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Abstract: Statistical analysis of multinomial data in complex datasets often requires estimation of
the multivariate normal (MVN) distribution for models in which the dimensionality can easily reach
10–1000 and higher. Few algorithms for estimating the MVN distribution can offer robust and efficient
performance over such a range of dimensions. We report a simulation-based comparison of two
algorithms for the MVN that are widely used in statistical genetic applications. The venerable Mendell-
Elston approximation is fast but execution time increases rapidly with the number of dimensions,
estimates are generally biased, and an error bound is lacking. The correlation between variables
significantly affects absolute error but not overall execution time. The Monte Carlo-based approach
described by Genz returns unbiased and error-bounded estimates, but execution time is more
sensitive to the correlation between variables. For ultra-high-dimensional problems, however, the
Genz algorithm exhibits better scale characteristics and greater time-weighted efficiency of estimation.

Keywords: Genz algorithm; Mendell-Elston algorithm; multivariate normal distribution; Monte
Carlo integration

1. Introduction

In applied multivariate statistical analysis one is frequently faced with the problem
of estimating the multivariate normal (MVN) distribution (or, equivalently, integrating the
MVN density) not only for a range of correlation or covariance structures, but also for a
number of dimensions (i.e., variables) that can span several orders of magnitude. In appli-
cations for which only one or a few instances of the distribution, and of low dimensionality
(n <∼ 10), must be estimated, conventional numerical methods based on, e.g., Newton-Cotes
formulæ, Gaussian quadrature and orthogonal polynomials, or tetrachoric series, may offer
satisfactory combinations of computational speed and estimation precision.

Increasingly, however, statistical analysis of large datasets requires many evaluations
of very high-dimensional MVN distributions—often as an incidental part of some larger
analysis—and places severe demands on the requisite speed and accuracy of numerical
methods. We confront the need to estimate the high-dimensional MVN integral in statistical
genetics, and particularly in genetic analyses of extended pedigrees (i.e., large, multi-
generational collections of related individuals). A typical exercise is variance component
analysis of a discrete trait (e.g., a qualitative or categorical measurement of some disease or
other condition of interest) under a liability threshold model [1–3]. Maximum-likelihood
estimation of the model parameters in such an application can easily require tens or
hundreds of evaluations of the MVN distribution for which n≈ 100–1000 or greater [4–7],
and situations in which n≈ 10,000 are not unrealistic.

In such problems the dimensionality of the model distribution is determined by the
product of the total number of individuals in the pedigree(s) to be analyzed and the number
of discrete phenotypes jointly analyzed [1,8]. For univariate traits studied in small pedi-
grees, such as sibships (sets of individuals born to the same parents) and nuclear families
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(sibships and their parents), the dimensionality is typically small (n≈ 2–10), but analysis of
multivariate phenotypes in large extended pedigrees routinely necessitates estimation of
MVN distributions for which n can easily reach several thousand [2,3,7]. A single variance
component-based linkage analysis of a univariate discrete phenotype in a set of extended
pedigrees involves estimating these high-dimensional MVN distributions at hundreds of
locations in the genome [3,9,10]. In these numerically-intensive applications, estimation of
the MVN distribution represents the main computational bottleneck, and the performance
of algorithms for estimation of the MVN distribution is of paramount importance.

Here we report the results of a simulation-based comparison of the performance of
two algorithms for estimation of the high-dimensional MVN distribution, the widely-used
Mendell-Elston (ME) approximation [1,8,11,12] and the Genz Monte Carlo (MC) proce-
dure [13,14]. Each of these methods is well known, but previous studies have not in-
vestigated their properties for very large numbers of dimensions. Using conventional
numerical desiderata of estimation accuracy, execution time, and computational efficiency,
we examine the performance of these algorithms and identify aspects of the overall MVN

context to which each method is particularly well suited.
In Section 2 we give a brief overview of techniques for estimating the MVN distribution.

The ME and Genz MC algorithms are reviewed in Section 3. Procedures for exercising the
algorithms and comparing their performance are described in Section 4, and results of the
comparisons are presented in Section 5. In Section 6 we consider the interpretation and
broader implications of our results for future applications.

2. Background

Numerical methods for estimation of the MVN distribution have a long and fascinating
history of development and many interesting accounts from varied perspectives have
been presented ([15–18], and references therein). Classical approaches to the problem
have generally been variations on a few standard methods [19,20]. Often, some form
of numerical quadrature is involved, in which an estimate of the integral is formed by
accumulating a weighted sum of integrand values at a sequence of abcissæ covering the
region of integration [21–24]. Tetrachoric series expansions [25,26] offer another approach
to the problem, although these series may converge slowly, and in fact do not converge
at all at some points in the correlation space for a given number of dimensions [27].
Other approaches have involved quadrature applied to an integral transformation of the
tetrachoric series [19,28,29], and decomposition of the multidimensional probability into a
product of conditional univariate probabilities [1,8,11,12,30–33].

