
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

136,000 170M

TOP 1%154

5,500

Chapter

Tuning Artificial Neural Network
Controller Using Particle Swarm
Optimization Technique for
Nonlinear System
Sabrine Slama, Ayachi Errachdi and Mohamed Benrejeb

Abstract

This chapter proposes an optimization technique of Artificial Neural Network
(ANN) controller, of single-input single-output time-varying discrete nonlinear
system. A bio-inspired optimization technique, Particle Swarm Optimization
(PSO), is proposed to be applied in ANN to avoid any possibilities from local
extreme condition. Further, a PSO based neural network controller is also devel-
oped to be integrated with the designed system to control a nonlinear systems. The
simulation results of an example of nonlinear system demonstrate the effectiveness
of the proposed approach using Particle Swarm Optimization approach in terms of
reduced oscillations compared to classical neural network optimization method.
MATLAB was used as simulation tool.

Keywords: neural networks, particle swarm optimization, indirect control,
nonlinear system

1. Introduction

We are interested, in this chapter, in adaptive system control of a class of single-
input single-output (SISO) non-linear systems using neural network. In fact, this
system control is a very general approach to adaptive control since one can combine
in principle any parameter estimation scheme with any control strategy. In addi-
tion, its architecture is based on two neural network blocks corresponding to the
system controller and the model identification of the dynamic behavior of the
system [1, 2].

The use of artificial neural network (ANN) for identification, diagnosis, model-
ing and control has generated a lot of interest for quite some time now, because they
have proved to be excellent function approximators, mapping any function to an
arbitrary degree of accuracy, coupled with their ability for generalization,
self-organization and self-learning [3].

Many architectures of neural networks are used. Among them, the most
common and the most popular architecture is the multilayered perceptron,
implemented with the standardized backpropagation algorithm. If the initial set of
weights is not selected properly, this algorithm, employing a gradient descent
search technique is seriously prone to getting trapped in local optimum solutions.

1

However, the calculations could slowly occurred and may even overflow or
fluctuate between the optima. These limitations encouraged researchers to look for
more powerful optimizations techniques that can help reach the optimal solution in
an improved fashion, guarantee the convergence of control system and increase the
learning speed [3].

A lot of optimization techniques of neural network are widely used. Among
them, particle swarm optimization (PSO), the subject of this chapter, studied in
different papers like in [3], and originates from the behavioral simulation of fish
schooling and bird flocking. The conceptual model, at some point in the evolution
of the algorithm, was an optimizer following which a number of parameters extra-
neous to optimization were eliminated leading to the basic PSO algorithm [3].

This technique is used in many applications of neural network optimization like
identification, control and modeling. For instance, in [4], the authors used the PSO
based neural network optimization for prediction of diameter errors in a boring
machine. In their work, they established an improvement in the quality of optimi-
zation of the neural networks and error compensations with the use of the PSO
algorithm, which achieves a better machining precision with fewer numbers of
iterations.

The PSO algorithm is proposed to get optimal the parameters of ANN. This
algorithm is well used because it has convergent result and not require many
iterations, so in relative calculation relative quick. PSO is a population-based
approach, which uses the swarm intelligence generated by the cooperation and
competition between the particles in a swarm. It has been emerged successfully to a
wide variety of search and optimization problems.

For example, in [5], the authors compared the performance of the PSO tech-
nique with other EAs for both continuous and discrete optimization problems in
terms of processing time, convergence speed, and quality of the results. In addition,
in [6], the authors proposed a PSO learning algorithm that self-generates radial
basis function neural network (RBFN) to deal with three non-linear problems. This
proposed PSO allows a high accuracy within a short training time when determining
RBFN with small number of radial basis functions. Then, in [7], a PSO algorithm
was developed by the authors to find the optimum process parameters which satisfy
given limit, tool wear and surface roughness values and maximize the productivity
at the same time. Also, in [8], the authors described an evolutionary algorithm for
evolving the ANNwhich was based on the PSO technique. Both the architecture and
the weights of the ANN were adaptively adjusted according to the quality of the
neural network until the best architecture or a terminating criterion was reached.
Moreover, the performance of the basic PSO algorithm with the constriction PSO on
some test functions of different dimensions was compared by [9] and they found
that the use of constriction PSO with mutation provided significant improvement in
certain cases.

Further, in [10], it is presented an improved PSO algorithm for neural network
training employing a population diversity method to avoid premature convergence.
Furthermore, in [11], the authors used the PSO technique to optimize the grinding
process parameters such as wheel and workpiece speed, depth and lead of dressing,
etc. subjected to suitable constraints with the objective of minimizing the produc-
tion cost and obtaining the finest possible surface finish. As well as, by comparing
the PSO algorithm results with genetic algorithms and quadratic programming
techniques, the PSO algorithm gives the global optimum solution with the objective
to obtain minimum cost of manufacturing, [12]. Equally, in [13], the authors
applied ANN - PSO approach for selection of optimum process parameters for mini-
mizing burr size in drilling process. Besides that, the PSO algorithm was applied for
optimization of multi objective problem in tile manufacturing process [14] and also

2

Deep Learning Applications

for machinery fault detection [15]. Finally, in [16] the authors used PSO to tune the
radial basis function networks for modeling of MIG welding process.

