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Chapter

Application of Spectroscopic
Techniques in Early Detection of
Fungal Plant Pathogens

Ritesh Kumar, Shikha Pathak, Nishant Prakash,
Upasna Priya and Abhijeet Ghatak

Abstract

Among the plant pathogens, around 85% of diseases in plants are caused by
fungi. Rapid and accurate detection of fungal phytopathogens up to the species level
is crucial for the implementation of proper disease control strategies, which were
previously relied on conventional approaches. The conventional identification
methods have been replaced by many rapid and accurate methods like high
throughput sequencing, real-time polymerase chain reaction (PCR), serological and
spectroscopic technique. Among these rapid pathogen detection techniques, spec-
troscopy is a rapid, cost-effective, non-destructive method and does not require
sample preparation. Nowadays, visible, infrared and near-infrared rays are com-
monly employed for pathogen detection. Fluorescence Spectroscopy, Nuclear Mag-
netic Resonance (NMR) spectroscopy, Fourier Transform Infrared (FTIR)
spectroscopy, Attenuated Total Reflection (ATR)-FTIR spectroscopy, Raman Spec-
troscopy, Matrix-assisted Laser Desorption Ionization Time-Of-Flight Mass Spec-
trometry (MALDI-TOF MS). Biocontrol fungus-like Trichoderma spp. can be
detected with the help of MALDI-TOF MS. Fluorescence spectroscopy used fluo-
rescence emanating from the sample and successfully used in the detection of
powdery mildew (Blumeria graminis). Hyperspectral imaging is an advanced
approach which uses artificial intelligence in plant disease detection. This literature
discusses briefly about the features of above-mentioned spectroscopy techniques
which may impel the general understanding and propel the research activities.

Keywords: diagnosis, fluorescence spectroscopy, fungal plant pathogens, infrared,
near-infrared, spectroscopic techniques

1. Introduction

Fungi, bacteria, viruses, nematodes, and parasitic plants cause plant diseases,
which result in a complex relationship between the host plant, the pathogen, and
the environment. But most plant diseases (around 85%) are caused by fungi. More
than 10,000 species out of 100,000 recognized fungal species may cause diseases in
plants. The different strain types and the fungal pathogen’s formae speciales make
detection and identification more difficult, necessitating the use of specialized
techniques. For the implementation of proper disease control strategies, rapid and
accurate identification of phytopathogenic fungal pathogens up to the species level
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is critical. For a long time, experts have used their skills and experience to identify
crop diseases with their naked eyes. Finding a specialist and approaching them is
not only a time-consuming and repetitive task, but it is also a lengthy and expensive
procedure that can take a long time, making the disease very difficult to eradicate
and time-consuming in the case of large areas [1]. These traditional methods avail-
able for phytopathogenic fungi detection and identification are not always very
precise along and even time consuming, which can be shown by Figure 1. In order
to prevent economic yield losses and safe crop production, advanced plant disease
diagnosis can provide rapid, accurate, and effective early-stage identification of
plant diseases. For their timely control, early detection and recognition of these
phytopathogens are essential. The traditional methods of phytopathogenic fungi
detection and identification were mainly based on symptoms, isolation and culture,
accompanied by morphological observations along with their biochemical analysis
[2]. The study of fungal biology and its relationship with the host plant has made
considerable progress in recent years, thanks to the advent of modern holistic and
high throughput techniques. The new technologies that are essential to detecting
fungal diseases and sensor production are focused on spectroscopy and imaging,
mass metabolites and volatile profiling. When “plant disease” and “hyperspectral”
are used as key terms to scan for in all databases, according to Web of Science
statistics, there are 651 related papers from 1990 to 2019 (Figure 2).

Spectroscopy, along with other methods, offers a platform for the creation of
non-destructive approaches. The study of the relationship between matter and
electromagnetic radiation is known as spectroscopy [3]. Spectroscopy was limited
to the absorption, emission, and scattering of visible, ultraviolet, and infrared
electromagnetic radiation at the end of the nineteenth century. Throughout the
twentieth century, the definition of spectroscopy was extended to include other
forms of electromagnetic radiation, such as X-rays, microwaves, and radio waves,
as well as energetic particles like electrons and ions [4]. It’s ideal for plant disease
detection tools to be fast, specific to a particular disease, and sensitive enough to
detect symptoms as soon as they appear [5]. With rapid analysis, non-destructive
methods meet these requirements, as minimal to no sample preparation is needed.
Current research activities in agricultural engineering are working on developing
certain technologies to establish a realistic method for large-scale real-time obser-
vation of diseases under field as well as semi-field conditions. There are several
different kinds of spectroscopy techniques that include specific fungal pathogen
detection methods (Table 1).

