
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

136,000 170M

TOP 1%154

5,500

Chapter

Spread Option Pricing on
Single-Core and Parallel
Computing Architectures
Shiam Kannan and Mesias Alfeus

Abstract

This paper introduces parallel computation for spread options using two-
dimensional Fourier transform. Spread options are multi-asset options whose
payoffs depend on the difference of two underlying financial securities. Pricing
these securities, however, cannot be done using closed-form methods; as such, we
propose an algorithm which employs the fast Fourier Transform (FFT) method to
numerically solve spread option prices in a reasonable amount of short time while
preserving the pricing accuracy. Our results indicate a significant increase in
computational performance when the algorithm is performed on multiple CPU
cores and GPU. Moreover, the literature on spread option pricing using FFT
methods documents that the pricing accuracy increases with FFT grid size while the
computational speed has opposite effect. By using the multi-core/GPU implemen-
tation, the trade-off between pricing accuracy and speed is taken into account
effectively.

Keywords: spread option, single core, parallel computing

1. Introduction

Spread options have widespread uses across many industries, remarkably in the
seasonal commodity market futures. One notable example is the crack spread, which
is the pricing difference between a barrel of crude oil and the petroleum products
refined from it. Traditionally, crack spreads involve the purchase of oil futures and
the simultaneous sale of futures of the refined product, whether it be gasoline,
heating oil, or other similar products. Refiners seek a positive spread between the
prices of crude oil and refined products, meaning that the price of the input (oil in
this case) is lower than the price of the output (gasoline, kerosene, etc.).

Beyond the oil industry, spread options are utilized by suppliers in industries as
disparate as the soybean and electricity markets. Soybean spread options are known
as crush spreads, and electricity spread options are known as spark spreads. Similar
to crack spreads, both these options seek to maximize the spread between input
costs and output prices for suppliers to maximize profit.

The use of spread options across such disparate fields is but a testament to their
widespread use. Considering the popularity of spread options, it thus prompts the
needs of accurate and fast pricing of price of these options. This paper dwells on the
discussion of fast algorithms for these options.

1

As mentioned previously, pricing spread options tends to be something that
cannot be easily performed using traditional closed-form solutions. Therefore, we
explore the utilization of the fast Fourier transform method to price these securities.
Specifically, we perform the FFT on the spread options payoff, assuming knowledge
of the model joint characteristic function, which we represent as a pointwise multi-
plication of the characteristic function and the complex gamma function in the
Fourier domain.

Regarding our implementation, we adapt the parallel computing Toolbox in
MATLAB to take advantage of the multi-core capabilities of GPU processing, to
substantially improve the performance and computational efficiency of the algorithm
for spread options. This methodology may serve a great deal especially in model
calibration and risk management approach. For measuring performance, we only
time the execution of the inverse Fast Fourier Transform, as the prior steps are
merely initialization of the necessary arrays. For measuring accuracy, we compute the
Euclidean norms of each of the resulting option price arrays from each implementa-
tion (single-core and GPU), and find the percent error between the norms as follows:

GPU norm� single core norm

single core norm
� 100 (1)

The main contribution of this paper is the use of parallel computation for the
spread option value using two-dimensional Fourier transform. Our implementation
is developed both for single-core processors, as well as for parallel processing on
multi-core/GPU systems. For both execution methods, we have implemented our
algorithm using MATLAB built-in functions to produce a version of the algorithm
compatible for multi-core systems. To ascertain the impact of the different envi-
ronments as well as the different methods of execution on the computational effi-
ciency of the algorithm, we record the times of execution for different values of FFT
grid size N, which is the number of grid points of discretization of the characteristic
function along the two asset dimensions, for both the classical single-core imple-
mentation and the multi-core/GPU implementation. This approach completely
eliminates the trade off between computational accuracy and speed, that is, we
price spread option accurately and in a fastest possible way.