The PSO is well used in control system, for instance, in [17], the parameters of
PID are tuned by ANN where their weights are optimized using PSO method to
avoid any local minima/maxima in its searching procedure. In [18], the authors
proposed a design of decentralized load-frequency controller for interconnected
power systems with ac-dc parallel using PSO algorithm. The experiment result
illustrated that their method have rapid dynamic response ability. In [19], the PSO

algorithm is implemented to optimize the own five parameters of PIλDδ controller
via El-Khazali’s approach in order to minimize several error functions satisfying
some step response specifications such as the set of time domain and frequency
domain constraints; overshoot, rise time and settling time. In [20], a comparative
analysis of PSO algorithms is carried out, where two PSO algorithms, namely PSO
with linearly decreasing inertia weight (LDW-PSO), and PSO algorithm with con-
striction factor approach (CFA-PSO), are independently tested for different PID
structures.

In this chapter, a comparison of the performance of the PSO optimized neural
network with the standard back-propagation is presented for the adaptive indirect
control of nonlinear time-varying discrete system.

The present chapter is organized as follows. After this introduction, section 2
reviews the problem statement. Furthermore, in section 3 the neural network opti-
mization methods are shown. In Section 4, tuning neural network controller using
classical approach is presented. However, the section 5 details tuning neural net-
work controller using PSO approach. An example of nonlinear system is studied, in
section 6, to illustrate the proposed efficiency of the method. Section 7 gives the
conclusion of this chapter.

2. Problem statement

The indirect adaptive control that is used, in this chapter, is composed of two
blocks: a block of neural network model and a block of control system. The pro-
posed control system is a neural network controller. At the simulation, it is assume
that the neural network controller parameter’s depending of the model parameter’s
as given in Figure 1.

In this architecture of indirect control, r kð Þ is the desired value, u kð Þ is the
control law from the controller, y kð Þ is the output of the nonlinear system, yr kð Þ is
the output of the neural network model, e kð Þ is the identification error, êc kð Þ is the
estimated tracking error, ec kð Þ is the tracking error and k is the discrete time.

The aim of this chapter is to find a control law u kð Þ to the nonlinear system,
given by the Eq. (1), based on the tuning neural network controller’s parameters in
order that the system output y kð Þ tracks, where possible, the desired value r kð Þ.

Figure 1.
The architecture of indirect neural control.

3

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

y kþ 1ð Þ ¼ f y kð Þ, … , y k� ny
� �

, u kð Þ, … , u k� nuð Þ
� �

(1)

f :ð Þ is the nonlinear function mapping specified by the model, ny and nu are the
number of past output and input samples respectively required for prediction.

In this structure, the neural network controller and the neural network model
must be updated at the same time. But, it is a difficult task to have a neural
identifier learn the system fast enough to adapt to varying parameters. Therefore,
the neural controller is ineffective on variations of the system parameters. In this
chapter, to solve this problem we propose a fast learning algorithm based on a
particle swarm optimization approach.

3. Neural network optimization methods

3.1 Gradient back-propagation algorithm

An Artificial Neural Networks (ANN) with randomly initialized weights usually
shows poor results. That’s why the most interesting characteristic of a neural net-
work is its ability to learn, in other words, to adjust the weights of its connections
according to the training data so that after training phase the faculty of generaliza-
tion is obtained. This formulation turns the problem of learning into a problem of
optimization.

In general, optimizing a system’s parameters for a given task requires defining a
metric that captures the inadequacy of the system for that task. This measure is
called the cost function. Using an optimization algorithm, it is about finding the
optimal parameters of the neural model that minimizes the cost.

For this kind of problem, there are two important classes of cost minimization
search algorithms. Classical or gradient algorithms in which the central concept is
that of direction of descent, are based on the derivatives of the cost function and
any constraints, and advantageously made use of the specific information provided
by the derivatives of different orders of these functions.

The alternative to these approaches is the use of meta-heuristics or heuristics
such as genetic, stochastic, or evolutionary algorithms. Despite the notable advan-
tage of not assuming regularity and their ability to locate the global minimum, these
algorithms are strongly penalized by the relatively low convergence speeds and long
computation times.

In the case of algorithms using the information provided by the derivatives of
the functions defining the problem, each iteration comprises two main phases: the
search for a direction of descent dk and the determination of a step of descent η
given by the following formula:

xkþ1 ¼ xk þ η dk (2)

The difference between these algorithms is manifested in the way these two
steps are performed.

There are also three classes for such algorithms according to the strategy used to
calculate the direction of descent:

1.gradient algorithms such as:

dk ¼ �∇f xkð Þ (3)

4

Deep Learning Applications

2.algorithms based on Newton’s method in which the direction of descent is the
solution of the system

∇2f xkð Þdk ¼ ∇f xkð Þ (4)

3.the algorithms of the quasi-Newton type, in which an approximation Hk of the
Hessian matrix evaluated in the iterates is built, the direction being then, as for
the method of Newton, the solution of the linear system

Hkdk ¼ ∇f xkð Þ (5)

The gradient back-propagation algorithm is the most widely used for weight
adaptation, the goal of which is to find the appropriate combination of connection
weights that minimizes the error function E defined by:

E ¼
1

2

X

k

yk � yrk
� �2

(6)

yk and yrk being, respectively, the desired output and the actual output of the k
neuron for a given input vector.

