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Abstract

Oral cavity is an ecologically complex environment and hosts a diverse  
microbial community. Most of these organisms are commensals, however, on occa-
sion, some have the potential to become pathogenic causing damage to the human 
host. Complex interactions between pathogenic bacteria, the microbiota, and the 
host can modify pathogen physiology and behavior. Most bacteria in the environ-
ment do not exist in free-living state but are found as complex matrix enclosed 
aggregates known as biofilms. There has been research interest in microbial biofilms 
because of their importance in industrial and biomedical settings. Bacteria respond 
to environmental cues to fine-tune the transition from planktonic growth to biofilm 
by directing gene expression changes favorable for sessile community establish-
ment. Meta-approaches have been used to identify complex microbial associations 
within human oral cavity leading to important insights. Comparative gene expres-
sion analysis using deep sequencing of RNA and metagenomics studies done under 
varying conditions have been successfully used in understanding and identifying 
possible triggers of pathogenicity and biofilm formation in oral commensals.

Keywords: oral microbiome, biofilms, metagenomics, metatranscriptomics, 
dysbiosis

1. Introduction

Human microbiome is a collection of distinct microbial communities, which 
colonize the human body, including the mucosal and skin environment. They 
include bacteria, archaea as well as fungi, viruses and protozoa. The total number 
of microbial cells present in human body are as abundant as the human cells and 
play an important role in human health and disease. It is estimated that at any point 
of time there are close to 1000 unique species of bacteria present on human the 
body [1]. The coding potential in terms of number and diversity of genes available 
from microbiome colonising human niches is also considerably higher than those 
available through human genome alone. Early studies were focussed on identify-
ing the composition of the microbiome across various niches to create a microbial 
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fingerprint. This was to understand if there is a core group of microbes, which 
humans share. However, improvement and accessibility of experimental techniques 
have enabled studies investigating and understanding variation of microbiome 
between different people and within a person over time.

In this chapter, we will explore human microbiome in general, including over-
view on role in health and disease, and techniques used for studying microbial 
content. We also present the current knowledge of oropharyngeal microbiome and 
sequencing studies, metatranscriptomics in particular linking them with various 
diseases.

2. Microbiome in health and disease

The variations in environmental and nutrient conditions present in different 
sites in the human anatomy lends themselves to promotion of different communi-
ties and hence unique biomes [2]. However, within a particular body site, different 
people may harbor different microbial content based on a variety of different 
factors [3].

Every individual has distinct microbiome which is the function of their immu-
nological interaction during early development, the dietary conditions, their life 
style and their current health state including use of any medication [4]. Dietary 
conditions have significant effect on both short-term and long -term stability of 
microbiome. The changes in gut microbiota has been extensively studied in rela-
tions to dietary changes [5]. Life style preference of an individual has also been 
shown to shape the composition of microbial content. Occupation, dwelling prefer-
ence, pet ownership and even exercise has shown to contribute to uniqueness of an 
individual’s microbiome. Use of medications, especially antibiotics has been shown 
to have profound effect in human gut microbiota during repeat administration 
[6]. Primary microbial colonization occurs during and shortly after birth due to 
exposure to maternal microbes followed by impact of immediate environment and 
diet [7]. This composition is highly dynamic in nature for the first three years of life 
becoming relatively stable in later years.

2.1 Microbiome in health

The human microbiota over its span of development has evolved a symbiotic 
association with the host providing beneficial functions. Colonization of vari-
ous regions of the human body by indigenous microbiota protects the host from 
harmful pathogens. The resident microbiota protects the host by competing 
with pathogenic microbes for growth and by forming a physical barrier. Release 
of antimicrobial substances have also been shown to stunt the growth of other 
microbes resulting in protection of the host [8]. Human microbiome also constantly 
interacts with the host to evolve, develop and maintain important processes. The 
initial colonization of neonates and children by microbes is responsible for evolu-
tion of immune system affecting inflammatory homeostasis [9]. Disruption of the 
normal colonization process such as caesarean delivery has shown to be a risk factor 
for allergic diseases. The absence of seeding of neonates during vaginal delivery by 
maternal flora has been shown to affect the presence of healthy flora and reduction 
in number of anti- inflammatory microbes such as Bacteriodetes [10].

