning the 
others can be safely ignored with negligible loss of information. These principal 
components are also eigenvectors of the data’s covariance matrix and can be com-
puted by eigendecomposition. The corresponding eigenvalues are proportional 
to the variance represented within each principal component and can be used to 
identify the principal components which are considered “significant.” According 
to the Kaiser criterion [36], eigenvectors with eigenvalues less than 1 can be 
considered insignificant.

In additional to its dimensionality reduction benefit, PCA tends to yield prin-
cipal components that provide good separability between data collected from 
different classes. It is this property that makes PCA such an effective tool for feature 
extraction. Principal components also provide qualitative clues to key underlying 
molecular constituent differences and relative abundances, since their spectral 
characteristics, often are the key features in the second, third and higher principal 
components.

PCA is widely used in food chemistry studies [37] and specifically for analysis of 
food spoilage. For example, in 2020 Saleem et al. [38] presented a new method for 
predicting microbial spoilage and detecting its location in bakery goods using HSI. 
HSI cameras monitored baked goods over a period of time as they were allowed to 
spoil. PCA was applied to difference images created by subtracting images collected 
at the beginning of the monitoring period, when the goods were fresh, and images 
collected at later times. The researchers then used PCA to separate pixels represent-
ing spoiled portions of the good from unspooled portions.

3.1.2 Sparse representation

Similar in concept to PCA, sparse representation methods are mathematical 
processes applied to data with the goal of transforming the data to a new represen-
tation containing as few non-zero elements as possible. This is achieved by conduct-
ing a trade-off between goodness-of-fit and sparsity. The transformation attempts 
to produce an accurate reproduction of the original data but is regulated with a 
cost penalty the increases with the number of non-zero components. Example 
sparse representation algorithms include basis pursuit, sparse dictionary learning, 
L1-regularization, and non-negative matrix factorization (NMF) [39].

With respect to HSI, sparsity can also be enforced through wavelength selection 
processes that identify a small number of information-rich wavelengths and discard 
all other wavelengths. Lei and Sun [40] developed a sparse coefficients wavelength 
selection and regression (SCWR) method for NIR spectral calibration to select the 
wavelengths that contributed most to the determination of the spectral response. 
They applied this method to a dataset if NIR spectra from potatoes with dehydra-
tion loss as the response variable. A model based on 23 selected wavelengths (from 
an original set of 200) predicted hydration loss with an accuracy that exceeded 
those yielded by common competing methods.
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3.1.3 Autoencoders

Benefitting from recent advancements in both algorithms and processing tech-
nology, neural networks and their derivatives have experienced rapid development 
over the past decade. Another method for dimensionality reduction and feature 
extraction is based on a particular type of neural network called an autoencoder. An 
autoencoder network contains input (e,g., spectral measurement) and output layers 
of the same size but includes hidden layers in between with gradually decreasing 
numbers of nodes (see Figure 9). During training, the network weights are updated 
until the output is the same as the input within an acceptable tolerance. The lay-
ers from the input to the bottleneck center thus effectively encode a compressed 
version of the input signal. This set of layers is referred to as the “encoder” section. 
The compressed signal can then be uncompressed in the later layers (called the 
“decoder”) to form a copy of the signal in the output layer. This process has the 
added benefit of removing noise in the input during encoding such that the decoded 
copy is more representative of the true response. In 2021, Vasafi et al. [41] made an 
initial application of an autoencoder in the field of food production process control 
by using it to detect anomalies such as changes in fat, temperature, added water, 
and cleaning solution during milk processing. Anomalies were found to result in 
significantly higher reconstruction error at the autoencoder output layer as com-
pared with the control (i.e., “normal”) data.

3.1.4 Partial least squares regression (PLSR)

PLSR is a well-known and often used means of conducting regression in the 
presence of noise. Regression provides a function that predicts a response from a 
data input (as opposed to classification which assigns the input to a class). While 
both PCA and PLSR are derived from experimental data, PCA is more qualitative 
by nature, often used in an exploratory manner, and is an unsupervised learning 
method. PLSR on the other hand is more quantitative and is a multi-dimensional 
evaluation that is linear. Both methods rely on computing a maximum covariance, 
PCA in the original data and PLSR in the data and response.