Traditional Approach Innovative Approach

Isolation of infected plants ~ Change in gene expression: Microarray
; Phage display and biophotonics
n Establishment of pathogen Spectroscopy and Remote sensing
/
/4
{

Figure 1.
Comparison between the traditional and innovative approach of plant disease detection by considering four
different stages and their timings.
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Figure 2.
Number of published articles by year on plant disease with hyperspectral data (adopted from Zhang et al.,
2020).

Technique Crop Plant Disease Spectral range Reference
Visible and Infrared Wheat Powdery Mildew 490-540 nm [6, 7]
spectroscopy and Take all
disease
Kiwi Root rot [8]
Orange Sooty Mold 450-850 nm [9]

Grape fruit Greasy Spot

Muskmelon Powdery mildew

Fluorescence Wheat Powdery Mildew  blue-to-green (F451/F522); [10]
Spectroscopy blue-to-red (F451/F687);
blue-to-far- red ratio
(F451/F736)

Barley Powdery Mildew 410-560 nm [11]
Nuclear Magnetic Mycorrhiza [12]
Resonance (NMR)
Spectroscopy

Table 1.

Spectroscopy techniques for the detection of fungal pathogens.

2. Plant-pathogen interactions make spectroscopy indispensable

From sowing and growing to harvest, multiple disease-causing pathogens can
simultaneously affect plants, reducing the yield and quality of the cultivated plants.
It is obvious that many diseases produce similar symptoms and signs on the basis of
studies on plant disease detection study, but are caused by very different microor-
ganisms or agents [13]. It can therefore be said that, particularly for non-invasive
assay methods, pathogens themselves and plant-pathogen interaction processes are
complex. This makes it impossible to use the naked eye or basic machine vision to
discriminate against particular pathogens.
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2.1 Visible and infrared spectroscopy

As a tool for pathogen detection, non-destructive methods based on visible,
infrared and near-infrared spectroscopy are becoming more common as they are
fast and cost-effective. In most cases, visible spectroscopy is paired with infrared/
near-infrared spectroscopy to detect disease in plants. Dowell et al. [14] used NIR
spectroscopy to predict scab, vomitoxin, and ergosterol in single wheat kernels. The
application of NIR spectroscopy for mycotoxin measurements in cereals was iden-
tified by Pettersson and Aberg [15]. Erukhimovitch et al. [16] explored the ability of
FTIR microscopy to differentiate easily and rapidly and to identify different fungi
that are responsible for severe agricultural damage. For each of the fungi studied,
the findings produced a specific and clear spectral marker. They showed that the
spectral region can be regarded as a significant area for simple and accurate differ-
entiation between the different fungi examined, ranging from 1,000 to 1,800 cm .
Huang and Apan [17] used a portable spectrometer to collect hyperspectral data in
the field to detect Sclerotinia rot disease in celery and found that adequate reflec-
tance in the visible and infrared ranges from 400 to 1,300 nm produced similar
results as the entire spectrum (400-2,500 nm).

2.2 Fluorescence spectroscopy

Fluorescence spectroscopy is a method of electromagnetic spectroscopy that
analyses fluorescence from the sample of interest. The sample is excited by using a
light beam that results in a lower energy light emission, resulting in an emission
spectrum that is used to interpret results [18]. Green leaves generate two forms of
fluorescence: blue-green fluorescence (about 400-600 nm range) and chlorophyll
fluorescence (about 650-800 nm range). Fluorescence spectroscopy, with a high
sensitivity and specificity rate, seems to be a promising diagnostic technique that
makes it an ideal diagnostic method. Fluorescence spectroscopy can be used to track
food shortages, environmental stress levels, and plant diseases [19]. In four geno-
types of spring barley in healthy leaves, as well as leaves, inoculated with powdery
mildew pathogen (Blumeria graminis), Leufen et al. [11] studied the ability of three
optical devices, namely fluorescence lifespan, image-resolved multispectral fluo-
rescence and selected indices of a portable multiparametric fluorescence system for
the proximal sensing of plant-pathogen interactions (Puccinia hordei). Important
variations were found between healthy and diseased leaves.