The gut microbiota also aids in metabolism of xenobiotics and removal of toxic 
compounds such as pesticides, hydorcarbons etc. [11]. The urinary tract microbiota 
plays a role in detoxification of filtrates in bladder [12]. Plethora of metabolic genes 
available through the microbial genomic cache provide humans, specific and unique 
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metabolic pathways offering ways to increase energy and nutrient extraction by 
enhancing the catalog of food materials [8, 13]. The gene catalog available through 
gut microbiome alone is estimated to be over 100 times of the total genes present 
in entire humans [2]. The microorganisms in digestive tract are able to break down 
complex carbohydrates which are not digested by human enzymatic action [14]. 
Similarly, action of microbes such as Bifidobacterium spp results in production of 
Vitamin K, an important coenzyme for blood coagulation process.

2.2 Microbiome in disease

Microbiome plays an important role in the health of humans as mentioned 
above. However, disruption of the delicate balance of the indigenous species may 
result in disease condition. There have been several studies to understand the effect 
and causation of change in microbial content during diseased condition. Dysbiosis 
of human microbiota can lead to infections and progression of the infection along 
with treatment regimen used to modify the path can significantly affect the homeo-
stasis. Clostridium difficile overgrowth is a common cause of antibiotic related gut 
infection leading to diarrhea. An antibiotic treatment regimen can cause changes in 
the balance of gut microbiota through indiscriminate action on beneficial microbes. 
This dysbiosis leads to proliferation of opportunistic pathogen at the expense of 
beneficial bacteria such as butyrogenic Fermicutes [15].

Dysbiosis caused by alteration in composition of microbiome due to various con-
ditions may also triggers abnormal immune response contributing to autoimmune 
disease [10]. Inflammatory Bowel disease has been characterized by compromise 
of gastrointestinal epithelial barrier including damaged mucus layer and defective 
cell linkages [16–18]. Butyrate, a metabolite of dietary fiber metabolism by normal 
gut microbiota has been shown to improve epithelial barrier function [19]. Similar 
to effect of depletion of butyrogenic bacteria on Clostridium infection, depletion 
of Fermicutes in gut results in increase in pro-inflammatory cytokines and reduc-
tion of anti-inflammatory cytokines leading to autoimmune condition [20]. As 
mentioned earlier, the gut microbiome is able to metabolize complex carbohydrates, 
which the host is not capable of doing and hence increases energy yield from the 
food ingested. This suggests that microbial composition of the digestive tract may 
also be one the factors along with host physiology and lifestyle, contributing to the 
pathophysiology of obesity [13]. Studies on mice have shown variations in indige-
nous microbiota of lean mice versus obese mice with Firmicutes dominating in obese 
mice as compared to prevalence of Bacteroidetes in lean mice [13]. The composition 
of gut microbiota characterized by lower diversity and plasticity has also been asso-
ciated with Type 2 diabetes. Insulin resistance may be induced by species such as 
Prevotella copri and Bacteroides vulgatus by modulating the serum metabolome [21].

Role of microbiome in cardiovascular disease is also an active area of study. 
The metabolite trimethylamine N-Oxide (TMAO) which is a product of oxidation 
of Trimethylamine (TMA) affects cholesterol transportation and also indirectly 
promotes foam cell formation and hardening of arteries in animal models [22]. The 
gut microbiota produces TMA by metabolising l-carnitine, choline and phosphati-
dylcholine containing food articles. Conversely, some of the bacterial genera have 
also been shown to have protective effect against atherosclerosis as determined by 
reduction in plaque size and cholesterol deposition [23]. Cancer is another set of 
conditions that has seen association with microbiota but is yet to be fully defined. 
Metabolic processes available through the microbes have been regarded as one of 
the key of malignant transformation of human cells. The dysbiosis may be caused 
by a variety of factors including colonization by unwanted microbes as in the case 
of Helicobater pylori and its role in gastric cancer; environmental factors including 
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diet and antibiotics [24] and microbiomes response to immunosenescence due to 
aging or chronic autoimmune response leading to neoplastic transformation [25].