PLSR works best when the observed variables are highly correlated and noisy 
[42], which is a benefit in hyperspectral analysis where data at nearby wavelengths 
can be highly correlated. Also, PLSR assumes that the data set is linear and that that 
projection holds in a new subspace. However, if linearity does not hold up for the 

Figure 9. 
Autoencoder neural network showing bottleneck which separates the encoder and decoder portions.
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model, there are several ways to deal with this problem that include polynomials, 
splines or small neural nets [43]. There is also an easy way to deal with non-linearity 
[44], the basic idea being to expand the data matrix with square, cubic, or cross 
product terms.

PLSR continues to be a popular tool for food analysis and quality control 
applications. Jiang et al. [45] invoked PLSR to model the relationship between 
NIR spectra from hyperspectral images of chicken to total Pseudomonas spp. and 
Enterobacteriaceae counts (PEC) to predict PEC rapidly. Cavaglia et al. [46] similarly 
applied PLSR to predict density and pH in ATR-MIR spectra from alcoholic fermen-
tation samples.

3.1.5 Wavelets

Wavelets are mathematical functions that, like Fourier analysis, transform data 
into its constituent spectral components. However, unlike the standard Fourier 
transform, wavelet transforms can provide frequency information for specific loca-
tions in the temporal or spatial domain. Wavelets of different shapes (called mother 
wavelets) focus on different portions of the frequency spectrum and are typically 
used in combination to analyze the full spectral bandwidth of concern. Each mother 
wavelet can also be rescaled to form daughter wavelets to change the resolution in 
the temporal or spatial domain and thus examine higher or lower portions of the 
frequency spectrum in more detail. Some wavelet examples are shown in Figure 10.

Wavelet analysis has been used in spectroscopic applications as a means of 
extracting useful features from specific regions of the spectra. For example, Qi et al. 
[47] applied a single wavelet form at seven different scales to extract features from 
shortwave infrared (SWIR) hyperspectral reflectance images from peanuts. Using 
these features, they were able to distinguish moldy portions of peanuts from healthy 
portions. Wavelet analysis can also be applied in the image domain to extract 2D 
features. Ji et al. [48] applied wavelet transforms to hyperspectral visible-NIR 
images of potatoes (after first applying PCA) to decompose the original images into 
sub-band images at different scales to extract textural features that would enable 
the identification of bruising in the potatoes.

3.1.6 Splines

Splines are piecewise linear or polynomial functions that are combined to 
approximate a given set of data. Splines are often used as smoothing functions to 
approximate data curves while eliminating the “roughness” caused by noise. Like 
the other techniques discussed above, splines benefit the feature extraction process 
by focusing on the true signal within the data.

One application of splines common to chemometric analysis is the regression 
analysis method of multivariate adaptive regression splines (MARS) [49]. MARS 

Figure 10. 
Wavelet examples from different wavelet families.
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models nonlinearities in data by fitting splines to specific regions of the input vari-
able range. The regions are separated by “hinge” functions that have a value of zero 
for all locations except within the region of applicability. The transition points that 
link consecutive splines are called “knots.” In a forward process knots or splines are 
added to yield a close fit to the data. In a backward process the least contributing 
terms are pruned to minimize overfitting. Garre et al. [50] compared a model devel-
oped using MARS to similar regression models developed to predict the amount 
of waste in food production and quantify model uncertainties. The MARS model 
achieved a precision comparable to that of more sophisticated machine learning 
models such as random forest methods developed to deal with the high variability in 
decision trees while maintaining low bias [51].