2. Model description

2.1 Spread option valuation

We fix the trading time horizon T and consider a filtered probability space

Ω,F ,P, F tð Þt<T <T

� �

defined in the usual way.
The goal is to compute the value of an European spread option between stock

price processes S1 ¼ S1 tð Þf g0≤ t≤T and S2 ¼ S2 tð Þf g0≤ t≤T with maturity time T and

exercise price K.
At expiration time T, the payoff is given by

ST S1, S2,Kð Þ ¼ max S1 Tð Þ � S2 Tð Þ � K, 0f g, (2)

and under a risk-neutral conditional measure1 Q its value at time t is given by

1 3 Specifically: Under the risk–neutral measure associated with taking the continuously compounded

savings account as the numeraire, and (for expositional simplicity) assuming a constant interest rate r.

2

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

St S1, S2,Kð Þ ¼ e�r T�tð ÞEQ S1 Tð Þ � S2 Tð Þ � Kð ÞþjF t

� �

: (3)

Under normality assumption, Eq. (3) can be analytically approximated as done
in [1]. However, a departure from normality assumption ushers into numerical
computational difficulties. In option pricing literature of finance, Fourier
transform-based method is usually the best candidate to approximate the solution
for Eq. (3), in this case whenever the joint characteristic function of the asset price
processes, S1 and S2 are available. For spread options pricing valuation methodology
using two-dimensional fast Fourier transform (FFT) techniques was coined in
[2, 3]. We cite the important formula from [3] that gives the price for spread option

St S1, S2,Kð Þ ¼ e�r T�tð ÞEQ S1 Tð Þ � S2 Tð Þ � Kð ÞþjF t

� �

¼ 1

2πð Þ2
e�rT

ð ð

Rþiϵ
eiuX

0
0Φ u,Tð ÞP̂ uð Þd2u

(4)

P̂ uð Þ ¼ Γ i u1 þ u2ð Þ � 1ð ÞΓ �iu2ð Þ
Γ iu1 þ 1ð Þ (5)

Γ zð Þ ¼
ð

∞

0
e�ttz�1dt, (6)

where X0 ¼ log S, Φ u,Tð Þ ¼ E eiu X0
T�X0

0ð Þ
h i

, is the joint characteristic function of

the log return.
Fast and accurate pricing is often the most desirable feature of the model. In [4],

the authors consider spread options pricing in C++ using fast Fourier transform in
the west (FFTW). They observed the trade off between fast computation and
numerical accuracy; pricing accuracy is monotonic in the number of FFT grid size
used in the price computation. However, using a large number of FFT grid size slow
down the speed of price computation.

2.2 Model characteristic function

Fast Fourier transform (FFT) method is generically applicable in finance
because it only requires the specification of the characteristic function of the ran-
dom variable. In terms of spread options, one just need a characteristic function of
the joint distribution of the financial variables in question. Here, we employ two
characteristic functions: one based on two-dimensional normal distribution and the
other one based on two-dimensional normal inverse Gaussian (NIG) distribution.

2.2.1 Two-dimensional geometric Brownian motion (GBM)

The characteristic function for a spread option comprised of two assets, each of
which is modeled as a correlated GBM, is given by

ΦGBM u;Tð Þ ¼ exp iu rTe� σ2T

2

� �0
� uΣGBMu

0T

2

 !

(7)

where e ¼ 1, 1½ �, ΣGBM ¼ σ21 σ1σ2ρ

σ1σ2ρ σ22

 !

, and σ2 ¼ diag ΣGBMð Þ, i ¼
ffiffiffiffiffiffi

�1
p

, .

r, σi : i ¼ 1, 2 denote the risk-free rate, volatilities, respectively, and ρ is the

3

Spread Option Pricing on Single-Core and Parallel Computing Architectures
DOI: http://dx.doi.org/10.5772/intechopen.93430

correlation parameter between two asset prices processes S1 and S2. Here, ΣGBM is
the covariance matrix.