3. Techniques to study the human microbiome

Early studies on human microbiome were limited to identifying the composi-
tion of various niches due to limitations in techniques. Early methodologies were 
dependent on the ability of a researcher to grow and culture microorganism under 
laboratory condition. This technique has obvious drawback with respect to identi-
fication of unculturable microorganisms. Subsequently, PCR and DNA hybridiza-
tion based techniques provided impetus to study of microbiome. Improvement in 
sequencing techniques and particularly accessibility including reduction in cost 
has enhanced our ability to look into microbiome from various angles. The primary 
question, which has been fundamental to the whole scheme of things, is what 
are the constituents of a microbiome? What variations are seen within a person 
under different conditions or variations across people under similar condition? 
Metagenomic strategies, which are capable of identifying all the genes available 
in particular niches, determine the coding potential of the microbiome. However, 
all these techniques may not be able to answer the question of what the microbes 
in a habitat are doing? Metatranscriptomics approach utilizing RNA sequencing 
technology along with metabolomics and metaproteomics may be able to answer 
such questions. Each technique have set of advantages and pitfalls. Hence, use of 
any technique is dependent upon nature of questions researchers are attempting to 
address.

3.1 16S rRNA gene profile analysis

The 16 s rRNA gene encode for the small ribosome subunit RNA in microbes. 
Several characteristics of this 16 s rRNA gene has made it suitable for use as genetic 
marker for studying bacterial phylogeny and taxonomy. The gene is highly con-
served between different species of bacteria and archaea, which makes it a useful 
housekeeping genetic marker gene. The highly conserved region is used to create 
universal primers for isolation of amplicons for sequencing. Apart from highly con-
served regions, the 16S rRNA also has nine-hypervariable (named V1- V9) regions 
scattered across the gene. Sequencing of the amplicons and mapping of the hyper-
variable regions to a database of known 16SrRNA sequences allow for taxonomic 
identification of a microbe in a sample. The sequencing of 16sRNA gene has become 
the mainstay of identifying and quantifying bacteria present in a sample. However, 
the use of 16S rRNA gene sequencing does have certain limitations, which has to 
be taken into account. Some bacteria have multiple copies for the gene arranged as 
gene family or operons, which may introduce bias [26] with the analysis. Bias may 
also be introduced by PCR primer favoring specific group or selection of specific 
hypervariable region [27]. The reduction in cost of sequencing after introduction 
of NGS technologies and simplicity of use of 16S rRNA as genetic marker made a 
significant impact on studying microbiome. However, inability in identification of 
species or strain level resolution by use of 16S rRNA technique is a limiting factor in 
its wider use.

3.2 Metagenomic analysis

Metagenomic process involves isolation of total DNA from microbiome sample, 
which is then fragmented into smaller pieces. The adapters are ligated to 3′ and 
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5′ repaired ends of the DNA library followed by amplification and sequencing. 
One of the major problems in a human microbiome project is contamination of 
human DNA with the microbiome sample which can in some cases be upto 99% 
of total DNA [28]. Hence, for higher coverage, a large number of sequence reads 
are required for obtaining reasonable results pertaining to microbiome which in 
turn increases the cost. In contrast, 16S rRNA profiling requires little amount of 
DNA. Metagenomics approach allow us to understand the genetic potential avail-
able within the microbiome for various metabolic processes which is not possible 
with 16 s rRNA method. Metagenomic technique can be used in variety of different 
ways which are tremendously useful for identifying novel metabolic pathways, 
enzymatic functions etc. The tremendous genetic potential locked in uncultur-
able microbes can be teased out by metagenomics approached. The metagenomic 
gene sequence identified for specific gene of interest can be further cloned and 
expressed.