This procedure is based on an extension of the Delta rule which involves a
gradient descent and which consists in propagating an observation of the input of
the neural network through the neural layer, to obtain the output values.

Compared to the desired outputs, the resulting errors allow the weights of the
output neurons to be adjusted. Without the presence of the hidden layer, the
knowledge of these errors allows a direct calculation of the gradient and makes the
adjustment of the weights of these single neurons, easy as shown by the Delta rule.
So for a network with hidden layers, ignoring the desired outputs of the hidden
neurons, it thus remains impossible to know the errors of these neurons. So, as it is,
this process cannot be used for weight adjustment of hidden neurons. The intuition
which solves this difficulty and which gave rise to back-propagation was as follows:
the activity of a neuron is linked to neurons of the preceding layer. Thus, the error
of an output neuron is due to the hidden neurons of the previous layer in proportion
to their influence; therefore according to their activation and the weights that
connect the hidden neurons to the output neuron. Therefore, we seek to obtain the
contributions of the L hidden neurons which gave the error of the output neuron k.

The back-propagation procedure consists in propagating the error gradient
(error produced during the propagation of an input vector) in the network. In this
phase, the propagation of an output neuron’s error starts from the output layer to
the hidden neurons.

It is therefore sufficient to retrace the original activation path backwards,
starting from the errors of the output neurons, to obtain the error of all the neurons
in the network. Once the corresponding error for each neuron is known, the weight
adaptation relationships can be obtained.

3.2 Second order optimization method

Another class of methods, more sophisticated than the previous one, is based on
second order algorithms, based on Newton’s method which adapts the weights
according to the following relation:

Δw ¼ �H�1∇E (7)

5

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

where the element Hij of the Hessian matrix H relates to the second partial
derivatives of the cost function, compared to the weights. The elements of this
matrix are defined by

Hij ¼
∂
2E

∂wi∂w j
(8)

Like gradient-only methods, second-order methods determine the gradient by
the back-propagation algorithm and generally approximate the Hessian matrix or its
inverse, since the cost of its computation may quickly become prohibitive.

This type of method localizes, in a single iteration, the minimum of a quadratic
empirical error criterion and requires several iterations when this criterion is not
ideally quadratic.

In practice, the convergence of the corresponding algorithm towards an optimal
solution is rapid so that a good number of error hyper-surfaces present a quadratic
curvature in the immediate vicinity of the minima. This method nevertheless
remains subject, when the error hyper-surfaces are complex, to convergence
towards non-minimal solution points for which the gradient of the empirical error
criterion is canceled out at the inflection points or at the saddle points. In addition,
there are the possibilities of divergence of the algorithm when the Hessian matrix is
not positive definite.

The evaluation and memorization of the inverse Hessian matrix, on which the
second-order methods are based, is, however, a major handicap in the context of
learning large networks.

But, the main drawback lies in the calculation of the second derivatives of E
which is most often expensive and very difficult to carry out. A certain number of
algorithms propose to get around this difficulty by using approximations of the
Hessian matrix.

This approximation, at the basis of Gauss-Newton or Levenberg–Marquardt
algorithms, is widely used in the identification of rheological parameters. This
method is adapted especially for the problems of small dimensions since the com-
putation of the Hessian matrix is easy. Whereas if the problem presents a large
number of variables, it is generally advised to couple it with the conjugate gradient
method or a Quasi-Newton method. Or, when the relative improvement in the
objective function becomes too low, we automatically switch to the conjugate gra-
dient method.

The Levenberg–Marquardt method, Marquardt method, another second-order
method, very close to the Newton method described previously, in fact offers an
interesting alternative by adjusting the weights as following:

Δwij ¼ � H þ μI½ ��1∇E (9)

μ is the Levenberg–Marquardt parameter and I is the identity matrix.
This method, making a compromise between the direction of the gradient and

Newton’s method, has the particularity of adapting to the shape of the error surface.
Indeed, for low values of μ, the Levenberg–Marquardt method approaches New-
ton’s method, and for large values of μ, the algorithm is quite simply a function of
the gradient, knowing that the parameter μ is automatically updated based on the
convergence of each iteration.

Stabilization is possible thanks to a reiterative process, i.e. if an iteration
diverges, it can be started again by increasing the parameter μ until a convergent
iteration is obtained. However, the phenomenon of strong divergence when

6

Deep Learning Applications

approaching the optimum, inherent in Newton’s method, is in no way suppressed
here. At most, the divergence can be reduced.

Despite the interesting properties of this method, calculating the inverse of
H þ μIð Þ, makes its use tricky for heavy neural networks. As a result, like Newton’s
method, it is advisable to automatically switch to the conjugate gradient method
when this divergence phenomenon appears. Second-order methods greatly reduce
the number of iterations, but increase the computation time.

3.3 Heuristic optimization methods

The advantage of heuristic optimization methods is the minimization of

non-derivable cost functions, even for a large number of parameters 1< n< 105
�

).
Among the effective methods, we distinguish the optimization algorithm by

Particle Swarms introduced by Kennedy and Eberhart and improved by Clerc is an
optimization technique by agents which is essentially inspired by the behavior
social in flocks of birds or schools of fish.