In practice, the utility and applicability of any algorithm for estimating the MVN

distribution is overwhelmingly constrained by the dimensionality of the problem. Fast and
accurate algorithms have been described for evaluation of the univariate and multivariate
normal distributions for ‘small’ numbers of dimensions; for the frequently encountered
cases of n = 1 [34] and n = 2 [35–38], several algorithms are available that can in principle
provide any desired accuracy. For the case n > 2, several algorithms (error-bounded
and not) based on quadrature have been developed and their relative performance com-
pared [17,21–24]. Monte Carlo approaches to the problem have also been developed that
have desirable statistical properties and exhibit good scale properties with the number of
dimensions [13,14,39,40].

As the number of dimensions reaches n≈ 10, many approaches to estimating the
MVN distribution become impractical. Conventional series approximations and quadrature
methods grow unwieldy, and the computational burden for algorithms using these methods
rapidly becomes prohibitive [13,14,19,20,41]. However, methods of estimation based on
reduction or transformation of the joint n-variate distribution to a series of (typically
univariate) integrals continue to scale favorably with the number of dimensions.
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3. Algorithms

We examined the performance of two algorithms that appear particularly well suited
to estimation of the high-dimensional MVN distribution. The first of these is the Mendell-
Elston (ME) procedure (Algorithm 1), a deterministic, non-error-bounded procedure that
approximates the MVN distribution as a sequence of conditional univariate normal in-
tegrals [1,8,11,12]. The second algorithm is the elegant transformation and estimation
procedure described by Genz [13,14] (Algorithm 2). In this approach the original n-variate
distribution is transformed into an easily sampled (n− 1)-dimensional hypercube and
estimated by Monte Carlo methods (e.g., [42,43]).

Algorithm 1 Mendell-Elston Estimation of the MVN Distribution [12].
Estimate the standardized n-variate MVN distribution, having zero mean and correla-
tion matrix R, between vector-valued limits s and t. The function φ(z) is the univariate
normal density at z, and Φ(z) is the corresponding univariate normal distribution. See
Hasstedt [12] for discussion of the approximation, extensions, and applications.
1. input n, R, s, t

2. initialize f = 1

3. for i = 1, 2, . . . , n
(a) [update the total probability]

pi = Φ(ti)−Φ(si)

f ← f ·pi

if (i = n) return f

(b) [peel variable i]

ai =
φ(si)− φ(ti)

Φ(ti)−Φ(si)

Vi = 1 +
si φ(si)− ti φ(ti)

Φ(ti)−Φ(si)
− a2

i

v2
i = 1−Vi

(c) [condition the remaining variables]

for j = i + 1, . . . , n, k = j + 1, . . . , n

s′j =
(
sj − rij ai

)
/
√

1− r2
ij v2

i

t′j =
(
tj − rij ai

)
/
√

1− r2
ij v2

i

V′j = Vj/
(

1− r2
ij v2

i

)
v′2j = 1−V′j

r′jk =
(

rjk − rij rik v2
i

)
/
(√

1− r2
ij v2

i

√
1− r2

ik v2
i

)
[end loop over j,k]

[end loop over i]

The ME approximation is extremely fast, and broadly accurate over much of the pa-
rameter space [1,8,17,41]. The chief source of error in the approximation derives from
the assumption that, at each stage of conditioning, the selected and unselected variables
continue to distribute in approximately normal fashion [1]. This assumption is analyt-
ically true only for the initial stage(s) of selection and conditioning [17]; in subsequent
stages the assumption is violated to greater or lesser degree and introduces error into the



Algorithms 2021, 14, 296 4 of 12

approximation [31,33,44,45]. Consequently, the ME approximation is most accurate for
small correlations and for selection in the tails of the distribution, thereby minimizing
departures from normality following selection and conditioning. Conversely, the error in
the ME approximation is greatest for larger correlations and selection closer to the mean [1].

Algorithm 2 Genz Monte Carlo Estimation of the MVN Distribution [13].
Estimate the m-variate MVN distribution having covariance matrix Σ, between vector-
valued limits a and b, to an accuracy ε with probability 1 − α, or until the maximum
number of integrand evaluations Nmax is reached. The procedure returns the estimated
probability F, the estimation error ∆, and the number of iterations N. The function Φ(x)
is the univariate normal distribution at x, Φ−1(x) is the corresponding inverse function;
u( ) is a source of uniform random deviates on (0, 1); and Zα/2 is the two-tailed Gaussian
confidence factor corresponding to α. See Genz [13,14] for discussion, a worked example,
and suggestions for optimizing algorithm performance.

1. input m, Σ, a, b, ε, α, Nmax

2. compute the Cholesky decomposition CC′ of Σ

3. initialize I = 0, V = 0, N = 0, d1 = Φ(a1/c11), e1 = Φ(b1/c11), f1 = (e1 − d1)

4. repeat
(a) for i = 1, 2, . . . , m− 1

wi ← u( )
(b) for i = 2, 3, . . . , m

yi−1 = Φ−1[di−1 + wi−1(ei−1 − di−1)]

ti = ∑i−1
j=1 cij yj

di = Φ[(ai − ti)/cii]

ei = Φ[(bi − ti)/cii]

fi = (ei − di) fi−1

(c) update I ← I + fm, V ← V + f 2
m, N ← N + 1

(d) ∆ = Zα/2
√
[(V/N − (I/N)2]/N

until (∆ < ε) or (N = Nmax)

5. F = I/N

6. return F, ∆, N

Despite taking somewhat different approaches to the problem of estimating the MVN

distribution, these algorithms have some features in common. Most significantly, both
algorithms reformulate the initial n-dimensional integral as a series of univariate integrals.
This feature facilitates imposing an initial ordering of variables to minimize the potential
loss of precision as the integral estimate is accumulated. In similar fashion, prioritizing
variables appropriately can also help minimize error in the ME method introduced by
violations of the assumptions underlying the method [17].