2.2.2 Two-dimensional normal inverse Gaussian (NIG) Levy process

Let S denote a two-dimension NIG random variable. The characteristic function
of S ¼ S1, S2ð Þ is given by

ΦNIG u;Tð Þ ¼ exp iu0μT þ δT
ffi

α2 � βΔβ0
p

�
ffi

α2 � β þ iuð ÞΔ β þ iuð Þ0
q

	
� �

, (8)

where α, δ∈Rþ, β, μ∈R2, and Δ∈R2�2 is a symmetric, positive-definite matrix.
Moreover, the structural matrix Δ is assumed to have determinant Det Δð Þ ¼ 1.

The covariance matrix corresponding to the two-dimensional NIG-distributed
random variable S is

ΣNIG ¼ δ α2 � βΔβ0
� ��1

2 Δþ α2 � βΔβ0
� ��1

Δββ0Δ
� �

(9)

2.3 FFT algorithm

The FFT algorithm for spread option pricing along the line of [3] can be
described as follows

3. Numerical results

3.1 Implementation outlook

As mentioned earlier, two versions of the algorithm were programmed in
MATLAB, namely a single-core variant and a multi-core GPU variant. In MATLAB,
the Parallel Processing Toolbox was used to exploit multi-core GPU capabilities to
run the algorithm. Among its capabilities is the ability to run for loops and perform
array operations in parallel, both on multi-core CPUs as well as GPUs.

As in the Algorithm 1 given above, the for loop in lines 3–6 was run in parallel,
across six CPU cores, employing the parfor directive available in the MATLAB
Parallel Processing Toolbox. We also sought to run computationally heavy functions
on the GPU we had available, to improve the efficiency of our algorithm beyond
what would be possible on a multi-core CPU. In that regard, we executed the

4

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

inverse FFT, as described in line 7, on the GPU. We accomplished this by copying
our H and A arrays onto the GPU, such that any further processing of those arrays
would only occur on the GPU. To perform this operation, we utilized the MATLAB
inbuilt function gpuArray() and copied the two aforementioned arrays to the GPU
after the for loop. To transfer the GPU results (following execution of the inverse
FFT) back to the local workspace, we used the MATLAB function gather().

Table 1 shows the market parameters, and these inputs are taken from [5] where
d1 and d2 represent the dividend rate for S1 and S2, respectively.

The computer used to produce the following results was an ASUS ROG Strix Scar
II GL704GW, with an Intel Core i7-8750H processor clocked at 2.20 Hz and compris-
ing of 6 cores, 16GB RAM, and an NVIDIA GeForce RTX 2070 GPU with 8GB
memory, runningWindows 10. The computational times of the algorithm are tabu-
lated inTable 2 and Figure 1. In a single run, we compute the price of 10 options, that
is, NO ¼ 10. The pricing accuracy is gauged using the root mean square error (rmse):

rmse ¼
X

NO

j¼1

P
j
FFT � P

j
Monte

P
j
Monte

 !2

, (10)

where PMonte represents the benchmark price computed using Monte Carlo
method with 1000000 simulations and 1000 time step and PFFT is the price from
two-dimensional FFT.

S1 S2 r T d1 d2

100 96 0.1 1.0 0.05 0.05

Table 1.
Market pricing parameters.

Grid points: 2N Pricing accuracy Single core (s) GPU parallel (s) GPU speed factor