2.3 Nuclear Magnetic Resonance (NMR) Spectroscopy

The introduction of a higher magnetic field has brought greater sensitivity and
spectral resolution. Technology developments have made it possible to combine
various NMR techniques that allow for metabolic, anatomical, and physiological
knowledge. Another advantage of NMR measurements in researching the biochem-
istry of mycorrhizas is the ability to spectroscopically distinguish host from fungal
metabolites without the need for separation or chemical derivatization. Through the
implementation of high-resolution solid-state magic angle spinning nuclear mag-
netic resonance, intact tissue analysis was possible (HR-MAS NMR). Pfeffer et al.
[12] studied the application of Nuclear Magnetic Resonance (NMR) to the two
major types of mycorrhiza (ectomycorrhiza and arbuscular mycorrhiza) in order to
address the physiological question of the sufficient discrepancy between these two
mutualistic symbioses. They found that NMR isotopic labelling can be used to
investigate the transfer of substrates between in-vivo and in-vitro symbionts, as well
as the formation of secondary metabolites in response to colonisation. It can also be
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used to evaluate the locations of biosynthesis and storage compound translocations
in mycorrhizal fungi.

2.4 Fourier transform infrared (FTIR) spectroscopy

The Fourier transform infrared spectroscopy (FTIR) is one of the methods that
has been successfully used to detect and recognise fungal plant pathogens [20]. This
technique was shown in some studies to be capable of discrimination not only at the
genus level but also at the species level [21]. The vast majority of these experiments
involved both bacteria and fungi. Because of its sensitivity, rapidity, low cost, and
simplicity, FTIR spectroscopy has the potential to be a very useful method for
detecting and recognising fungal pathogens in agriculture [22].

Erukhimovitch et al. [23] used standard FTIR spectroscopy methods to identify
control uninfected potato tubers and tubers naturally contaminated with fungal
pathogens. To confirm the absence of fungal infection, samples from uninfected
control potatoes were grown in the required growth medium. Thin potato samples
were prepared directly from the surface of uninfected and infected potatoes for
FTIR analysis. The FTIR spectra of both uninfected and contaminated samples
collected from potatoes. Tubers indicate a disparity in spectra between infected and
uninfected tissues, with unique clear spectral bands appearing in the spectra of
infected tissues.

2.5 ATR-FTIR spectroscopy

Attenuated total reflection Fourier transform infrared abbreviated as ATR-FTIR
spectroscopy imaging is a non-destructive imaging method which can be exploited
for wide range of samples and system studies. It is highly versatile in nature and can
be applied in biomedical sciences and horticulture industries for indentification and
interaction of pathogen with host.

ATR-FTIR has been used in characterization of fungal isolates of Rhizoctonia,
Verticillium, Colletotrichum, Fusarium species [24, 25] and Geotrichum candida [26].
Diagnostic analysis and exploratory features of ATR-FTIR spectra offers potential
detection of intact host—pathogen systems and other biological insights.

2.6 Raman spectroscopy

Raman spectroscopy (RS) is based on the Raman effect, which states that when
incident light (750-850 nm) excites molecules in a tissue, the molecules will reflect
light at a different wavelength. The wavelength of the reflectant light is unique to
various chemical components, allowing for chemical synthesis to be identified by
atheromatous plaque. It may distinguish between various plaque components
including elastin, collagen, cholesterol, cholesterol esters, lipids, carotenoids, and
calcium apatite deposits. To distinguish normal tissue from abnormal tissue, fluo-
rescence spectra are obtained from a coronary artery by supplying excitation light
and collecting emitted light through flexible optical fibers. RS is a nondestructive,
label-free spectroscopic technique that offers knowledge about the chemical com-
position of examined specimens. Food chemistry [27], electrochemistry, forensics
and materials science, and agricultural sciences are among its practical applications.
Farber et al. [28] demonstrated that using a hand-held Raman spectrometer in
conjunction with chemometric analyses, it is possible to differentiate between
healthy and diseased maize (Zea mays) kernels, as well as between different dis-
eases, with 100% precision. The study was compact and sample-agnostic, implying
that it could be retooled and performed autonomously for other crops.
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Van Duyne discovered in 1977 [29] that coherent oscillations of an electron
cloud at the surface of nanoparticles would amplify Raman scattering by a factor of
108. This phenomenon, known as surface-enhanced Raman spectroscopy (SERS),
allows for single-molecule detection and has thus been widely used to detect fungi-
related toxins [30].