4. Algorithm Comparison
4.1. Program Implementation

Programs implementing the ME and MC approximations were written in ANSI C

following published algorithms [12,13]. Implementation of the ME approximation follows
the procedure described by Hasstedt [12] for likelihood evaluation of arbitrary mixtures of
MVN densities and distributions. Although the algorithm in [12] is presented in the context
of statistical genetics, it is a completely general formulation of the ME method and suitable
for any application requiring estimation of the MVN distribution. Implementation of the
MC approximation directly follows the algorithm presented by Genz [13].
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To facilitate testing a simple driver program was written for each algorithm. The driver
program accepts arguments defining the estimation problem (e.g., number of dimensions,
correlations, limits of integration), and any algorithm-specific parameters (e.g., convergence
criteria). The driver program then initializes the problem (i.e., generates the correlation
matrix and limits of integration), calls the algorithm, records its execution time, and reports
results. For the deterministic ME algorithm there are no essential user options; the only
input quantities are those defining the MVN distribution and region of integration. The
driver program for the Genz MC algorithm provides options for setting parameters unique
to Monte Carlo estimation such as the (maximum) error in the estimate and the (maximum)
allowed number of iterations (integrand evaluations) [13].

The actual software implementation of the estimation procedures and their respective
driver programs is not critical; experiments with multiple independent implementations of
these algorithms have shown consistent and reliable performance irrespective of program-
ming language or style [2,3,7,10,46]. Attention to programming esoterica—e.g., selective
use of alternative numerical techniques according to the region of integration, supple-
menting iterative estimation with functional approximations or table lookup methods,
devolving the original integral as a sequence of conditional oligovariate (rather than uni-
variate) problems—could conceivably yield modest improvements in execution times in
some applications.

4.2. Test Problems

For validating and comparing the MC and ME algorithms it is important to have
a source of independently determined values of the MVN distribution against which to
compare the approximations returned by each algorithm. For many purposes it may be
sufficient to refer to tables of the MVN distribution that have been generated for special
cases of the correlation matrix [15,18,47–51]. Here, however, as in similar numerical
studies [1,8,14,41], values of the MVN distribution were computed independently for
correlation matrices defined by

Rn = In + ρ(Jn − In) (1)

where n is the number of dimensions, I is the identity matrix, J = 11′ is a matrix of ones,
and ρ is a correlation coefficient. For Rn of this form, the n-variate MVN distribution at
b = (b1, . . . , bn)′ can be reduced to the single integral

In(b) =
∫ +∞

−∞
φ(t)

n

∏
i=1

Φ

(
bi + t

√
ρ√

1− ρ

)
dt , (2)

where φ(t) is the univariate normal density at t and Φ(t) is the corresponding univariate
normal distribution [18,47,49,50]. This result involves only univariate normal functions
and can be computed to desired accuracy using standard numerical methods (e.g., [43]).

4.3. Test Conditions

Two series of comparisons were conducted. In the first series, algorithms were com-
pared using correlation matrices Rn with ρ ∈ {0.1, 0.3, 0.5, 0.9} and n = 3(1)10 (i.e., n
from 3 to 10 by 1), n = 10(10)100, and n = 100(100)1000. The lower and upper limits of
integration, respectively, were ai = −∞ and bi = 0, i = 1, . . . , n.

In the second series of comparisons, correlation matrices Rn were generated with
values of ρ drawn randomly from the uniform distribution U(0, 1) [52,53]; lower limits of
integration remained fixed at ai = −∞, but upper limits bi were chosen randomly from the
uniform distribution U(0,

√
n ).

For the Genz MC algorithm an initial estimate was generated using N0 = 100 iterations
(the actual value of N0 was not critical); then, if necessary, iterations were continued (using
Nk+1 = 3

2 Nk) until the requested estimation accuracy ε was achieved [13,14]. Under the
usual assumption that independent Monte Carlo estimates distribute normally about the
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true integral value I, the 1− α confidence interval for I is Ĩ ± Zα/2 σĨ/
√

n, where Ĩ is the
estimated value, σĨ/

√
n is the standard error of Ĩ, Zα/2 is the Monte Carlo confidence factor

for the standard error, and α is the Type I error probability. Therefore, to achieve an error
less than ε with probability 1− α, the algorithm samples the integral until Zα/2 σĨ/

√
n < ε.

For all results reported here we took α = 0.01, corresponding to Zα/2≈ 2.5758.