Closely related to spline regression is Savitzky–Golay filtering in which the 
data points are convolved with a set of filter weights, much like a weighted moving 
average. However, as the filter moves to each successive data point, a polynomial of 
degree p is fit to the data within the filter window, and the point in the center of the 
window is replaced by the polynomial value at that point [52]. One key benefit of 
Savitzky–Golay filtering is that it tends to preserve high frequency signal compo-
nents while rejecting high frequency noise (often found in CCD or InGaAs arrays or 
photon-starved detection systems) whereas standard finite impulse response (FIR) 
filters tend to remove these signal components [53].

Savitzky–Golay filtering is a popular pre-processing technique that has been 
used extensively for food spectral analysis. Examples since 2020 include the use 
of Savitzky–Golay filtering in pre-processing NIR spectra to improve classifica-
tion performance in the identification of allergens in powdered food materials 
[54], filter noise from FTIR spectra of instant freeze-dried coffee and MIR 
spectra of fruit puree samples [53], and NIR reflectance spectra of Indonesia rice 
flour-based food to enable accurate classification and level estimation of added 
sweeteners [55].

3.2 Classification

Automatic detection of food spoilage requires an algorithm that can success-
fully classify a food product (or part of a food product) as spoiled or healthy, 
either by detecting the presence of contaminants or by classifying physical 
changes to the product. A variety of sophisticated machine learning algorithms 
have been developed over the past few decades to provide accurate classification, 
and many of these have been used in spectroscopic and food quality applications. 
Here, we discuss two of the most popular classification algorithms, the support 
vector machine (SVM) and the artificial neural network, both of which take as 
input a set of features that are typically generated using the methods described 
in the previous section. We also discuss deep learning methods, which have 
advanced rapidly since 2012 and are being used in a wide variety of applications 
including food analysis. Unlike more conventional machine learning methods, 
deep learning methods include their own automatic feature extraction  
process [56].

3.2.1 Support vector machines (SVM)

An SVM is a supervised learning algorithm that seeks to find the separating 
hyperplane between data points of different classes that minimizes classification 
error. The position of the hyperplane is determined by the set of points (called 
“support vectors”) that are closest to it. The basic concept of the SVM is intui-
tive when the hyperplane is linear and the classification is binary (see Figure 11). 
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However, SVMs can also be applied to data whose classes are not linearly separable 
by transforming the data from the original space into one in which they are linearly 
separable. This is often accomplished using the so-called “kernel trick” in which a 
kernel function compares vectors in the new space without performing the actual 
transformation, thus minimizing computation cost. Common kernels include 
linear, radial (i.e., Gaussian), and polynomial.

A reliable and robust machine learning classifier, the SVM has been used in 
many hyperspectral imaging food analysis applications. A few examples since 2020 
include the detection of spoilage in visible-NIR imagery of baked goods [38], detec-
tion of bacterial foodborne pathogens in visible-NIR imagery [57], and detection 
of fish fillet substitution and mislabeling through accurate classification of fillet 
species from imagery collected from visible-NIR, fluorescence with UV excitation, 
SWIR, and Raman spectral bands [58].

3.2.2 Artificial neural networks

Artificial neural networks are another popular supervised classification method 
that has been surging in popularity with the advances in processing technology 
over the past few decades. Conventional artificial neural networks are based on the 
multilayer perceptron (MLP) architecture (see Figure 12) which was designed to 
resemble neurons in the brain. Such neurons accept some number of input values 
and remain dormant until the sum of inputs rises above a certain threshold value, at 
which point the neurons “fire.” This nonlinear thresholding effect is enabled in arti-
ficial neural network nodes by nonlinear activation functions that determine each 
node’s output value. Common activation functions include the sigmoid, hyperbolic 
tangent, and rectified linear unit functions.

Artificial neural networks are trained by initializing the network weights 
(usually with random values) and comparing the predicted results at the output 
layer to known target values. An error metric is calculated based on the difference 
between the prediction and target values, and the network weights are updated by 

Figure 11. 
Separating hyperplane determination for a Support Vector Machine. The hyperplane is positioned to maximize 
the margin between the support vectors.
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calculating partial derivatives of the error with respect to each weight, starting with 
the output layers and moving backward toward the input layer in a process known 
as backpropagation. This entire process is repeated until the error is brought below 
an acceptable tolerance or other stopping criteria are met.