In addition, genetic algorithms, evolutionary algorithms, also constitute sto-
chastic optimization techniques inspired by the theory of evolution according to
Darwin, now widely used in numerical optimization, when the functions to be
optimized are complex, irregular, poorly known or in question. Combinatorial
optimization.

These heuristic methods of the methods presented previously (Levenberg–
Marquardt, Newton, Conjugate Gradient, ...) by three main aspects:

1. they do not require the gradient calculation,

2.they study a population as a whole while deterministic methods treat an
individual who will evolve towards the optimum,

3.they involve random operations.

Experience has also shown that if the components as well as the evolution
parameters are carefully tuned, it is possible to obtain extremely efficient and fast
algorithms. However, this adjustment step can be very delicate and constitutes a
drawback of the implementation of these methods.

4. Tuning neural network controller using classical approach

The architecture shown in Figure 1 assumes the role of two neural blocks.
Indeed, the weights of the neural model are adjusted by the identification error e kð Þ,
however the weights of the neural controller are trained by the tracking error ec kð Þ.

The multi-layer perceptron is used in the neural model and in the neural con-
troller. Each block consists of three layers. The sigmoid activation function s is used
for all neurons.

Concerning the neural network model, the jth output layer of the hidden layer is
described as follows

h j ¼
X

n1

i¼1

wjixi j ¼ 1, 2, … , n2 (10)

7

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

where n1 is the number of nodes of the input layer, wji is the hidden weight, xi is

the input vector of the neural model, x ¼ u kð Þ, u k� 1ð Þ, u k� 2ð Þ, …½ �T, u kð Þ is the
control input to the system and n2 is the number of nodes of the hidden layer given
in the expression (3).

The output of the neural network model is given by the following equation

yr kþ 1ð Þ ¼ λ s
X

n2

j¼1

w1js h j

� �

 !

(11)

wherew1j is the weight from the hidden layer to the output layer and λ is a scaling
coefficient. The compact form of the output is given by the following equation

yr kþ 1ð Þ ¼ λ s h1ð Þ ¼ λ s wT
1 S Wxð Þ

� �

(12)

with

x ¼ xi½ �
T, i ¼ 1, … , n1,

W ¼ wji

� �

, i ¼ 1, … , n1, j ¼ 1, … , n2,

S Wxð Þ ¼ s h j

� �� �T
, j ¼ 1, … , n2,

w1 ¼ w1j

� �T
, j ¼ 1, … , n2:

The incremental change of the hidden weights Δwij, i ¼ 1, … , n1 and j ¼ 1::n2, is

Δwji ¼ �η
∂E

∂wji
¼ �η

∂E

∂e

∂e

∂h1

∂h1
∂h j

∂h j

∂wji
(13)

Δwji ¼ ηλs0 h1ð ÞS
0 Wxð Þw1jx

Te kð Þ (14)

with η is the learning rate, 0≤ η≤ 1, S0 Wxð Þ ¼ diag s0 h j

� �� �T
, j ¼ 1, … , n2, s0 h1ð Þ is

the derivative of s h1ð Þ defined as follows

s0 h1ð Þ ¼ s h1ð Þ 1� s h1ð Þð Þ (15)

e kð Þ is the identification error which is given by

e kð Þ ¼ y kð Þ � yr kð Þ (16)

and the function cost which is given by the following equation

E ¼
1

2

X

N

k¼1

e kð Þð Þ2 ¼
1

2

X

N

k¼1

y kð Þ � yr kð Þð Þ2 (17)

where N is the number of observations.
The incremental change of the hidden weights Δwij is used in the following

equation

wji kþ 1ð Þ ¼ wji kð Þ þ Δ wji kð Þ (18)

However, the output weights are updated by the following equation

8

Deep Learning Applications

w1j kþ 1ð Þ ¼ w1j kð Þ þ Δ w1j kð Þ (19)

where Δw1j is

Δw1j ¼ �η
∂E

∂w1j
¼ �η

∂E

∂e

∂e

∂h1

∂h1
∂w1j

(20)

Δw1j kð Þ ¼ ηλe kð Þs0 h1ð ÞS Wxð Þ (21)

Concerning the neural network controller, the jth output layer of the hidden
layer is

hcj ¼
X

n3

i¼1

vjix1i j ¼ 1, … , n4 (22)

where n3 is the number of nodes of the input layer, vji is the hidden
weight and x1i is the input vector of the neural network controller

x1 ¼ r kð Þ, r k� 1ð Þ, r k� 2ð Þ, …½ �T, r kð Þ is the desired value.
The output of the neural network controller is given by the following equation

u kð Þ ¼ λc s
X

n4

j¼1

v1js hcj
� �

 !

¼ λc s
X

n4

j¼1

v1js
X

n3

i¼1

vjix1i

 ! !

(23)

where n4 is the number of nodes of the hidden layer, λc is a scaling coefficient
and v1j is the output weight.