4.4. Test Comparisons

Three aspects of algorithm performance were compared: the error in the estimate,
the computation time required to generate the estimate, and the relative efficiency of
estimation. One can invent many additional interesting and contextually relevant com-
parisons examining various aspects of estimation quality and algorithm performance, but
the criteria used here have been applied in other studies (e.g., [39]), are simple to quantify,
broadly relevant, and effective for delineating areas of the MVN problem space in which
each method performs more or less optimally.

The estimation error is the difference between the estimate returned by the algorithm
and the independently computed expectation. The computation time is the execution time
required for the algorithm to return an estimate; for the MC procedure this quantity includes
the (comparatively trivial) time required to obtain the Cholesky decomposition of the
correlation matrix. The relative efficiency is the time-weighted ratio of the variance in each
estimate (see, e.g., [39]). Thus, if tMC and tME, respectively, denote the execution times of
the MC and ME algorithms, and σ2

MC and σ2
ME the corresponding mean squared errors in the

MC and ME estimates, then the relative efficiency is defined as θ = (tME σ2
ME)/(tMC σ2

MC),
i.e., the product of the relative mean-squared error σ2

ME/σ2
MC and the relative execution

time tME/tMC. The measure is somewhat ad hoc, and in practical applications the choice of
algorithm should ultimately be informed by pragmatic considerations but—ceteris paribus—
values θ � 1 tend to favor the Genz MC algorithm, and values θ � 1 tend to favor the
ME algorithm.

4.5. Computing Platforms

Numerical methods are of little use if they are ill-suited to the hardware available to
the user. Both the ME and Genz MC algorithms involve the manipulation of large, nonsparse
matrices, and the MC method also makes heavy use of random number generation, so
there seemed no compelling reason a priori to expect these algorithms to exhibit similar
scale characteristics with respect to computing resources. Algorithm comparisons were
therefore conducted on a variety of computers having wildly different configurations of
CPU, clock frequency, installed RAM, and hard drive capacity, including an intrepid Intel
386/387 system (25 MHz, 5 MB RAM), a Sun SPARCstation-5 workstation (160 MHz, 1 GB

RAM), a Sun SPARCstation-10 server (50 MHz, 10 GB RAM), a Mac G4 PowerPC (1.5 GHz,
2 GB RAM), and a MacBook Pro with Intel Core i7 (2.5 GHz, 16 GB RAM). As expected, clock
frequency was found to be the primary factor determining overall execution speed, but
both algorithms performed robustly and proved entirely practical for use even with modest
hardware. We did not, however, further investigate the effect of computer resources on
algorithm performance, and all results reported below are independent of any specific
test platform.

5. Results
5.1. Error

The errors in the estimates returned by each method are shown in Figure 1 for a single
‘replication’, i.e., an application of each algorithm to return a single (convergent) estimate.
The figure illustrates the qualitatively different behavior of the two estimation procedures—
the deterministic approximation returned by the ME algorithm, and the stochastic estimate
returned by the Genz MC algorithm.
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Figure 1. Estimation error in Genz Monte Carlo (MC) and Mendell-Elston (ME) approximations. (MC

only: single replication; requested accuracy ε = 0.01.)

Estimates from the MC algorithm are well within the requested maximum error for all
values of the correlation coefficient and throughout the range of dimensions considered.
Errors are unbiased as well; there is no indication of systematic under- or over-estimation
with either correlation or number of dimensions.

In contrast, the error in the estimate returned by the ME method, though not gener-
ally excessive, is strongly systematic. For small correlations, or for moderate correlations
and small numbers of dimensions, the error is comparable in magnitude to that from MC

estimation but is consistently biased. For ρ >∼ 0.3, the error begins to exceed that of the
corresponding MC estimate, and the desired distribution can be significantly under- or
overestimated even for a small number of dimensions. This pattern of error in the ME

approximation reflects the underlying assumption of multivariate normality of both the
marginal and conditional distributions following variable selection [1,8,17]. The assump-
tion is viable for small correlations, and for integrals of low dimensionality (requiring
fewer iterations of selection and conditioning); errors are quickly compounded and the
approximation deteriorates as the assumption becomes increasingly implausible.

Although bias in the estimates returned by the ME method is strongly dependent
on the correlation among the variables, this feature should not discourage use of the
algorithm. For example, estimation bias would not be expected to prejudice likelihood-
based model optimization and estimation of model parameters, which are determined
by the location of likelihood extrema. However, estimation bias could conceivably vitiate
likelihood-ratio tests involving functions of the actual likelihood values. The latter may
become of particular concern in applications that accumulate and compare likelihoods over
a collection of independent data under varying model parameterizations.

5.2. Mean Execution Time

Relative mean execution time, tME and tMC for the ME and MC algorithms respectively,
is summarized in Figure 2 for 100 replications of each algorithm. As absolute execution
times for a given application can vary by several orders of magnitude depending on com-
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puting resources, the figure presents the ratio tME/tMC which was found to be effectively
independent of computing platform.