3.3 Metatranscriptomic analysis

A Metatranscriptomics experiment is similar to metagenomics in its approach, 
where the total RNA is isolated from a microbiome sample followed by fragmenta-
tion and cDNA synthesis. Again, the 3′ and 5′ ends of the DNA are repaired and 
ligated with adapter before sequencing. The biases introduced due to use of ampli-
fication step during cDNA synthesis may affect exact quantification sometime [29]. 
The sequence reads can be mapped to reference genome/gene or used to assemble 
the transcriptome de novo.

4. Oral cavity and microbial niches

The oral cavity has large number of surfaces and environment for development 
of distinct niches. The variable environmental conditions like changes in oxygen 
concentration, variability in nutrients availability, physical interventions liking 
brushing of teeth and presence of saliva affecting the pH ranges; all contribute to 
growth of organisms creating distinct niches. Studies done on different microbial 
communities in oral cavity have found consistent similarities in composition, 
which were clearly distinct from microbiomes found in other parts of human body. 
However, there are variability in proportions of the organisms present [30]. The 
plethora of physical surfaces available provides opportunity for development of 
distinct biofilm communities.

5. Biofilms in oral cavity

A surface associated community of microbial cells is termed as biofilm, the 
association being irreversible in nature. Monospecies biofilms are rarely found in 
natural conditions. Van Leeuwenhoek was the first to observe microorganisms on 
tooth surfaces by the use of his own microscope [31, 32] leading to revelation of 
existence of microbial cells as complex- structured interspecies communities in 
nature. In biofilm, the microbial cells are enclosed in an extracellular polymeric 
substances matrix (EPS) which is primarily composed of polysaccharides. This 
EPS accounts for 50–90% of dry biomass of biofilm [33, 34]. Biofilm-associated 
cells differ from their planktonic counterparts in extracellular polymeric substance 
(EPS) matrix formation, reduced growth rates, and the up- and down- regula-
tion of specific genes [35, 36]. Biofilm has a defined three dimensional structure 
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attached to a surface. The surface to which these cells adhere can be any solid 
surface exposed to aqueous environments, in human body it is especially on mucous 
membranes and other surfaces such as on indwelling catheters, ports, implants, 
artificial heart valves, endotracheal tubes and prosthetic joints [32, 37, 38].

One such dwelling of biofilm is the oral cavity of humans, identified as the sec-
ond most diverse and complex microbiome after colon. Oral cavity provides many 
different surfaces to the microbiota to attach to such as tooth enamel, and mucous 
membranes lining tongue, gum, hard-soft palate and cheek [39, 40]. The differ-
ent characteristic properties of these surfaces contribute to complex and diverse 
populations in oral cavity. Biofilm in the form of supragingival and subgingival 
plaque is the etiologic agent in dental caries and periodontal diseases [41–43]. The 
physical and chemical properties of EPS vary based on synthesizing organism and 
environment of growth.

5.1 Biofilm formation stages

Oral microbiota is the major causative agent of dental caries and periodontitis, 
two most prevalent diseases in developing and developed countries altogether. 
Oral biofilms have been commonly termed as “plaque”. Oral biofilms are dynamic 
in nature both spatially and temporally [44]. The formation of oral biofilm is a 
complex process occurring in stages: (a) reversible adhesion to the surface, (b) EPS 
production and irreversible adherence, (c) biofilm maturation, (d) biofilm disper-
sion and recolonization [45].

The initial step i.e., irreversible adhesion of bacterial cells to the substrate 
surface is the most crucial stage for biofilm formation. After the completion of 
first step of initial attachment bacterial life cycle can proceed to one of the two 
pathways: biofilm formation or planktonic phase, depending on environmental 
conditions [46, 47].