The compact form of the output of the neural network controller is given by the
following equation

u kð Þ ¼ λc s hc1ð Þ ¼ λc s v
T
1 S Vx1ð Þ

� �

(24)

with

x1 ¼ x1i½ �
T, i ¼ 1, … , n3,

V ¼ vji
� �

, i ¼ 1, … , n3, j ¼ 1, … , n4,

S Vx1ð Þ ¼ s h j

� �� �T
, j ¼ 1, … , n4,

v1 ¼ v1j
� �T

, j ¼ 1, … , n4:

Concerning the hidden synaptic weights, they are updated by

vji kþ 1ð Þ ¼ vji kð Þ þ Δ vji kð Þ (25)

where Δvji is given by

Δvji ¼ �ηc
∂Ec

∂ec

∂ec
∂y

∂yr

∂h1

∂h1
∂s h j

� �

∂s h j

� �

∂h j

∂h j

∂u

∂u

∂hc1

∂hc1
∂hcj

∂hcj
∂vji

(26)

with ηc is the learning rate, 0≤ ηc ≤ 1 and the function cost defined as follows

9

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

Ec ¼
1

2

X

N

k¼1

ec kð Þð Þ2 ¼
1

2

X

N

k¼1

y kð Þ � r kð Þð Þ2 (27)

where N is the number of observations and ec kð Þ is the tracking error which is
given by the following equation

ec kð Þ ¼ y kð Þ � r kð Þ (28)

where r kð Þ is the desired output. So Δvji comes

Δvji ¼ ηcλcec kð Þs
0 h1ð Þw1jS

0 Wxð Þwjis
0 hc1ð Þv1jS

0 Vx1ð ÞxT1 (29)

with S0 Vx1ð Þ ¼ diag s0 h j

� �� �T
, j ¼ 1, … , n4.

The output synaptic weights of the neural network controller are updated as

v1j kþ 1ð Þ ¼ v1j kð Þ þ Δ v1j kð Þ (30)

where Δv1j is given by

Δv1j ¼ �ηc
∂Ec

∂v1j
¼ �ηc

∂Ec

∂ec

∂ec
∂hc1

∂hc1
∂v1j

(31)

So

∂ec kð Þ

∂hc1
¼

∂ y kð Þ � r kð Þð Þ

∂hc1
¼

∂y kð Þ

∂hc1
¼

∂y kð Þ

∂u kð Þ

∂u kð Þ

∂hc1
(32)

and the Eq. (31) becomes

Δv1j ¼ �ηc
∂Ec

∂ec

∂y kð Þ

∂u

∂u kð Þ

∂hc1

∂hc1
∂v1j

(33)

or in Eq. (33), y kð Þ does not depend on h1, for this reason we use yr kð Þ instead of
y kð Þ under the condition that the neural model is equal to the system behavior
which gives

∂y kð Þ

∂u
¼

∂yr kð Þ

∂u
¼

∂yr kð Þ

∂h1

∂h1
∂s h j

� �

∂s h j

� �

∂h j

∂h j

∂u
(34)

from where approximately

Δv1j ¼ �ηc
∂Ec

∂ec kð Þ

∂ec kð Þ

∂y kð Þ

∂yr kð Þ

∂h1

∂h1
∂s h j

� �

∂s h j

� �

∂h j

∂h j

∂u kð Þ

∂u kð Þ

∂hc1

∂hc1
∂v1j

(35)

the obtained incremental change Δv1j is rewritten as

Δv1j ¼ ηcλcec kð Þs
0 h1ð Þw1jS

0 Wxð Þwjis
0 hc1ð ÞS Vx1ð Þ (36)

In this section, we used a fixed learning rate, η kð Þ (respectively ηc kð Þ), and a
derivative of sigmoid function s0 h1ð Þ ¼ s h1ð Þ 1� s h1ð Þð Þ.

10

Deep Learning Applications

This approach has two drawbacks. First, to find a suitable fixed learning rate
η kð Þ (respectively ηc kð Þ), several tests are called which decreases the on-line opera-
tion. Second, when we use this type of derivative of sigmoid function, a large
amount of error should not be spread to the weights of the output layer and the
learning speed becomes very slow. In order to increase the learning speed, some of
the new proposed approaches are proposed in the next section.

5. Tuning neural network controller using particle swarm optimization

An alternative technique is proposed, in this section, to optimize the neural
network controller by implementing Particle Swarm Optimization algorithm. This
algorithm works like animal behavior on finding foods and avoiding danger, where
they will coordinate with each other to find the best position to settle. Likewise, PSO
is directed by the movement of the best individual from the population, known as
the social compound, and their own experience, known as the cognitive compound.
The algorithm moves the set of solutions to find the best solution among them.

5.1 Mathematical formulation

In this study, the Particle Swarm Optimization Feedforward Neural Network
(PSO NN) is applied to a multi-layered perceptron where the position of each
particle, in a swarm, represents the set of synaptic weights of the neural network for
the current iteration. The dimensionality of each particle is the number of synaptic
weights.