10-3

10-2

10-1

100

101

102

ρ = 0.1 ρ = 0.3

1 10 100 1000

Dimensions

10-3

10-2

10-1

100

101

102

M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e 
(M

E/
M

C
)

ρ = 0.5

1 10 100 1000

ρ = 0.9

Figure 2. Relative mean execution time (tME/tMC) of Genz Monte Carlo (MC) and Mendell-Elston
(ME) algorithms. (MC only: mean of 100 replications; requested accuracy ε = 0.01.)

For estimation of the MVN in moderately few dimensions (n <∼ 30) the ME approxima-
tion is exceptionally fast. The mean execution time of the MC method can be markedly
greater—e.g., at n≈ 10 about 10-fold slower for ρ = 0.1 and 1000-fold slower for ρ = 0.9.
For small correlations the execution time of the MC method becomes comparable with that
of the ME method for n≈ 100. For the largest numbers of dimensions considered, the Monte
Carlo method can be substantially faster—nearly 10-fold when ρ = 0.3 and nearly 20-fold
when ρ = 0.1.

The scale properties of mean execution time for the ME and MC algorithms with respect
to correlation and number of dimensions may be important considerations for specific
applications. The ME method exhibits virtually no variation in execution time with the
strength of the correlation, which may be an attractive feature in applications for which
correlations are highly variable and the dimensionality of the problem does not vary greatly.
For the MC method, execution time increases approximately 10–fold as the correlation
increases from ρ = 0.1 to ρ = 0.9, but is approximately constant with respect to the number
of dimensions. This behavior would be desirable in applications for which correlations
tend to be small but the number of dimensions varies considerably.

5.3. Relative Performance

In view of the statistical virtues of the MC estimate but the favorable execution times
for the ME approximation, it is instructive to compare the algorithms in terms of a metric
incorporating both of these aspects of performance. For this purpose we use the time- and
error-weighted ratio used described by Deák [39], and compare the performance of the
algorithms for randomly chosen correlations and regions of integration (see Section 4.3).
As applied here, values of this ratio greater than one tend to favor the Genz MC method,
and values less than one tend to favor the ME method.

The relative mean execution times, mean squared errors, and mean time-weighted
efficiencies of the MC and ME methods are summarized in Figure 3. Although ME estimates
can be markedly faster to compute—e.g., ∼100-fold faster for n≈ 100 and ∼10-fold faster
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for n≈ 1000, in these replications)—the mean squared error of the MC estimates is consis-
tently 10–100-fold smaller, and on this basis alone is the statistically preferable procedure.
Measured by their time-weighted relative efficiency, however, the disparity in performance
is less extreme; the ME algorithm is comparatively efficient for n <∼ 100 dimensions, beyond
which the MC algorithm becomes the more efficient approach.

1 10 100 1000
Dimensions

0.0001

0.001

0.01

0.1

1

10

100

1000
R

el
at

iv
e 

Pe
rf

or
m

an
ce
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E/

M
C

)

Execution Time
Mean Squared Error
Time-weighted Efficiency

Figure 3. Relative performance of Genz Monte Carlo (MC) and Mendell-Elston (ME) algorithms:
ratios of execution time, mean squared error, and time-weighted efficiency. (MC only: mean of 100
replications; requested accuracy ε = 0.01.)

6. Discussion

Statistical methodology for the analysis of large datasets is demanding increasingly
efficient estimation of the MVN distribution for ever larger numbers of dimensions. In
statistical genetics, for example, variance component models for the analysis of continuous
and discrete multivariate data in large, extended pedigrees routinely require estimation of
the MVN distribution for numbers of dimensions ranging from a few tens to a few tens of
thousands. Such applications reflexively (and understandably) place a premium on the
sheer speed of execution of numerical methods, and statistical niceties such as estimation
bias and error boundedness—critical to hypothesis testing and robust inference—often
become secondary considerations.

We investigated two algorithms for estimating the high-dimensional MVN distribution.
The ME algorithm is a fast, deterministic, non-error-bounded procedure, and the Genz MC

algorithm is a Monte Carlo approximation specifically tailored to estimation of the MVN.
These algorithms are of comparable complexity, but they also exhibit important differences
in their performance with respect to the number of dimensions and the correlations between
variables. We find that the ME algorithm, although extremely fast, may ultimately prove
unsatisfactory if an error-bounded estimate is required, or (at least) some estimate of the
error in the approximation is desired. The Genz MC algorithm, despite taking a Monte Carlo
approach, proved to be sufficiently fast to be a practical alternative to the ME algorithm.
Under certain conditions the MC method is competitive with, and can even outperform,
the ME method. The MC procedure also returns unbiased estimates of desired precision,
and is clearly preferable on purely statistical grounds. The MC method has excellent scale
characteristics with respect to the number of dimensions, and greater overall estimation
efficiency for high-dimensional problems; the procedure is somewhat more sensitive to the
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correlation between variables, but this is not expected to be a significant concern unless the
variables are known to be (consistently) strongly correlated.