5.1.1 Reversible association

Pellicle formation is the first requirement for formation of oral biofilm. Pellicle 
formation occurs as soon as tooth surfaces are cleaned and exposed to moist oral 
cavity favouring attachment of microbiota [48]. Thin acquired pellicle predomi-
nantly comprises of saliva glycoproteins, such as proline-rich proteins, α-amylase, 
mucins, and agglutinin [49]. The predominant initial colonizers of teeth are 
Gram-positive facultative anaerobic cocci and rods, especially of Streptococcus and 
Actinomyces species [50]. Pellicle formation is followed by secretion of EPS and 
biofilm development.

5.1.2 EPS production and irreversible adhesion

Immediately after attachment of early colonizers to the pellicle, bacteria begins 
to secrete EPS laying the foundation for biofilm maturation [51]. Mechanism of 
secretion of EPS varies with Gram positive and Gram negative bacteria. Gram-
positive oral bacteria synthesizes EPS via glucosyltransferases gene. This family 
of Gtf gene uses sucrose as substrate to synthesize soluble and insoluble glucans. 
Though GtfB, GtfC, and GtfD, produced by Streptococcus mutans have been well 
characterized but structural confirmation of only GtfC is available, therefore, the 
mechanism of EPS secretion is not well understood [52–54]. Oral microbiota is rich 
in non-Gtf-synthesizing microbes too such as Lactobacillus casei, and Candida albi-
cans which do not produce glucans until and unless bound by S. mutans Gtfs [55].
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5.1.3 Biofilm maturation

EPS is the scaffold holding all the oral microbes together, where growth of 
bacteria takes place. After EPS formation, different oral bacteria come and adhere 
to already adhered pioneer microbes. Different species of bacteria coaggregate 
using unique mechanisms of recognizing polysaccharides or protein receptors 
present on the early colonizers by late colonizers [51, 56, 57]. With time this leads 
to fully structural and functional complex biofilm. Though bacteria coaggregate 
with each other in biofilm formation but this process is species specific. Previous 
studies have shown that S. mutans aggregates with Fusobacterium nucleatum but 
not with Porphyromonas gingivalis. This is because one bacterial cell has several 
receptors complementary to adhesions present on other bacterial cell and if two 
bacterial cells recognize the same receptor, the two cells would compete for the 
same binding site [58, 59]. The complex structural association of bacteria with dif-
ferent receptors recognizable by adhesions of different bacterial species is known 
as coaggregation bridges, one of the most crucial requirement for biofilm growth 
and maturation. In oral cavity F. nucleatum is one of the best known coaggrega-
tion bridge species [60]. The components of mature biofilm differ from the initial 
biofilm components.

5.1.4 Biofilm dispersion and recolonization

Dispersion and recolonization is the final stage of biofilm development. It is a 
complex process involving environmental signals, transduction pathways, effec-
tor molecules and their response [61]. Bacterial biofilm dispersal is divided into 
distinguishing phases: (i) detachment of cells, (ii) translocation of the cells to a 
new location, and (iii) cell adhesion to a substrate in the new location [62]. Biofilm 
dispersal mechanism can be divided into two broad categories: active and passive. 
The mechanism initiated by the bacteria themselves comes under active category 
whereas those that are the result of external forces like abrasion or human interven-
tion belong to passive dispersal [63]. During active dispersion, the bacteria itself 
initiates mechanisms in response to a trigger, mostly change in the environment of 
oral cavity, which is felt by the bacteria thus inducing the release of cells from the 
biofilm [64].

5.2 Components of oral biofilm

Most of the biofilm matrix comprises of water. The other components of biofilm 
are EPS matrix, microbes, DNA, RNA and proteins.

5.2.1 Exopolysaccharides (EPS)

Exopolysaccharides (EPS) are the major components of biofilm produced by the 
bacteria in the biofilm; in fact, they can be designated as the backbone of biofilms. 
Composition of EPS varies a lot. Exopolysaccharides synthesized by microbes are 
mostly polyanionic because of presence of uronic acids, ketal-linked pyruvate 
and inorganic residues, such as phosphate [65], although a few EPS such as of 
Staphylococcus might be polycationic and some are neutral [66]. Many bacterial 
EPS possess structural sequences of 1,3- or 1,4-β-linked hexose residues [67, 68], 
which provides rigidity to biofilm. The major EPS matrix components in oral 
biofilms are polysaccharides, particularly glucans and fructans produced by oral 
microbiota.