(a) 2d-GBM model: σ1 ¼ 0:2, σ2 ¼ 0:1, ρ ¼ 0:5

8 1.10E-04 2.671126 0.213765 12.49561902

9 4.29E-05 10.155822 0.254708 39.87241076

10 1.97E-05 39.884087 0.650358 61.32635718

11 1.06E-05 157.833762 2.422815 65.14478489

12 6.19E-06 317.858516 9.474695 33.54815284

13 3.80E-06 1316.938937 38.519949 34.18849119

(b) 2d-NIG model: μ1 ¼ 0, μ2 ¼ 0,α ¼ 6:20, δ ¼ 0:150 β1 ¼ �3:80, β2 ¼ �2:50, ρ ¼ 0, μ1 ¼ 0, μ2 ¼ 0

and Δ ¼ I

8 1.20E-04 2.528521 0.21573 11.72087536157

9 5.21E-05 9.768831 0.31099 31.41244621944

10 3.00E-05 39.372496 1.03477 38.04969824066

11 2.12E-05 162.069306 4.57217 35.44691939427

12 1.72E-05 651.850506 19.92393 32.71695934733

13 1.50E-05 2592.307476 83.77870 30.94232156861

Table 2.
Computational accuracy and processing times (a) 2d-GBM, (b) 2d-NIG.

5

Spread Option Pricing on Single-Core and Parallel Computing Architectures
DOI: http://dx.doi.org/10.5772/intechopen.93430

From Table 2, we can see that the optimal values of N (in terms of computation
efficiency) are in the middle of the tested range, 9 and 10 for both the 2d-GBM and
2d-NIG models. The decline in performance for larger values of N is due to the
increased memory requirements. When compared to 2d-GBM, 2d-NIG seems to
have less of an increase in performance when executed on GPU, which could be
because it is more computationally heavy (such as calculating the characteristic
function ΦNIG u;Tð Þ, which involves two square root and exponential calculations,
as opposed to simply one in the GBM model).

4. Conclusion

In this work, we built on the literature on fast and accurate pricing of spread
options based on two-dimensional FFT method using parallel computation. We
examined the effectiveness of this approach by comparing the computational times
of CPU and GPU implementations of the FFT Spread Option Pricing Algorithm in
MATLAB. We have taken benchmarks prices from Monte Carlo simulations with
1000000 paths and 100 discretization time steps. Our results decisively conclude
that the execution of the algorithm on a GPU significantly improves computational
performance, decreasing the time taken to run by a factor of up to almost 60x.
Considering how common spread options are in the financial market, a faster way
to price these securities means increased efficiency in transactions involving spread
options, and the FFT algorithm implemented for this project also vastly improves

Figure 1.
Numerical results for spread option pricing.

6

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

the accuracy of spread option pricing. This approach is very useful to accurate
calibration of spread options which is recognized to be a challenging exercise.

As an extension to this work, one could develop a 3-asset spread option pricing
algorithm using the 3D Fast Fourier Transform Algorithm. Such a scheme, while
computationally heavy, could be rendered more efficient by harnessing the power
of GPUs through the tools available in MATLAB.

Author details

Shiam Kannan1 and Mesias Alfeus2,3*

1 Ridge High School, NJ, USA

2 University of Wollongong, Wollongong, Australia

3 University of Stellenbosch, South Africa

*Address all correspondence to: malfeus@uow.edu.au; mesias@sun.ac.za

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

7

Spread Option Pricing on Single-Core and Parallel Computing Architectures
DOI: http://dx.doi.org/10.5772/intechopen.93430

References

[1] Kirkpatrick S, Gelatt C, Vecchi M.
Optiminization by simulated annealing.
Science. 1983;1(23):671-680

[2]Dempster M, Hong S. Spread option
valuation and the fast Fourier
transform. In: Mathematical Finance-
Bachelier Congress. Vol. 2000. 2002.
pp. 203-220

[3]Hurd T, Zhou Z. A Fourier transform
method for spread option pricing. SIAM
Journal on Financial Mathematics. 2010;
1:142-157

[4] Alfeus M, Schlögl E. On spread
option pricing using two-dimensional
Fourier transform. International Journal
of Theoretical and Applied Finance.
2019;22(5)

[5]Hurd T, Zhou Z. A Fourier transform
method for spread option pricing. SIAM
Journal on Financial Mathematics. 2010;
1(1):142-157

8

Real Perspective of Fourier Transforms and Current Developments in Superconductivity

