
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

136,000 170M

TOP 1%154

5,500



1

Chapter

HSPs under Abiotic Stresses
Noor ul Haq and Samina N. Shakeel

Abstract

Different organisms respond to the altered environmental conditions by 
 different ways. Heat shock proteins’ (HSPs) production is one among the different 
defense mechanisms which defend the photosystem II and thylokoid membrane in 
plants. There are different types of HSPs based on their size, that is, high molecular 
weight (60–100 kDa) and low molecular weight heat shock proteins (15–30 kDa). 
Small HSPs are further classified based on their localization and role in different 
sub-cellular organelles. Cp-sHSPs are the chloroplast-specific small HSPs that pro-
tect the photosystem II and thylokoid membrane. A model to control the Cp-sHSPs 
in Chenopodium album has been put forward in this chapter. According to this 
model, Cp-sHSPs of Chenopodium album are created in cytoplasm and are moved 
toward chloroplast. The transit peptide is removed on reaching to the target sub-
cellular organelle, that is, chloroplast and the premature Cp-sHSPs are converted 
into mature ones which have multiple roles under different abiotic stress conditions.

Keywords: plants HSPs, abiotic stresses, HSPs model, Chenopodium album

1. Introduction

Organisms respond to the changed growth conditions through heat shock 
proteins’ (HSPs) production [1] and that is the way of survival for the cell which 
responds differentially [2]. Different environmental conditions including abiotic 
and biotic stress conditions influence the plants’ development and production [3]. 
Different stress conditions like heat, salt, and low water conditions may majorly 
influence the plants’ physiology and production [4–8], but plants response to the 
changed environmental conditions may vary depending upon duration, intensity, and 
combination of different environmental growth conditions [9]. Different processes 
in the plants including biochemistry, development, and physiology may affected by 
stress conditions and so the expression of different genes may be turned off or on in 
response to the changed environmental conditions, which may lead to the creation of 
different proteins and metabolites that protect the cells against such conditions [10].

2. Stress types

Stresses due to living and non-living things can affect the plants’ development 
and production. Different organisms like viruses, bacteria, and fungi may cause 
stress conditions for the plants [8] which may activate different defense pathways 
of the plants [9]. There are reports that abiotic stress conditions are responsible to 
make mostly changes in plant biochemistry and physiology [10]. So plant growth 
may negatively be affected by abiotic stress conditions also known as non-living 
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factors [6], and any kind of change in environmental conditions may lead the plants 
toward adaptation under altered growth conditions [11]. Below are the details of 
different abiotic stress conditions which may affect the plants.

2.1 Types of abiotic stresses and their effects on plants

2.1.1 High temperature or heat stress

Heat stress is the main factor among abiotic stress conditions that affects the 
plants yield [12] and so different factors in the plants like metabolite concentration, 
osmolytes, membrane fluidity, proteins structure, and nucleic acids are seriously 
changed by temperature [13]. Additionally, high-temperature stress affects the 
chloroplast photochemical activity [14]. Photosystem II is considered as the most 
sensitive part of thylokoid membrane [15] and heat stress conditions may influence 
the photosystem II (PS II) reaction center and the light harvesting complexes [16].

Plants adapt their system to the changed growth conditions through complex 
mechanisms [17]. Thus, different processes at cellular level are reprogrammed 
under high- and low-temperature growth conditions and many changes in tran-
scription may happen in different parts of the plants, that is, seedlings, roots, 
pollens, and leaves [18, 19]. Effect on plants may vary with intensity and duration of 
temperature [20]. One of the plants responses is the reactive oxygen species (ROS) 
production which is increased by low- and high-temperature stress conditions, 
while oxidative damage and cell death have also been reported as a result of high-
temperature stress conditions [21]. Photosynthesis inhibition has also been reported 
by researchers under high-temperature conditions [17], additional to the damage of 
the oxygen evolving complex (OEC) of photosystem II caused by heat stress [22].

Plants adapt to the high-temperature conditions through heat shock proteins 
(HSPs) production, which are found to be produced in all organisms from pro-
karyotes to eukaryotes and have role in cell protection under harsh conditions [2]. 
Establishment of defense mechanism under high-temperature growth conditions 
is necessary for cells survival which is not specifically occurred only under high 
temperature but it is also significant under different stress conditions [23].