2.7 MALDI-TOF MS

With technological advancement new and relaible tools are emerging for detec-
tion and identification of plant pathogens, one of such technique is Matrix Assisted
Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS).
Identification of several phytopathogenic fungal genera such as Alternaria, Fusarium,
Monilinia, Puccinia, mildews and potential bicontrol fungus like Trichoderma and
Metarhizium has been successfully done with MALDI system. Although identification
of several genera of fungus is done by MALDI-TOF MS, still this technology is not yet
considered a standard tool for the fungal identification and their functions (Table 2).

3. Some other uses of spectroscopy in plant pathogen detection

Sankaran et al. [42] used spectroscopy imaging technologies and made a dis-
tinction between normal healthy and diseased leaves of many plants. These systems
have the advantage of being effective in detecting plant diseases. The challenges
that these techniques face, include determining the best approach for a specific
plant disease and automating techniques for continuous plant disease monitoring.

Ewis Omran [43] demonstrated a method for early detection of plant disease by
focusing on the impact of fungal diseases such as leaf spots on peanut. In-situ

Fungus Contribution Reference

Alternaria Detection of alternariol, alternariol monomethyl ether, and [31]
tentoxin from Alternaria

Separation of A. porri, A. dauci, A. tomatophila and A. solani, [32]
from a complex
Identification of 60 isolates, among them 12 were Alternaria [33]
species.
Fusarium Identification and characterisation of Fusarium verticillioides and [34]
fumonisins.

Differentiation of various Fusarium spp. based on spores [35]
Downy and powdery Identification of the Bremia lactucae and Oidiumneo lycopersici, [36]

mildew fungus from infected leave
Bremia, Oidium Identification of ribosomal proteins and histones as markers for [37]

the biotyping of plant pathogens

Gibberella Characterisation of Gibberella zeae conidia by on-target trypsin [38]
digestion

Monilinia Identification of Monilinia brown rot fungi from infected fruits [39]

Trichoderma Direct identification of hydrophobins in Trichoderma isolates. [40]

Adopted from Drissner and Freimoser [41].

Table 2.
MALDI-TOF MS studies of agriculturally important fungi.
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spectroscopy was used to identify early and late leaf indices. Thermal and spectral
measurements were also used to differentiate between healthy and contaminated
plant leaves. Later, a drop in plant chlorophyll was also observed.

Martinelli et al. [44-46] identified modern nucleic acid and protein analysis-
based methods for identifying disease in plants. The authors also identified various
mobility spectrometer and lateral flow devices that detect early infections directly
on fluid, which summarised remote sensing technologies combined with spectros-
copy-based methods and resulted in high spatialization whirlpools.

Ray et al. [47] used hyperspectral reflectance data from a spectro radiometer
with spectral ranges of 770-860 nm and 920-1050 nm to detect late blight disease in
potatoes and found a significant difference between healthy and diseased plants.
Zhang et al. [48, 49] used a spectro radiometer with 32 spectral features and
different models to compare normal and contaminated leaves’ hyperspectral reflec-
tance. Every model was thoroughly examined using t-tests, correlation analyses,
and fisher linear discriminant analysis, and it was discovered that PLSR
outperformed the MLR model. FLDA also included accurate information.

At an early stage, Romer et al. [50] proposed a method for distinguishing leaf
rust wheat leaf from safe leaf. The authors provided pre-symptomatic identifica-
tion, which was followed by classification using the support vector machine
approach. It also shows how to collect different parameters using fluorescence
detection using a fluorescence spectrometer. Further support vector machine was
being used for classification for healthy and inoculated leaves.

4. Spectroscopy based methods for remote sensing of plant disease

In remote sensing of plant diseases spectroscopy is among the most used
methods which involves imaging or no-imaging sensors, visible wavelength, near
infrared wavelength, and shortwave infrared wavelength. These techniques are
considered reliable in crop disease monitoring as they are promising in operational
instruments, efficacy, cost-efficiency and flexibility.

Under non-imaging spectroscopy approach of remote sensing of plant disease
data is recorded based on inherent optical properties of leaf and leaf pigments,
structural characteristics and chemical components [51]. Leaf spectra were collected
either in field or laboratory to determine spectral regions (visible wavelength, near
infrared wavelength, and shortwave infrared wavelength) to detect diseases. Some
of the most studied fungal diseases using this method arewheat powdery mildew
caused by Erysiphe graminis sp. tritici and take-all disease caused by
Gaeumannomyces graminis sp. tritici [6, 7]. Apart from fungal diseases this method is
also been used in detection of different viral diseases and numerous insect pest
incidence in crop fields [44-46].