Applications of RNA-Seq in Biology and Medicine

8

5.2.2 Microorganism involved in oral biofilm formation

Streptococcus mutans, Streptococcus sanguis, Streptococcus oralis and Streptococcus 
gordonii, Streptococcus mitis, Streptococcus infantis, Streptococcus parasanguinis, 
Streptococcus cristatus and Streptococcus bovis are the major oral biofilm forming 
bacteria. Though Streptococcus is the dominant species in oral biofilm but Veillonella, 
Gemella, Prevotella, Niesseria, Actinomyces, Haemophilus, Propionibacterium, 
Capnocytophaga, Eikenella, and Rothia are also found. All these species fall under 
the category of early colonizers [45, 69]. Eubacterium, Treponema, Porphyromonas 
gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and 
Prevotella intermedia are among the late colonizers of oral biofilm. Microbial 
composition of oral biofilms varies with its stage; early colonizers give way to late 
colonizers. Among Streptococcus species, S. vestibularis makes 40% of the total 
biofilm microbes [70]. Streptococcus mutans aggregates with Candida albicans which 
in turn coaggregates with other Streptococcus species causing formation of multilay-
ered biofilm structure [71, 72].

5.2.3 Extracellular DNA (eDNA)

eDNA is another major constituent of oral biofilms. Since DNA is a very stable 
molecule, it survives several years. This DNA is called extracellular DNA (eDNA) 
[73]. Many studies have confirmed the presence of eDNA in biofilm matrix. One 
such evidence is electron microscopic images of dental plaques, which showed it 
to be rich in membrane vesicles a reservoir of eDNA [74]. Even though eDNA has 
been identified in many monospecies biofilm model but little to no knowledge 
is available about its role in mixed-species biofilms. Cell lysis is one of the major 
mechanism responsible for eDNA release in biofilm matrix [75]. This cell lysis 
could be either by antimicrobial agents or by bacteriocins. Secretions of vesicles 
and viral particles are another source of eDNA in biofilms [76]. eDNA performs 
some very important functions in biofilms such as adhesion in biofilm structure, 
protection against antimicrobial agents, genetic exchange in biofilm and nutri-
ent storage [77, 78]. Strong evidence supports adhesion nature of eDNA as seen 
in Enterococcus faecalis where eDNA enhances the adhesion of E. faecalis cells in 
periodontic infections [79]. Second function of eDNA is protection against antimi-
crobial agents.

5.3 Metatranscriptomics of oral biofilm assembly and maturation

The complexities of oral niche, which results in constant changes in environ-
mental conditions, has always interested researchers. The formation of oral biofilm 
has been studied on compositional level mainly attempting to identify the key 
players during health and disease. A significant study by Edlund et al. [80] showed 
the power of metatransciptomic approach by attempting to dissect the oral biofilm 
assembly and maturation process. The group created a simulated environment for 
growth of oral plaque biofilm by seeding culture with saliva samples from healthy 
individuals. Biofilm samples were collected for analysis at various times for pH and 
sequencing. In this way, the researchers were attempting understand the changes 
in expression of genes at the community level over time. They saw a drop in pH 
level from 5.5 to 4.7 at 6 to 9 hr. shift. Several members like Streptococcus parasan-
guinis, S. vestibularis, S. salivarius, Veillonell and Lactobacillus fermentum genome 
showed increased gene activity during shift to lower pH conditions. Granulicatella 
adiacens, G. elegans, L. salivarius and Streptococcus pneumonia showed significant 
downregulation in their gene activity. Shift in overall community functions were 
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detected during maturation process. Increase in gene expression of L and D lactate 
dehyrogenases were seem during shift to lower pH. L. fermentum, Veillonella sp. and 
Streptococcus sp like S. mitis were upregulating the lactate metabolism genes. Also, 
increase in expression of hydrogen peroxide detoxification genes were observed 
which were driven by Streptococcus and Veillonella sp. members.