2.1.2 Low temperature or cold stress

Low temperature represses the plants development without stopping the cell func-
tions and may cause problems to different processes at cellular level [3]. Temperature 
is the main factor to control the growth changes from vegetative till reproductive level 
[24]. Low temperature may increase the ROS production additional to the reduction of 
cellular respiration [25] as well as damages the cell membrane [26].

Low-temperature stress conditions may reduce photosystem I and this effect has 
been reported to be increased under low light conditions [27]. The same effects have 
also been observed by different researchers in different plants like winter rye and 
barley [28, 29].

Expression of different genes and proteins has been reported to be up- or down-
regulated by low-temperature stress conditions [30]. Researchers have reported the 
up-regulation of the defensive genes under cold stress [24]. For example, almost 
300 genes have been reported to get up-regulated under cold stress conditions, 
while 88 genes (27%) were down-regulated in Arabidopsis thaliana [31].

2.1.3 Metal stress

Development of the plants is badly affected by heavy metals [32] and roots 
are usually damaged by heavy metals which lead to build up different defensive 
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mechanisms for normal growth [33]. Membrane potential and permeability are 
changed by interactions of heavy metals with membrane components [32]. Plants 
take up the heavy metals as essential nutrients and are passed to the upper parts of 
the plants following the pathways of the essential elements transport [34].

Plants respond differentially to the heavy metal toxicity [35] and that is the reason 
that some plants do not show any phytotoxicity symptoms on heavy metals accu-
mulation [36]. But heavy metals restrict the plants growth and cause cell death due 
to interruption in different physiological and biochemical pathways [37]. Different 
essential ions are replaced by heavy metals, for example, Ni replaces Mg ion that 
results in the changed activity of ribulose-1,5-biphosphate carboxylated oxygenase 
[38]. Chlorophyll activity is altered [39], while heavy metals break the disulfide 
bridges of the proteins, which leads to the destabilization of proteins [37]. Besides the 
formerly mentioned adverse roles in plants, heavy metals interact with the hydroxyl 
and carboxyl groups of proteins and thus interrupt in the proteins functions [40].

Plants adopt different defense mechanisms while get exposure to heavy metals. 
These mechanisms include the synthesis of cystein-rich polypeptides phytochelatins 
and metallothioneins [32]. Researchers have also reported the up-regulation of 
HSP70 gene and chaperonin 60 family members under different heavy metals, that 
is, Cd and Ni [41, 42]. Additional to the former HSP families, chloroplast small heat 
shock proteins (Cp-sHSPs) are also reported to be up-regulated by heavy  metals [43].

2.1.4 Salt stress

Based on the response to salt stress, plants may be two types either glycophytes 
or halophytes. The former kind of plants has no tolerance to the saline environment, 
while the latter group plants covering are natively grown in saline environment 
[44]. Halophytes cover almost 1% of the world flora [45]. Salt stress adversely 
affects the plants growth and productivity by different ways; for example, sodium 
chloride salt can cause the ionic toxicity and osmotic stress to the plants [46]. 
Researchers have also reported the adverse effect of salt on growth and photosyn-
thesis of the plants [47] by lowering the intra-cellular CO2 availability [48] or by 
changed photosynthetic metabolism [49].

2.1.5 Drought stress

Crops yield and quality are adversely affected by drought conditions. Drought 
conditions may affect the macro- and micromolecules in a cell including minerals, 
lipids, proteins, hormones, carbohydrates, or even DNA or RNA [50]. The combina-
tion of drought with salt, high- or low-temperature stress conditions becomes more 
severe for the plants, which affects the plants’ growth, development, and signal 
transduction [51, 52]. Besides the abovementioned macro−/micromolecules, photo-
synthesis that needs water is adversely affected by environmental stress conditions 
[53, 54]. Additional to the above, drought conditions may affect the metabolism 
of the plants because catabolism is enhanced due to hydrolytic enzymatic activ-
ity while anabolism is decreased due to lowering synthase activity [52]. In short, 
drought stress conditions adversely affect the photosynthesis in the chloroplast by 
decreased nutrient uptake and ion transport [55, 56].