Nowadays, hyperspectral imaging instruments are being incorporated into
monitoring and assessment of plant diseases. Some of the laboratory-based studies
for imaging spectroscopy includes head blight and disease Fusarium fungal infec-
tion in wheat [52], early stage detection of diseases of sugar beet [53], and detection
of sugar beet rust, Cercospora leaf spot and powdery mildew on sugar beet leaves
[54]. A large range of statistical methods were applied under these studies for image
analysis which includes principal component analysis (PCA), linear regression,
support vector machine (SVM) classification and spectral angle mapper (SAM)
classification producing high accuracy for detection of disease. Data obtained
from both field and airborne hyperspectral were used to assess the severity of

Rhizoctonia crown and root rot disease in sugar beet [55] and yellow rust in
wheat [56].
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5. Hyperspectral imaging

Image analysis is a new breakthrough in the field of plant disease identification
and detection. Image analysis has huge potential in near as it is non-invasive and
autonomus approach of detecting stress (biotic and abiotic) in plant [57]. It involves
extraction of image from the images captured digitally. The image can be captured
from a varied source viz., smart phones, digital camera, highly specialized cameras
which are designed to extract variety of information from the image. Hyperspectral
thermal, Multispectral, 3D sensor, Red Green Blue (RGB) method, Chlorophyll
fluorescence are methods used in plant disease detection. Among these,
Hyperspectral imaging and RGB is mostly preferred for plant disease identification
[58]. In Hyperspectral imaging, camera is capable to capture light wavelength
beyond visible range (400-700 nm). Human eye can perceive electromagnetic
spectrum ranging from 400 to 700 nm but Hyperspectral imaging ranges from
250 nm (Ultraviolet, UV) to 2500 nm (Short-wave infrared range, SWIR). Camera
is combined with some specific sensors to widen the coverage of the capturing
spectrum. Usually, certain sub-range of electromagnetic range of radiation is cap-
tured by the camera viz., UV (250-400 nm) or visible and near infrared range
(NIR) (400-1300 nm) or SWIR (1300-2500 nm). 400-700 nm wavelength are
capable to detect changes in pigmentation of leaf while 700-1300 nm are to detect
mesophyll cell structure, however extended range of wavelength 1300-2500 nm are
needed to analyze content of water in plant.

6. Hyperspectral imaging technology

The image is captured in various way with the help of different hardware
approach. The various hardware approaches include push broom, liquid crystal
tunable filters, filter wheel others [59]. Among these, push broom technology
involves incidence of light on a prism or convex grating leading to formation of
narrow wavelength spectrum which further recorded on light sensitive chip (anal-
ogous to digital camera). A push broom device comprises of the camera, a lens and a
spectrometer. This device involves simultaneous capture of single spatial line and
whole range of colour spectrum. After scanning first line, camera moved to capture
the next line and final image is formed. Camera act as a line scanner and after
completion of scanning final image is formed. Snapshot is an alternative to push
broom approach. Instead of providing point-and-click measurements, in
Hyperspectral devices onus lies on the developer to develop capture process. Cap-
ture of image results in generation of large dataset sets which is further analyzed to
obtain useful information. A simple and convenient way is to analyze this large
dataset is to consider positions of small number in the captured wavelength. This
approach facilitates countering the effects of relative changes in light by taking into
account the ratios of data values. This is achieved by combining two or more
wavelengths of light which is referred as “indices”. In order to interpret the cap-
tured data, numerous such indices have been formulated through pre-considered
biological reasoning (eg. Knowledge that particular wavelength refers to the specific
properties in cell structure) or because of limitations of particular wavelengths
obtained from capture equipment (e.g. indices which are developed from data
obtained from multispectral remote sensing, may have limited number of wave-
length). When these indices are applied to plant material then referred to as
vegetation indices. Several such indices (Table 3) exist and each indices uses dis-
tinct set of wavelength measurements to describe different physiological attributes
of plant.
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S.N. Index Formula Information Reference
1 Normalised difference (RNIR — RRED)/ Range: —1to 1 [60]
vegetation index (NDVI)  (RNIR + RRED) Common range: 0.2-0.8
RRED ~680, Broadband
RNIR ~800
2 Red edge NDVI (R750 — R705)/ Range: —1to 1 [60]