For our purposes it has been sufficient to implement the Genz MC algorithm without
incorporating specialized sampling techniques to accelerate convergence. In fact, as was
pointed out by Genz [13], transformation of the MVN probability into the unit hypercube
makes it possible for simple Monte Carlo integration to be surprisingly efficient. We
expect, however, that our results are mildly conservative, i.e., underestimate the efficiency
of the Genz MC method relative to the ME approximation. In intensive applications it
may be advantageous to implement the Genz MC algorithm using a more sophisticated
sampling strategy, e.g., non-uniform ‘random’ sampling [54], importance sampling [55,56],
or subregion (stratified) adaptive sampling [13,57]. These sampling designs vary in their
approach, applicability to a given problem, and computational overhead, but their common
objective is to estimate the integral as efficiently as possible for a given amount of sampling
effort. (For discussion of these and other variance reduction techniques in Monte Carlo
integration, see [42,43].)

Finally, in choosing between these or other procedures for estimating the MVN dis-
tribution, it is helpful to observe a pragmatic distinction between applications that are
deterministic and those that are genuinely stochastic in nature. The computational merits
of fast execution time, accuracy, and precision may be advantageous for the analysis of
well-behaved problems of a deterministic nature, yet be comparatively inessential for
inherently statistical investigations. In many applications, some sacrifice in the speed of
the algorithm (but not, as Figure 1 reveals, in the accuracy of estimation) could surely be
tolerated in exchange for desirable statistical properties that promote robust inference [58].
These properties include unbiased estimation of the likelihood, an estimate of error in-
stead of fixed error bounds (or no error bound at all), the ability to combine independent
estimates into a variance-weighted mean, favorable scale properties with respect to the
number of dimensions and the correlation between variables, and potentially increased
robusticity to poorly-conditioned covariance matrices [20,42]. For many practical problems
requiring the high-dimensional MVN distribution, the Genz MC algorithm clearly has much
to recommend it.

Author Contributions: Conceptualization, L.B.; Data Curation, L.B.; Formal Analysis, L.B.; Funding
Acquisition, H.H.H.G. and J.B.; Investigation, L.B.; Methodology, L.B.; Project Administration,
H.H.H.G. and J.B.; Resources, J.B. and H.H.H.G.; Software, L.B.; Supervision, H.H.H.G. and J.B.;
Validation, L.B.; Visualization, L.B.; Writing—Original Draft Preparation, L.B.; Writing—Review &
Editing, L.B., M.Z.K. and H.H.H.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported in part by National Institutes of Health DK099051 (to
H.H.H.G.) and MH059490 (to J.B.), a grant from the Valley Baptist Foundation (Project THRIVE), and
conducted in part in facilities constructed under the support of NIH grant 1C06RR020547.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rice, J.; Reich, T.; Cloninger, C.R.; Wette, R. An approximation to the multivariate normal integral: Its application to multifactorial

qualitative traits. Biometrics 1979, 35, 451–459. [CrossRef]
2. Williams, J.T.; Eerdewegh, P.V.; Almasy, L.; Blangero, J. Joint multipoint linkage analysis of multivariate qualitative and

quantitative traits. I. Likelihood formulation and simulation results. Am. J. Hum. Genet. 1999, 65, 1134–1147. [CrossRef]
3. Williams, J.T.; Begleiter, H.; Porjesz, B.; Edenberg, H.J.; Foroud, T.; Reich, T.; Goate, A.; Eerdewegh, P.V.; Almasy, L.; Blangero, J.

Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. II. Alcoholism and event-related potentials.
Am. J. Hum. Genet. 1999, 65, 1148–1160. [CrossRef] [PubMed]

http://doi.org/10.2307/2530347
http://dx.doi.org/10.1086/302570
http://dx.doi.org/10.1086/302571
http://www.ncbi.nlm.nih.gov/pubmed/10486334


Algorithms 2021, 14, 296 11 of 12

4. Falconer, D.S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet.
1965, 29, 51–76. [CrossRef]

5. Falconer, D.S. The inheritance of liability to diseases with variable age of onset, with particular reference to diabetes mellitus.
Ann. Hum. Genet. 1967, 31, 1–20. [CrossRef] [PubMed]

6. Curnow, R.N.; Smith, C. Multifactorial models for familial diseases in man. J. R Stat. Soc. A 1975, 138, 131–169. [CrossRef]
7. Williams, J.T.; Blangero, J. Power of variance component analysis—II. Discrete traits. Ann. Hum. Genet. 2004, 68, 620–632.

[CrossRef] [PubMed]
8. Mendell, N.R.; Elston, R.C. Multifactorial qualitative traits: Genetic analysis and prediction of recurrence risks. Biometrics 1974,

30, 41–57. [CrossRef]
9. Duggirala, R.; Williams, J.T.; Williams-Blangero, S.; Blangero, J. A variance component approach to dichotomous trait linkage

analysis using a threshold model. Genet. Epidemiol. 1997, 14, 987–992. [CrossRef]
10. Williams, J.T.; Blangero, J. Efficient Monte Carlo evaluation of the multivariate normal integral. Genet. Epidemiol. 1998, 15, 540–541.
11. Mendell, N.R. Some Methods for Genetically Analyzing Human Qualitative Multifactorial Traits. Ph.D. Thesis, The University of