2.2 Effect of stress conditions on gene expression

Stress conditions may activate the defense mechanism of the plants and result the 
change in different gene expression. The expression of heat shock proteins has been 
reported to be changed due to heat stress [57]. Heat shock proteins function as chap-
erones and safeguard the heat sensitive organelles and intra-cellular processes [2]. 
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Proteins other than HSPs have also been reported to get produced and their expres-
sion is regulated differentially under heat stress conditions [58]. Besides the HSPs 
expression under heat stress conditions, these proteins have also been up- regulated 
under different stress conditions including heavy metal, cold, salt, drought, and 
oxidative stress conditions [43, 59–62].

3. Heat shock proteins (HSPs)

Heat shock response has been characterized in salivary glands of Drosophila [63]. 
Heat shock proteins have been studied in the result of transcription and translation 
in chromosomal puffs with active sites [64]. HSPs are produced in all organisms, 
that is, from bacteria to humans under changed environmental conditions [2] and 
have chaperone activity that protects the proteins from damage [65].

3.1 Role of heat shock proteins

Genes encoding HSPs respond to abiotic stress factors like high temperature, 
drought, salt, and low-temperature stress conditions [66]. HSPs having low expres-
sion under normal environmental conditions may have different function like chap-
erone function, prevention of proteins aggregation and folding, as well as to target 
the miss-folded proteins toward the specific pathways or for degradation [67]. 
Additional to the HSPs expression under abiotic stress conditions, these proteins 
have differential expression in different tissues and organelles. Taking all together, 
HSPs production is to protect the metabolic apparatus for adaptation under differ-
ent environmental conditions and survival [68].

3.2 Types of HSPs

HSPs are divided into two classes based on their molecular weight, that is, 
high molecular weight heat shock proteins (HSP100, HSP90, HSP70, HSP60, and 
HSP40) and low molecular weight heat shock proteins (sHSPs), the weight of which 
is ranging from 15 to 30 kDa [69].

3.2.1 High molecular weight heat shock proteins

High molecular weight heat shock proteins are further divided into different 
classes based on molecular weight, that is, HSP100, HSP90, HSP70, and HSP60, the 
details of which are as below.

3.2.1.1 HSP100

HSP100 (protein family), found in all organisms from prokaryotes to eukaryotes 
[70], possess two subunits and are reported primarily in prokaryotes, that is, bacteria: 
(1) large-subunit (ClpA) which is ATP-dependent unfoldase and (2) protease which 
is a small-subunit ClpP [71]. Nucleotide-binding domain 1 & 2 (NBD1 & NBD2), 
carboxyl domains, middle domain, and amino and are the five parts of HSP100 
proteins family members [72].

HSP100 genes have been reported to be up-regulated under heat stress condi-
tions while the same pattern of expression has not been observed [73] but earlier 
than these findings, researchers have reported the expression of a member of 
HSP100 family under abscisic acid (ABA), cold and salt stresses additional to 
the high-temperature stress conditions [74]. Differential expression of one 
gene or this family member has been suggested under different abiotic stress 



5

HSPs under Abiotic Stresses
DOI: http://dx.doi.org/10.5772/intechopen.93787

conditions [75]. HSP100 family members have been reported with up-regulation 
under heat stress conditions in different plants like wheat and tobacco [75], rice 
[74], Arabidopsis thaliana [76], soybean [77] and maize [78]. Besides the above, 
HSP100 family members have also been reported with differential expression at 
different developmental stages [79] which may be the reason that HSP100 family 
members have been reported with high concentration in mature seeds of different 
plants [80].

3.2.1.2 HSP90

All organisms from prokaryotes to eukaryotes have HSP90 [81] and are involved 
to activate the component proteins involved in proteins transportation, assembling, 
folding and signal transduction [82]. Seven different isoforms of HSP90 have been 
identified in Arabidopsis and are classified based on sub-cellular localization, that 
is, three have been reported to be localized in endoplasmic reticulum, chloroplast, 
and mitochondria while the remaining four are localized in cytosole [83]. Three 
among the four cytosolic isoforms are expressed constitutively while fourth one is 
expressed under heat stress conditions [84].