Let us consider a search space of dimension D. A particle i of the swarm is
modeled by a position vector

xij ¼ xi1, xi2, … , xiD½ �T (37)

and a velocity vector denoted

vij ¼ vi1, vi2, … , viD½ �T (38)

There is no concept of backpropagation in PSO NN where the direct neural
network produces the learning error, objective function of each particle, based on
the set of synaptic weights and biases, the positions of the particles. Each particle
moves in the weighting space trying to minimize the learning error and keeps in
memory the best position through which it passed, denoted

Pbestij ¼ pbesti1, pbesti2, … , pbestiD
� �T

(39)

whereas the best position reached by the swarm is denoted

Gbestij ¼ gbesti1, gbesti2, … , gbestiD
� �T

(40)

Changing the position means updating the synaptic weights of the neural net-
work controller to generate the proper control law by reducing tracking error.

In each iteration k, the particles update their position by calculating the new
velocity and move to the new position. At the iteration kþ 1ð Þ, the velocity vector is
calculated as follows:

11

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

vij kþ 1ð Þ ¼ wvij kð Þ þ c1r1 pbestij kð Þ � xij kð Þ
h i

þ c2r2 gbestij kð Þ � xij kð Þ
h i

(41)

where:
w being a variable parameter making it possible to control the changing of the

particle at the next iteration,
wvij is a physical changing component,

c1r1 pbestij kð Þ � xij kð Þ
h i

is a cognitive changing component,

c2r2 gbestij kð Þ � xij kð Þ
h i

a social component of changing,

c1 and social c2 are respectively, two cognitive confidence coefficients and social
which are present the degree of attraction towards the best position of a particle and
that of these informants,

r1 and r2 are two random numbers drawn uniformly in the interval 0, 1½ �
represent the proper exploration of particles in the search space.

The smallest learning error of each particle Pbesti and the smallest learning error
found in the whole learning process Gbesti are applied to produce a fit of the
positions towards the best solution or the targeted tracking error.

The position, at the iteration kþ 1ð Þ, of particle i is then defined as follows:

xij kþ 1ð Þ ¼ xij kð Þ þ vij kð Þ (42)

Once the change in positions has taken place, an update affects both Pbesti and
Gbesti vectors. At the iteration kþ 1ð Þ, these two vectors will be updated according
to the following two formulations:

Pbesti kþ 1ð Þ ¼
Pbesti kð Þ if f xi kð Þð Þ≥ f Pbesti kð Þð Þ

xi kð Þ else

�

(43)

and

Gbesti kþ 1ð Þ ¼ Argmin
i

Pbesti kþ 1ð Þ½ � (44)

The algorithm is executed as long as one of the three, or all at the same time, of
the following convergence criteria is verified:

• the maximum number of iterations defined has not been reached,

• the variation in particle speed is close to zero,

• the value of the objective is satisfactory, with respect to the following relation:

∣f gbestjk kð Þ
� �

� f gbestjk k� αð Þ
� �

∣ ≤ ε, with α∈ 1,N½ � (45)

The parameter ε represents a tolerance chosen, most often, of the order of 10�5

and N is a number of iterations chosen of the order of 10.

5.2 The proposed algorithm of particle swarm optimization

In this section, a summary of the proposed algorithm of the PSO neural network
controller is presented.

12

Deep Learning Applications

• Random initialization of the positions and velocity of the N particles in the
swarm,

• For k: 1..N Do,

• Repeat,

• For all particles i Do,

• Calculation of the control law ui kð Þ from the controller input vector xc kð Þ,

• Calculation of the outputs of the system yi kþ 1ð Þ,

• Evaluation of the positions of particles in the research space,

• If the current positions of particle i produce the best objective function in its
history Then,

• Pbesti eci ,

• If the objective function of particle i is the best overall objective function
Then,

• Gbesti eci ,

• End If,

• End If,

• End For,

• Moving of particles according to Eqs. (41) and (42),

• Evaluation of particle positions,

• Update Pbesti and Gbesti according to Eqs. (43) and (44),

• Until reaching the stop criterion,

• End of PSO.

In this section, we have proposed the PSO optimization steps of an indirect
neural network adaptive controller. The corresponding algorithm will be applied for
discrete SISO nonlinear systems.

6. Results and discussion

In this section, a time-varying nonlinear discrete systems is used which is
described by the input–output model in the following Equation [21].

y kþ 1ð Þ ¼
y kð Þy k� 1ð Þy k� 2ð Þu k� 1ð Þ y k� 2ð Þ � 1ð Þ þ u kð Þ

a0 kð Þ þ a1 kð Þy2 k� 1ð Þ þ a2 kð Þy2 k� 2ð Þ
(46)

13

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

where y kð Þ and u kð Þ are respectively the output and the input of the time-
varying nonlinear system at instant k; a0 kð Þ, a1 kð Þ and a2 kð Þ are given by

a0 kð Þ ¼ 1

a1 kð Þ ¼ 1þ 0:2 cos kð Þ

a2 kð Þ ¼ 1þ 0:2 sin kð Þ

8

>

<

>

:

(47)

The trajectory of a1 kð Þ and a2 kð Þ are given in the following Figure 2.
In this section, in order to examine the effectiveness of the proposed algorithm

of neural network controller and the PSO neural network controller different per-
formance criteria are used. Indeed, the mean squared tracking error (MSEec) and
the mean absolute tracking error (MAEec) are, respectively, given by respectively,
given by

MSEec ¼
1

N

X

N

k¼1

y kð Þ � r kð Þð Þ2 (48)

and

MAEec ¼
1

N

X

N

k¼1

y kð Þ � r kð Þð Þ (49)

where y kð Þ is the time-varying system output, r kð Þ is the desired value and the
used number of observations N is 100.