6. Oral microbiome and diseases

6.1 Oral diseases

Dental caries has been shown to be caused by acidogenic and aciduric bacterial 
species such as Strepotococcus mutans and Lactobacillus sp [81]. Metatranscriptomic 
study done on active caries samples showed upto 400 metabolically active bacte-
rial species with members of genera Streptococcus and Veillonella dominating 
[82]. Community-wide expression profile of caries sample showed gene activity 
associated with oxidative stress, superoxide and peroxide detoxification [83]. 
Metatranscriptomic studies on periodontal disease samples showed high level 
of functional conservation even though there were variation in composition of 
microbes [84]. These studies suggested that instead of specific pathogens, some dis-
ease conditions have to be looked at from the perspective of community function. 
The studies have shown several metabolic processes related to flagellar motility, 
peptide transfer and iron acquisition overrepresented. Metatranscriptomic studies 
on the ‘red complex’ consisting of Porphyromonas gingivalis, Treponema denticola 
and Tanerella forsythia considered the primary periodontal pathogens showed high 
expression of metalloproteases, motility related genes, peptidases and iron metabo-
lism genes.

6.2 Non-oral diseases

Oral cavity is not an isolated niche and has connections to several parts of the 
body. This connection exposes other areas to oral microbiome and in case of dys-
biosis of the microbial composition, possible disease condition. Poor oral hygiene 
resulting in tooth loss and periodontal diseases has been shown to have a significant 
association with respiratory tract infections [85], cystic fibrosis [86] and Chronic 
Obstructive Pulmonary Disease (COPD) [87]. Displacement of benign residents 
like Prevotella spp. and Veillonella spp. by pathogens like Pseudomonas aeruginosa 
and Klebsiella pneumonia has been shown to be one of the factors linked to ICU stay 
associated respiratory tract infection [88, 89]. In case of Cystic Fibrosis, the oral 
cavity has been proposed to be a potential reservoir for Pseudomonad aeruginosa 
[86]. P. aeruginosa is one of the chronic colonizer associated with Cystic Fibrosis. 
Metabolites produced by oral microbes like 2, 3 butanedione gas possibly produced 
by Streptococcus spp. acts as substrate for phenazines production by P. aeruginosa in 
CF lung [90].

Infectious agents and chronic infections caused by them has been shown to 
be linked with atleast 13% of global cancer burden [91]. Periodontitis and result-
ing dysbiosis in oral microbiome has been linked to variety to cancer pathologies 
including but not limited to oral, esophageal, colorectal, gastric and pancreatic 
cancers [92]. Several hypotheses have been suggested to explain this association; 
production of metabolites which may act as carcinogen [93], increase in inflam-
matory immune response [94], and increase in cancer-linked virus burden [95]. 
NGS- based study have shown association of genera Lactobacillus and Rothia with 
colorectal cancers [96] Similarly, keystone pathogens like Porphyomonas gingivalis 
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and Aggregatibacter actinomycetemcomitans has been shown to be abundant in 
pancreatic cancer samples [97]. The systemic inflammation caused by periodontitis 
is also been linked to cardiovascular diseases [98] and diabetes [99] (Figure 1).

7. Conclusion

Improvements in experimental techniques have significantly enhanced the 
ability of researchers to expand the study of microbiome and understand its 
function in the context of human health. Current metagenomics studies of oral 
microbiome has given an opportunity to make an informed assumption regarding 
structure of oral microbiome and association with diseased conditions. However, 
functional level characterization of components of oral flora with respect to host 
interaction and disease condition during dysbiosis is still lacking. Maturation of 
transcriptomics, proteomics and metabolomics approaches when used in com-
bination provides an exciting opportunity for functional analysis of interaction 
between host and microbiome.
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Figure 1. 
A schematic representation of microbiome content of oropharyngeal cavity [100] and association under various 
diseased conditions [101].
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