3.2.1.3 HSP70

HSP70 are expressed under normal conditions in plants so these are also named 
as heat shock cognates [85]. HSP70 are having important role under different 
environmental conditions including heat stress [86, 87]. This class of proteins may 
function to stabilize the unstable proteins [82] additional to the proteins transport 
among sub-cellular compartments and proteins folding [88].

HSP70 family proteins may be classified into four classes based on the sub-
cellular localization and thus are localized in four different compartments (cytosol, 
mitochondria, plastids, and endoplasmic reticulum) of the cell [89].

3.2.1.4 HSP60

HSP60 family members encoded by nuclear DNA [90] are present in prokary-
otes to eukaryotes and have function in cells under stress and normal conditions 
[91]. Bacterial HSP60 plays role in proteins assembling to form complexes (oligo-
meric) and movement through cell membrane [91] but the same family proteins are 
involved in organelle (chloroplast and mitochondria)-specific proteins folding [91].

3.2.2 Small heat shock proteins (sHSPs)

Plants’ small heat shock proteins having molecular weight from 15 to 30 kDa are 
encoded by nuclear DNA and are classified into further six classes based on sub-
cellular localization [92]. Researchers have classified the abovementioned proteins 
as per the localization in different cellular organelles, that is, first two are localized 
in cytosol and the next three classes (III, IV, and V) are localized in endoplasmic 
reticulum, mitochondria, and plastids, respectively [93]. Additional to the above, 
class VI has been reported to be localized in endoplasmic reticulum [94].

C-terminal region, N-terminal region, and α-crystallin domain are the three 
main parts of small heat shock proteins. Small HSPs are characterized by 100 amino 
acids sequence having α-crystalline domain [95] as well as N-terminal region on 
one side and C-terminal region on the other side of the formerly mentioned domain 
[96]. The abovementioned three domains are the conserved regions of small heat 
shock proteins [97].
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Small HSPs expression has been reported in different plants, for example, 
Chenopodium album [43, 62], carrot [98], sugarcane [99], Agave [100], Arabidopsis 
[101], cotton [102], tomato [18], maize [103], tobacco [104], etc. The abovemen-
tioned studies of sHSPs in different plants show the importance of this class of HSPs 
in adaptation under different environmental conditions [92].

3.2.3 Chloroplast small heat shock proteins (Cp-sHSPs) and their role

Cp-sHSPs are produced in cytoplasm followed by its import toward chloroplast 
[105]. As the name shows, these kinds of proteins are located in chloroplast and 
have consensus-III or methionine rich region at the N-terminal region additional to 
the other sHSPs-specific regions [106].

These proteins protect photosynthesis of the plants under heat and oxidative 
stress conditions [107]. There are different mechanisms to protect photosynthesis, 
for example, chloroplast membrane stabilization or avoiding everlasting proteins 
aggregation [108] but the role of Cp-sHSPs is very important in this case [109]. 
Different researchers have shown the relation of sHSPs with the adaptation of the 
plants under environmental stress conditions [43, 60–62, 109, 110].

It has been established in vitro by researchers that these chloroplast-specific pro-
teins may protect photosynthetic electron transport under high-temperature stress 
conditions [59]. Cp-sHSPs associate with photosystem II (PS II) through oxygen-
evolving complex (OEC) proteins under high-temperature conditions. It has been 
confirmed by researchers that these proteins protect PS II from inactivation under 
heat stress conditions by the protection of oxygen evolution and OEC proteins but 
have no capability to repair inactivated PS II [107].

4. HSP gene expression and promoters

Promoters regulate gene expression quantitatively and qualitatively [111]. There 
are three types of promoters that regulate the gene expression, that is, inducible, 
spatiotemporal, and constitutive promoters. Constitutive promoters promote the 
gene expression throughout the tissues irrespective to the environmental and devel-
opmental conditions, while spatiotemporal promoters direct the target gene expres-
sion in specific tissues, but inducible promoters are independent of the endogenous 
factors but dependent upon the external stimuli and environmental conditions [112]. 
Almost all kinds of promoters have the same core sequence with TATA-box, initiator, 
and the TF binding-specific cis-acting motifs specific to the target genes [113].