In this simulation, the desired value, r kð Þ, is given in the following

r kð Þ ¼ sin 2πk=25ð Þ; (50)

6.1 Simulation system using classical NN controller

In this section, we examine the effectiveness of the used classical neural network
controller in the adaptive indirect control system. Indeed, in offline phase, using a
reduced number of observations M ¼ 3ð Þ to find, either, the parameter initialization
of the neural network parameters (w1j, wji, v1j, vji).

In online phase, at instant kþ 1ð Þ, we use the input vector of the neural network

controller x1 ¼ xr kð Þ, xr k� 1ð Þ, xr k� 2ð Þ, xr k� 3ð Þ, xr k� 4ð Þ½ �T. The results of
simulation are given by Figures 3–5.

Figure 2.
a1 kð Þ and a2 kð Þ trajectories.

14

Deep Learning Applications

In this case, both neural network model and neural network controller consist of
single input, 1 hidden layer with 8 nodes, and a single output node, identically. The

used scaling coefficient is λ ¼ λc ¼ 1 and ε1 ¼ ε2 ¼ 10�2.

Figure 3.
The NN control system output and the desired values.

Figure 4.
The control law.

Figure 5.
The control error.

15

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

Using a multilayered perceptron architecture, three layers: one input layer,
one hidden layer and one output layer. The result of simulation are given by the
following figures.

6.2 Simulation system using PSO NN controller

The PSO parameters values are respectively the number of variables (m = 50),
the population size (pop = 10), the maximum of inertia weight 0.9, the minimum of
the inertia weight 0.4, the first acceleration factor (c1 = 2) and the second acceler-
ation factor (c2 = 2).

Using a multilayered perceptron architecture, three layers: one input layer, one
hidden layer and one output layer. The result of simulation are given by the follow-
ing figures.

Figure 6 presents the control system output and the desired values. In this case,
the neural network parameters of controller are optimized by PSO technique. A
concordance between the desired values and the control system output is noticed,
although the time-varying parameters.

However, Figures 7 and 8 present respectively the control law and the control
error. These figures reveal that the PSO NN controller has smaller errors than the
other controller.

Figure 6.
The PSO NN control system output and the desired values.

Figure 7.
The control law.

16

Deep Learning Applications

Table 1 presents the influence of the PSO technique in the control error.
From Table 1 we observe that, using the neural network controller, the PSO

neural network controller has the smallest performance criteria in the control error
ec kð Þ. These results are shown in Figures 6–8.

6.3 Effect of disturbances

An added noise v kð Þ is injected to the output of the time-varying nonlinear
system in order to test the effectiveness of the proposed optimization technique of
the neural network controller. To measure the correspondence between the system
output and the desired value, a Signal Noise Ratio SNRð Þ is taken from the following
equation:

SNR ¼

P

N

k¼0

y kð Þ � yð Þ

P

N

k¼0

v kð Þ � vð Þ

(51)

with v kð Þ is a noise of the measurement of symmetric terminal δ, v kð Þ∈ �δ, δ½ �, y
and v are an output average value and a noise average value respectively. In this
paper, the taken SNR is 5%.

Using the desired value r kð Þ, the sensitivity of the proposed neural network
controller is examined in Table 2.

Figure 8.
The control error.

NN controller PSO NN controller

η variable variable

MSEec 0:0349 3:7730e� 04

max ecð Þ 0:3291 0:1372

min ecð Þ �0:4907 �9:9998e� 04

MAEec 0:1305 0:0043

time (s) 323:829 100:926

Table 1.
The influence of the PSO technique in the control error.

17

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

From this table, we observe that, using the PSO as a method to optimize the
parameters of neural network controller, we have got the smallest performance
criteria in the control error.

According to the obtained simulation results, the lowest MSEec , MAEec and
max ecð Þ are obtained using a combination between the neural network controller
and the PSO technique, although the added disturbance in the system output and
the time-varying parameters thanks to the PSO technique.

7. Conclusion

In this chapter, a comparative study between the neural network controller and
neural network PSO controller is proposed and is applied with success in indirect
adaptive control. For instance, the lowest MSEec , MAEec , min ecð Þ and max ecð Þ are
obtained and it is proved that the PSO method is the best. The effectiveness of the
proposed algorithm is successfully applied to single-input single-output system,
with and without disturbances, and it proved its robustness to reject disturbances
and to accelerate the speed of the learning phase of the neural model and neural
controller.

Author details

Sabrine Slama, Ayachi Errachdi* and Mohamed Benrejeb
Tunis El Manar University, National Engineering School of Tunis, Department of
Electrical Engineering, Le Belvédère B.P. 37, Tunis, Tunisia

*Address all correspondence to: errachdi_ayachi@yahoo.fr

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

NN controller NN PSO controller

ηc variable variable

MSEec 0:0351 3:7728e� 04

MAEec 00:1247 0:0042

max ecð Þ 0:3123 0:1372

min ecð Þ 0:5000 �9:9999e� 04

time (s) 44:456972 337:728385

Table 2.
The influence of the PSO optimization in the control error.