North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1972.
12. Hasstedt, S.J. Variance components/major locus likelihood approximation for quantitative, polychotomous, and multivariate

data. Genet. Epidemiol. 1993, 10, 145–158. [CrossRef] [PubMed]
13. Genz, A. Numerical computation of multivariate normal probabilities. J. Comp. Graph. Stat. 1992, 1, 141–149.
14. Genz, A. Comparison of methods for the computation of multivariate normal probabilities. Comput. Sci. Stat. 1993, 25, 400–405.
15. Gupta, S.S. Probability integrals of multivariate normal and multivariate t. Ann. Math. Stat. 1963, 34, 792–828. [CrossRef]
16. Gupta, S.S. Bibliography on the multivariate normal integrals and related topics. Ann. Math. Stat. 1963, 34, 829–838. [CrossRef]
17. Eerdewegh, P.V. Statistical Selection in Multivariate Systems with Applications in Quantitative Genetics. Ph.D. Thesis, Washington

University: St. Louis, MO, USA, 1982.
18. Tong, Y.L. The Multivariate Normal Distribution; Springer: New York, NY, USA, 1990.
19. Dutt, J.E. A representation of multivariate normal probability integrals by integral transforms. Biometrika 1973, 60, 637–645.

[CrossRef]
20. Ducrocq, V.; Colleau, J.J. Interest in quantitative genetics of Dutt’s and Deak’s methods for numerical computation of multivariate

normal probability integrals. Génét. Sél. Evol. 1986, 18, 447–474. [CrossRef]
21. Milton, R.C. Computer evaluation of the multivariate normal integral. Technometrics 1972, 14, 881–889. [CrossRef]
22. Bohrer, R.; Schervish, M.J. An error-bounded algorithm for normal probabilities of rectangular regions. Technometrics 1981,

23, 297–300. [CrossRef]
23. Schervish, M.J. Algorithm AS 195: Multivariate normal probabilities with error bound. Appl. Stat. 1984, 33, 81–94. [CrossRef]
24. Baigorri, A.R.; Eerdewegh, P.V.; Reich, T. Error Bounded Integration of Multivariate Normal Densities over Rectangular Regions;

Technical Report; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 1986.
25. Pearson, K. III. Mathematical contributions to the theory of evolution. VIII. On the inheritance of characters not capable of exact

quantitative measurement. Philos. Trans. R Soc. Lond. A 1901, 195, 79–148.
26. Kendall, M.G. Proof of relations connected with the tetrachoric series and its generalization. Biometrika 1941, 32, 196–198.

[CrossRef]
27. Harris, B.; Soms, A.P. The use of the tetrachoric series for evaluating multivariate normal probabilities. J. Multivar. Anal. 1980,

10, 252–267. [CrossRef]
28. Dutt, J.E. On computing the probability integral of a general multivariate t. Biometrika 1975, 62, 201–205. [CrossRef]
29. Dutt, J.E.; Soms, A.P. An integral representation technique for calculating general multivariate probabilities with an application

to multivariate χ2. Comm. Stat. Theory Meth. 1976, A5, 377–388.
30. Pearson, K. I. Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability

and correlation of organs. Philos. Trans. R Soc. Lond. A 1903, 200, 1–66.
31. Soper, H.E. Frequency Arrays; Cambridge University Press: London, UK, 1922.
32. Aitken, A.C. Note on selection from a multivariate normal population. Proc. Edinb. Math. Soc. Bull. 1934, 4, 106–110. [CrossRef]
33. Lawley, D.N. A note on Karl Pearson’s selection formulæ. Proc. R. Soc. Edinb. 1943, 62, 28–30. [CrossRef]
34. Hill, G.W. Algorithm 465: Student’s t frequency [S14]. Comm. ACM 1973, 16, 690. [CrossRef]
35. Owen, D.B. Tables for computing bivariate normal probabilities. Ann. Math. Stat. 1956, 27, 1075–1090. [CrossRef]
36. Bender, H.A. Bivariate distribution. Bull. Am. Math. Soc. 1955, 61, 561–562.
37. Donnelly, T.G. Algorithm 462: Bivariate Normal Distribution [S15]. Comm. ACM 1973, 16, 638. [CrossRef]
38. Lowerre, J.M. An integral of the bivariate normal and an application. Am. Stat. 1983, 37, 235–236.
39. Deák, I. Three digit accurate multiple normal probabilities. Numer. Math. 1980, 35, 369–380. [CrossRef]
40. Deák, I. Computing probabilities of rectangles in case of multinormal distribution. J. Stat. Comput. Simul. 1986, 26, 101–114.