There are very less reports about the regulation of organelle-localized sHSPs 
under specific stress conditions or even under combination of stresses though 
it has been known that these genes are mainly regulated at transcriptional level. 
Researchers have reported the use of soybean promoter (GmHSP17.3B) to induce the 
sHSPs expression in Physcomitrella patens [114]. Additional to the above, researchers 
have also reported the rice promoter (Oshsp16.9A) to induce the expression of sHSPs 
under high-temperature stress conditions [115]. Small heat shock proteins have also 
been reported to get expressed under different abiotic stress conditions additional to 
the sHSPs expression at different developmental stages [43, 61, 62, 110, 116].

Heat shock transcription factors (HSFs) and heat shock elements (HSEs) may 
control the HSPs expression in the result of complex network of interaction [117]. 
HSFs (more than 20 in number) [118] may control the heat shock response both in 
vitro and in vivo [119]. Thermotolerance is increased in the result of higher expres-
sion of HSPs that is resulted by binding the HSFs to HSEs [120, 121]. Differential 
expression of HSPs is resulted by the variations in HSEs of HSPs. These HSEs have 
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difference in the location and arrangements of its basic units (nGAAn), for exam-
ple, AtHsp90–1 gene promoter has heat shock element 1 (HSE1) (tGAAgcTTCtg-
GAAt), heat shock element 2 (HSE2) (agTCtcGAAacGAAaaGAActTTCtgGAAt), 
and heat shock element 3 (HSE3) (gGAAgaaTCcaGAAt) [122]. Additional to the 
above elements, other motifs to regulate HSPs (gap-type 1, gap-type 2, and gap-type 
3 with the sequences nTTCnnGAAn[5bp]nGAAn, nTTCn[1bp]nGAAn[5bp]nGAAn 
and nTTCn[2bp]nGAAn[5bp]nGAAn respectively) have also been reported. 
Researchers have also reported TTC-rich type regulatory elements with 2–4 units 
of nTTCn with 0–8 bp gap {e.g., TTC-rich 1 (nTTCn[1bp]nTTCn[6bp]nTTCn) 
and 3 (nTTCnnTTCn[8bp]nTTCn[1bp]nTTCn)} that have binding capability with 
HsfA1a of Arabidopsis. But some TTC-rich regions are also present with no binding 
potential with HsfA1a, for example, TTC-rich 2 (nTTCn[5bp]nTTCn[4bp]nTTCn) 
and TTC-rich 4 (nTTCn[3bp]nTTCn) [119]. Besides the above, other cis-regulatory 
elements are also present in HSPs promoter to regulate their expression under 
different growth conditions, for example, stress response elements (STREs), metal 
response elements (MREs), and CAAT boxes C/EBP [123–125]. Metalothionein 
gene of animals and plants has also been reported to get activated by heavy metal 
stress conditions because of the presence of MRE in promoter region of this gene 
[126–128]. Similarly, another stress-related element, that is, STRE (AGGGG) is also 
regulated by different abiotic stress conditions in yeast [129].

5.  Model to express the Cp-sHSPs under different environmental 
conditions

There is no model put forward by researchers to control the expression of 
chloroplast-specific small heat shock proteins (Cp-sHSPs), but a model (Figure 1) 
to control the formerly mentioned genes has been proposed by Haq et al. [62]. 
According to this model, the presence of different cis-regulatory elements in 
Cp-sHSPs promoter shows the role of Cp-sHSPs under different abiotic stress 

Figure 1. 
Proposed model of expression and role of Cp-sHSPs [65].
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conditions, that is, salt, drought, cold, metal, and high-temperature stress condi-
tions. Cp-sHSPs in Chenopodium album have been shown to protect thylakoid 
membranes and photosystem II under different abiotic stress conditions. Different 
abiotic stress conditions, that is, heat, cold, heavy metal, drought, and salt stress 
conditions may regulate the single Cp-sHSP transcript in C. album which produces 
the precursor proteins that have transit peptide which directs that toward chlo-
roplast. The transit peptide is detached from the proteins while reaching toward 
chloroplast in the result of which these proteins are matured that have the function 
in chloroplast. As per this proposed model, differential regulation of the same 
Cp-sHSP family member in C. album makes it able to play multiple roles under dif-
ferent abiotic stress conditions, that is, salt, drought, heavy metal, cold, and heat 
stress conditions [62].

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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