Like SVMs, artificial neural networks have been widely used for spectral classifi-
cation applications due to their ability to achieve high accuracy. In 2020, Balabanov 
et al. [59] developed a vison-based system with an artificial neural network to 
detect defects in apples passing on a conveyer belt by analyzing HSI in the visible 
and NIR spectral ranges. Although once popular, these MLP-based neural networks 
are rapidly being replaced by deep learning neural networks which not only offer 
superior performance, but also ease the data processing pipeline by eliminating the 
need for manual feature selection and extraction.

Prior to the advent of modern sophisticated processing technology, neural 
networks were limited in size due to their computational loads which grew with 
the number of layers and the number of nodes within each layer. As this processing 
technology advanced, more and more layers could be added to neural networks to 
improve their performance (although the theoretical reason for why this is the case 
is still poorly understood). Furthermore, as shown in Figure 13, layers could be 
added to perform different operations on the data, such as convolution and averag-
ing (often called “pooling” in this context). The network then performs feature 
extraction by learning the weights in the convolutional layers which yield accurate 
classifications. In essence, the network learns which filters should be applied to the 
data to best extract the signal within. Pooling layers following the convolutional 
layers then apply averaging to help prevent overfitting. Following the successive 
convolutional and pooling (and possibly other) layers, the results are concatenated 
into a single-dimensional vector and fed into an MLP neural network to combine 
these features for classification.

In 2021 alone, deep learning neural networks have been used to classify beef 
freshness from visible-NIR reflectance spectra [60], to analyze NIR HSI to detect 
the presence of contamination during food packing [61], and to conduct a series of 
different food quality analyses from NIR spectra [62].

Figure 12. 
A simple illustration of a multi-layer perceptron neural network architecture. Each circle represents a 
neural network node and each arrow represents the weight that connects a node in one layer to a node in the 
subsequent layer.
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4. Food traceability and dynamic pricing

4.1 Inadequacies of existing traceability technologies

Traceability and real time analysis of food products that can help minimize 
waste will require new tools for quality assurance, authentication and digital supply 
chain management that can track products from harvest to market. Such tools must 
be objective, verifiable, provide data on quality, provenance, and freshness, and 
easy to incorporate at multiple nodes in the supply chain. Current technologies are 
inadequate to address most of these challenges and address only some components 
of the most difficult problems.

State of the art seafood traceability platforms provide tools for establishing chain of 
custody but lack dynamic pricing features or the verifiable and trusted freshness and 
authenticity data. These current platforms rely on estimates of shelf life based on catch 
date and storage conditions. These inputs are insufficiently verifiable and quantifiable 
for digital tools based on them to be broadly trusted and accepted for dynamic pricing, 
and they do not address authentication and quality metrics or capabilities at all.

As of 2021, dynamic pricing software solutions also lack higher quality verifiable 
and trusted freshness and authenticity data and are primarily designed for final 
retail discounting, often integrated only into broader retailer systems. This makes 
them less effective for application to upstream supply chain node tasks and adding 
value for each node in the supply chain.

Products for quantitative measurement of fish freshness rely primarily on 
destructive laboratory-based methods that are not capable of accurate spot checks 
of individual fish or fish portions or cannot be realistically and easily repeated at 
low cost at multiple points along the supply chain. Tools are available that measure 
tissue conductivity through fish skin, primarily to assess moisture, but they are not 
designed to address broader nutrient content, species, and traceability.