(R750 + R705) Typical healthy range: 0.2 to 0.9
Narrowband (hyperspectral data)

3 Simple ratio index (SRI) RNIR/RRED Range: 0 to >30 [61]
RRED ~680, Typical healthy range: ~ 2-8
RNIR ~800 Broadband
4 Photochemical reflectance  (R531 — R570)/ Range: —1to 1 [60, 62]
index (PRI) (R531 + R570) Typical healthy range: — 0.2 to 0.2

Vegetation health prior to
senescence

5 Plant senescence (Red-Green)/ Range: —1to1 [60]
reflectance index (PSRI) NIR Typical healthy range: — 0.1to 0.2
>PSRI ~ canopy stress, onset of
senescence, fruit ripening

6 Normalise (R415 — R435)/ Chlorophyll degradation [63]
dphaeophytinizationindex ~ (R415 + R435) 0.56-1.41
(NPQI) Unacidified and acidified solutions
7 Structure Independent (R800 — R445)/ Range: 0-2 [60, 62,
Pigment Index (SIPI) (RS8O0 + R680) Typical healthy range: 0.8-1.8 64]

Good with canopy variety

8 Leaf rust disease severity 6.9 x (R605/  Accuracy of 89% in study may vary [65]
index (LRDSI) R455) — 1.2 with other data.

Table 3.
Vegetation indices, their formulae and information.

Normalised difference vegetation index (NDVI) is widespread and highly popular
metrics used to measure the general crop health status [66, 67]. NDVI is used to
detect biotic stress due to Sunn pest/cereal pest, Eurygasterintegriceps Put. (Hemiptera:
Scutelleridae) in wheat. There are many specific or disease centric indices which are
helpful in detection and quantification of specific disease [61]. Leaf rust disease
severity index (LRDSI) is an example of disease centric index having 87-91% accu-
racy in detection of wheat leaf rust (Puccinia triticina) [65].

Red edge approach is another commonly used method where abrupt rise in
reflectance at the red/near infrared border is detected. The red edge position com-
prise of narrow section of electromagnetic spectrum (690-740 nm) where visible
light spectrum ends and the NIR starts. This section of wavelength range showed
good spectral response for green plant material. Chlorophyll has high absorption
capacity and low reflectance for 700 nm light wavelength but it has strong reflec-
tion for infrared i.e., light wavelength starting from 720 nm. A red edge based
disease index is largely used for detection of powdery mildew of wheat (Blumeria
graminis f.sp. tritici). However, red edge approach has less accuracy than Partial
least squares regression (PLSR) method. PLSR has a statistical approach.

7. Classification approach using subset of selected spectrum data

This approach involves subsampling of particular wavelength from the full
spectrum. Unlike multispectral data, specific wavelength can be chosen
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autonomously or manually from any position in the captured wavelength range.
Wheat field experiment study involves NDVI response to remove all datasets
except from the leaves followed by ANCOVA (Analysis of Co-variance) to detect
specific wavelength of band which again followed by quadratic discriminant analy-
sis (QDA) which distinguish the spectra of healthy plant from diseased leaves
(yellow rust) [68]. This is the typical operation flow in hyperspectral image analy-
sis. Use of QDA enhances accuracy up to 92% along with four bands [68]. Likewise,
several techniques are used in plant disease detection in Hyperspectral imaging
technology (Table 4).

Multi-layer Perceptron (MLP) approach detect yellow rust in wheat field uses a
spectrograph of range 460-900 nm and 20 nm of spectral resolution [71]. The
image is captured by the spectrograph by handheld system. Four significant light
wavelengths were selected. The ‘variable selection’ method was employed for the
selection of first two wavelengths using discriminant analysis and F-test. Another
pair of wavelengths were selected by using NDVI wavelength. Moshou employed a
neural network comprising four inputs, two outputs and one hidden layer consist of
ten neurons. It has classification accuracy of 98.9% for healthy plants while 99.4%