18

Deep Learning Applications

References

[1] Slama S., Errachdi A. and
Benrejeb M., Adaptive PID controller
based on neural networks for MIMO
nonlinear systems, Journal of Theoretical
and Applied Information Technology,
97, no. 2, pp. 361–371, 2019.

[2] Errachdi A. and Benrejeb M.,
Performance comparison of neural
network training approaches in indirect
adaptive control, International Journal
of Control, Automation and Systems,
16, no. 3, pp. 1448–1458, 2018.

[3] Saurabh G., Karali P. and Surjya K.P.,
Particle swarm optimization of a neural
network model in a machining process,
Sadhana 39, Part 3, June 2014,
pp. 533–548. Indian Academy of
Sciences

[4] Zhou J., Duan Z., Li Y., Deng J. and
Yu D., PSO-based neural network
optimization and its utilization in a
boring machine. J. Material Process
Technol. 178, pp. 19–-23, 2006.

[5] Elbeltagi E., Hegazy T. and
Grierson D., Comparison among five
evolutionary-based optimization
algorithms. Advanced Eng. Informatics
19, pp. 43–-53, 2005.

[6] Feng H.M., Self-generation RBFNs
using evolutional PSO learning.
Neurocomputing 70, pp. 241–251, 2006.

[7] Karpat Y. and Ozel T., Hard turning
optimization using neural network
modelling and swarm intelligence.
Transactions of NAMRI/SME 33,
pp. 179–-186, 2005.

[8] Zhang, R., Tao, J., Lu, R. and Jin, Q.
Decoupled ARX and RBF neural
network modeling using PCA and GA
optimization for nonlinear distributed
parameter systems. IEEE Transactions
on Neural Networks and Learning
Systems, 29, no. 2, pp. 457–469, 2018.

[9] Stacey A., Jancic M. and Grundy I.,
Particle swarm optimization with
mutation. Proceedings of IEEE,
pp. 1425-1430, 2003.

[10] Zhao F., Ren Z., Yu D. and Yang Y.,
Application of an improved particle
swarm optimization algorithm for
neural network training. Proceedings of
IEEE International Conference on
Neural Networks and Brain, Beijing,
China, pp. 1693-–1698, 2005.

[11] Asokan P., Baskar N., Babu K.,
Prabhaharan G. and Saravanan R.,
Optimization of surface grinding
operations using particle swarm
optimization technique. J.
Manufacturing Sci. Eng. 127, pp. 885–
892, 2005.

[12]Haq A.N., Sivakumar K.,
Saravanan R. and Karthikeyan K.,
Particle swarm optimization (PSO)
algorithm for optimal machining
allocation of clutch assembly. Int. J.
Advance Manufacturing Technol. 27,
pp. 865–869, 2006.

[13]Gaitonde V.N. and Karnik S.R.,
Minimizing burr size in drilling using
artificial neural network (ANN)-particle
swarm optimization (PSO) approach. J.
Intelligent Manufacturing 23, pp. 1783–
1793, 2012.

[14]Navalertporn T. and Afzulpurkar N.V.,
Optimization of tile manufacturing
process using particle swarm
optimization. Swarm and Evolutionary
Computation 1, pp. 97–109, 2011.

[15] Samanta B. and Nataraj C., Use of
particle swarm optimization for
machinery fault detection. Eng. Appl.
Artificial Intelligence, 22, pp. 308–316,
2009.

[16]Malviya R. and Pratihar D.K.,
Tuning of neural networks using
particle swarm optimization to model

19

Tuning Artificial Neural Network Controller Using Particle Swarm Optimization Technique…
DOI: http://dx.doi.org/10.5772/intechopen.96424

MIG welding process. Swarm and
Evolutionary Computation 1,
pp. 223-235, 2011.

[17]Garro B.A. and Vazquez R.A.,
Designing Neural Networks Using
Particle Swarm Optimization, Research
Article, Computational Intelligence in
Neuroscience, Vol. 2015.

[18] Selvakumaran S., Parthasarathy S.,
Karthigaivel R. and Rajasekaran V.,
Optimal decentralized load frequency
control in a parallel ac-dc
interconnected power system through
hvdc link using pso algorithm, Energy
Procedia 14, pp. 1849–1854, 2012.

[19] Shaher M., Reyad E. and Iqbal M.B.

Tuning PID and PIλDδ controllers using
particle swarm optimization algorithm
via El-Khazali’s Approach, Proceedings
of the 45th International Conference on
Application of Mathematics in
Engineering and Economics (AMEE’19)
AIP Conf. Proc. 2172, 050003–1–
050003-8; https://doi.org/10.1063/
1.5133522 Published by AIP Publishing.
978–0–7354-1919–3/30.00

[20] Stimac G., Braut S. and Ziguli R,
Comparative analysis of PSO algorithms
for PID controller tuning, Chinese
Journal of Mechanical Engineering, 27,
No. 5, 2014.

[21]Narendra K.S. and Parthasarthy K.,
Identification and control of dynamical
systems using neural networks, IEEE
Trans. on Neural Networks, 1, 1, 4–27,
1990.

20

Deep Learning Applications