4.2 SafetySpect’s quality, adulteration, and traceability (QAT) technology

One approach to addressing the problem of traceability and rapid detection 
of spoilage is SafetySpect’s newly developed handheld QAT scanner that optically 

Figure 13. 
Basic CNN architecture. Data at the input layer is passed through a convolutional layer which generates 
feature sets. These are then reduced in size through averaging in the pooling layer and the resulting features are 
concatenated. The final layers form an MLP-based neural network to yield the final classifications.
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detects previously established chemical signatures of seafood freshness, quality, 
and species ID. This device integrates several types of spectroscopic data through 
its fusion-AI algorithm into simple, human readable reports. The handheld scanner 
will enable spot-checks of quality, species ID, and freshness all along the supply 
chain. Integration with a mobile device and app can couple the QAT output to 
blockchain-enabled, cloud-based, supply chain management platforms for tracking 
product quality, freshness, and species ID from harvest to market. When integrated 
with a digital platform using blockchain and dynamic pricing technology, these 
tools will support the modernization of the global fishing and seafood processing 
industries, supply chains and retail outlets, as well as provide accurate informa-
tion to consumers about the sustainability, freshness, and quality of their seafood 
purchases. Specially designed apps can also integrate smallholder producers in 
developing economies into the broader, emerging digital supply chain platforms in 
these markets.

By providing trusted product and pricing data at any node of the supply chain, 
QAT fundamentally changes the business models of seafood processors, wholesal-
ers and retailers, making it practical to (a) identify mislabeled product, and (b) 
dynamically price perishable seafood at multiple purchase decision points – beyond 
traditional final-discounting by retailers. The quantitative underlying data provides 
high confidence and additional visibility and trust in the freshness of such a highly 
perishable good, and makes intelligent pricing based on quality/freshness practical 
at all nodes along the supply chain before final retail sale.

With this capability, QAT will spur innovation in the execution of seafood 
supply chains by providing accountability at each node for maintaining quality. This 
will drive improvements in purchase decision making, traceability, authentication, 
and inventory planning. Retailers can use dynamic pricing in both their purchase 
and final sale decision making. Given the high proportion of seafood sales attribut-
able to the largest retailers in both developed and developing markets, retailers can 
have significant economic incentive to adopt such technologies, and the power to 
encourage its adoption by upstream suppliers.

Technologies like SafetySpect QAT will have four major impacts on the global 
seafood industry: (1) Reduce waste by tracking fish freshness, thus enabling vastly 
improved freshness-based dynamic pricing tools at multiple supply chain nodes; 
(2) Increased visibility and trusted information; (3) Increased value of seafood 
across markets and positive impact on public health by providing assurance of 
quality, species, and freshness; (4) Positive impact on a number of sustainability 
goals including better management of at-risk wild fisheries, combatting illegal 
poaching of fish and wild animal species, improving food security, and providing 
better economic engagement and access for marginalized smallholder producers to 
broader digital supply chain systems and platforms, reducing resource consumption 
and combatting climate change.

5. Conclusion

Food waste is a global problem caused in large part by food spoilage that has 
gone undetected. This problem exacerbates world hunger issues and affects con-
sumers by causing them to pay too high a price for food products whose shelf lives 
have been improperly or inadequately estimated. Several technologies have been 
applied to improve the detection of food spoilage and provide better valorization of 
food products at all points along the food supply chain, but many of these methods 
are either unreliable or damage the samples being evaluated. Spectroscopic tech-
niques, on the other hand, offer a reliable and non-invasive means of detecting and 
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quantifying spoilage. Recent developments in fundamental spectroscopic technolo-
gies have enabled the development and productization of portable and handheld 
devices for conducting analysis of food products in-situ. Furthermore, algorithmic 
advancements have improved our ability to extract the most relevant features from 
the spectroscopic data and yield highly accurate classifications and quantifica-
tions of spoilage. These technologies, in combination with advancements such as 
blockchain, used in conjunction with technologies like SafetySpect’s QAT scanner, 
offer the promise to reduce food waste and extend shelf lives through detection of 
spoilage at earlier points along the food supply chain and will provide the ability 
to impose intelligent pricing and traceability tracking for the benefit of consumers 
around the globe.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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