[CrossRef]
41. Joe, H. Approximations to multivariate normal rectangle probabilities based on conditional expectations. J. Am. Stat. Assoc. 1995,

90, 957–964. [CrossRef]
42. Lepage, G.P. A new algorithm for adaptive multidimensional integration. J. Comput. Phys. 1978, 27, 192–203. [CrossRef]

http://dx.doi.org/10.1111/j.1469-1809.1965.tb00500.x
http://dx.doi.org/10.1111/j.1469-1809.1967.tb02015.x
http://www.ncbi.nlm.nih.gov/pubmed/6056557
http://dx.doi.org/10.2307/2984646
http://dx.doi.org/10.1046/j.1529-8817.2004.00128.x
http://www.ncbi.nlm.nih.gov/pubmed/15598220
http://dx.doi.org/10.2307/2529616
http://dx.doi.org/10.1002/(SICI)1098-2272(1997)14:6<987::AID-GEPI71>3.0.CO;2-G
http://dx.doi.org/10.1002/gepi.1370100302
http://www.ncbi.nlm.nih.gov/pubmed/8349098
http://dx.doi.org/10.1214/aoms/1177704004
http://dx.doi.org/10.1214/aoms/1177704005
http://dx.doi.org/10.1093/biomet/60.3.637
http://dx.doi.org/10.1186/1297-9686-18-4-447
http://dx.doi.org/10.1080/00401706.1972.10488983
http://dx.doi.org/10.2307/1267794
http://dx.doi.org/10.2307/2347670
http://dx.doi.org/10.2307/2332214
http://dx.doi.org/10.1016/0047-259X(80)90017-2
http://dx.doi.org/10.1093/biomet/62.1.201
http://dx.doi.org/10.1017/S0013091500008063
http://dx.doi.org/10.1017/S0080454100006385
http://dx.doi.org/10.1145/355611.362540
http://dx.doi.org/10.1214/aoms/1177728074
http://dx.doi.org/10.1145/362375.362414
http://dx.doi.org/10.1007/BF01399006
http://dx.doi.org/10.1080/00949658608810951
http://dx.doi.org/10.1080/01621459.1995.10476596
http://dx.doi.org/10.1016/0021-9991(78)90004-9


Algorithms 2021, 14, 296 12 of 12

43. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.;
Cambridge University Press: Cambridge, UK, 1992.

44. Birnbaum, Z.W. Effect of linear truncation on a multinormal population. Ann. Math. Stat. 1950, 21, 272–279. [CrossRef]
45. Birnbaum, Z.W.; Paulson, E.; Andrews, F.C. On the effect of selection performed on some coordinates of a multi-dimensional

population. Psychometrika 1950, 15, 191–204. [CrossRef]
46. L Almasy, J.B. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 1998, 62, 1198–1211.

[CrossRef]
47. Curnow, R.N.; Dunnett, C.W. The numerical evaluation of certain multivariate normal integrals. Ann. Math. Stat. 1962,

33, 571–579. [CrossRef]
48. Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics. Volume 1. Distribution Theory, 3rd ed.; Hafner: New York, NY, USA, 1969.
49. Curnow, R.N. The multifactorial model for the inheritance of liability to disease and its implications for relatives at risk. Biometrics

1972, 28, 931–946. [CrossRef] [PubMed]
50. Johnson, N.L.; Kotz, S. Distributions in Statistics: Continuous Multivariate Distributions, 2nd ed.; John Wiley & Sons: New York, NY,

USA, 1972; Volume 4.
51. Six, F.B. Representations of multivariate normal distributions with special correlation structures. Commun. Stat. Theory Meth.

1981, 10, 1285–1295. [CrossRef]
52. Bendel, R.B.; Mickey, M.R. Population correlation matrices for sampling experiments. Commun. Statist. Simul. Comput. 1978,

B7, 163–182. [CrossRef]
53. Marsaglia, G.; Olkin, I. Generating correlation matrices. SIAM J. Sci. Stat. Comput. 1984, 5, 470–475. [CrossRef]
54. Bratley, P.; Fox, B.L. Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 1988,

14, 88–100. [CrossRef]
55. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109.

[CrossRef]
56. Pandey, M.; Sarkar, A. Comparison of a simple approximation for multinormal integration with an importance sampling-based

simulation method. Probabilistic Eng. Mech. 2002, 17, 215–218. [CrossRef]
57. Berntsen, J.; Espelid, T.O.; Genz, A. Algorithm 698: DCUHRE: An adaptive multidimensional integration routine for a vector of

integrals. ACM Trans. Math. Softw. 1991, 17, 452–456. [CrossRef]
58. Zeng, Z. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [CrossRef]

http://dx.doi.org/10.1214/aoms/1177729844
http://dx.doi.org/10.1007/BF02289200
http://dx.doi.org/10.1086/301844
http://dx.doi.org/10.1214/aoms/1177704581
http://dx.doi.org/10.2307/2528630
http://www.ncbi.nlm.nih.gov/pubmed/4648797
http://dx.doi.org/10.1080/03610928108828111
http://dx.doi.org/10.1080/03610917808812068
http://dx.doi.org/10.1137/0905034
http://dx.doi.org/10.1145/42288.214372
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1016/S0266-8920(02)00003-6
http://dx.doi.org/10.1145/210232.210234
http://dx.doi.org/10.1093/genetics/136.4.1457

	Genz and Mendell-Elston Estimation of the High-Dimensional Multivariate Normal Distribution
	Recommended Citation

	Introduction
	Background
	Algorithms
	Algorithm Comparison
	Program Implementation
	Test Problems
	Test Conditions
	Test Comparisons
	Computing Platforms

	Results
	Error
	Mean Execution Time
	Relative Performance

	Discussion
	References