S.N. Technique Plant disease Accuracy References
1 89 Quadratic discriminant analysis Wheat (yellow rust) 92% [68]
(QDA)
Avacado (laurel wilt) 94% [69]
2 Decision tree (DT) Avacado (laurel wilt 95% [69]
Sugarbeet (cerospora leaf spot) 95% [70]
Sugarbeet (powdery mildew) 86%
Sugarbeet (leaf rust) 92%
3 Multilayer perceptron (MLP) Wheat (yellow rust) 98.9/99.4% [71]
4 Partial least square regression (PLSR) Celery (sclerotinia rot) 88.92% [17]
Raw 88.18%
Savitsky-Golay 1st derivative 86.38%
Savitsky-Golay 2nd derviative
5 Partial least square regression (PLSR) Wheat (yellow rust) 92% [72]
6 Fishers linear determinant analysis Wheat (aphid) 60% [48, 49]
Wheat (powdery mildew) 90%
Wheat (powdery mildew)
7 Erosion and dilation Cucumber (downeymildew) 90% [73]
8 Spectral angle mapper (SAM) Sugarbeet (cerospora leaf spot) 89.01- [53]
98.90%
Sugarbeet (powdery mildew) 90.18- [52]
Sugarbeet (leaf rust) 97.23%
Wheat (head blight) 61.7%
87%
9 Artificial neural network (ANN) Sugarbeet (cerospora leaf spot) 96% [70]
Sugarbeet (powdery mildew) 91%
Sugarbeet (leaf rust) 95%
10 Support vector machine (SVM) Sugarbeet (cerospora leaf spot) 97% [70]
Sugarbeet (powdery mildew) 93% [74]
Sugarbeet (leaf rust) 93%
Table 4.

Techniques used in Hyperspectral imaging for detection plant diseases.
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for diseased plants. In machine learning, a highly sophisticated approach known as
deep learning is gaining popularity. Deep learning consists of artificial neural net-
work having a structure containing numerous layers. Each layer of neuron implic-
itly represent features obtained from the data which in turn complex information
can be furnished from later layers and whole image features can be obtained from
network. Convolutional neural networks (CNN) and Artificial neural networks
(ANN) popularly used in deep learning. Using CNN, deep learning is reported to
identify 26 diseases in 14 crop species [75]. AlexNet and GoogLeNet are two popular
versions of CNNs having accuracy in disease detection up to 97.82% and 98.36%
respectively. Both versions use datasets of 54306 images where 80% involve in
training and 20% testing.

8. Disease identification

Apart from detection of presence and absence of disease, research is focusing on
distinguishing between different disease and identification of specific disease. Spectral
information divergence classification is one of the approaches fulfilling this purpose.
Comparative analysis is performed between observed spectra and available reference
spectra (a library of diverse spectra). Spectral information divergence employed in
detection of canker legions on citrus. Greasy spot, melanose, insect damage, wind scar
and scab were detected in grape with 95.2% classification accuracy [76].

9. Quantification of disease severity

SAM (Spectral angle mapper) is an approach is used to quantify severity of plant
disease. SAM approach matches pixel spectra to available reference spectra leading
to classification of pixels. This classification involves calculation of angle between
the spectra. These spectra further considered as n-dimensional vectors in the space
[77]. This approach has moderate level of success and widely used by researchers.
Yuhas et al. [77] recorded the Fusarium head blight severity in wheat using
hyperspectral data of range 400-1000 nm and spectral resolution 2.5 nm. In quan-
tification of disease severity, SAM accounts for 88% classification accuracy. Malhein
et al. [78] also quantified disease severity of Cercospora leaf spot, powdery mildew,
and rust in sugar beet using SAM approach.

10. Conclusion

Early detection of plant disease plays key role in planning of plant disease
management programme. Nowadays many non-destructive methods of plant dis-
ease detection are gaining popularity. Different spectroscopic methods offer a non-
destructive method of plant disease detection. These methods use visible, ultravio-
let, infrared and near-infrared lights to capture image of plant sample. Fluorescence
microscopy, NMR, FTIR spectroscopy, ATR-FTIR spectroscopy, Raman spectros-
copy, MALDI-TOF microscopy, and Hyperspectral imaging are different nonde-
structive and spectroscopy-based method of plant disease detection. Among all
these methods visible, ultraviolet, infrared and near-infrared wavelength of lights
are used for image analysis of diseased plant sample. In hyper spectroscopy imag-
ing, image captured using visible, ultraviolet, infrared and near-infrared wave-
length of lights were further analyzed by using artificial intelligence. As these
methods are very much promising but still their accuracy needs to be improved.
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Quantification of disease is also great concern. These methods are not very much
promising in quantification of disease severity in plants. Future research must be
focused on developing a system which give promising result regarding quantifica-
tion of plant disease severity.
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