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A   high-resolution   HLA   reference   panel   capturing   global   population   diversity  

enables   multi-ethnic   fine-mapping   in   HIV   host   response  
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Abstract  

Defining   causal   variation   by   fine-mapping   can   be   more   effective   in   multi-ethnic   genetic  

studies,   particularly   in   regions   such   as   the   MHC   with   highly   population-specific  

structure.   To   enable   such   studies,   we   constructed   a   large   (N=21,546)   high   resolution   HLA  

reference   panel   spanning   five   global   populations   based   on   whole-genome   sequencing  

data.   Expectedly,   we   observed   unique   long-range   HLA   haplotypes   within   each   population  

group.   Despite   this,   we   demonstrated   consistently   accurate   imputation   at   G-group  

resolution   (94.2%,   93.7%,   97.8%   and   93.7%   in   Admixed   African   (AA),   East   Asian   (EAS),  

European   (EUR)   and   Latino   (LAT)).   We   jointly   analyzed   genome-wide   association   studies  

(GWAS)   of   HIV-1   viral   load   from   EUR,   AA   and   LAT   populations.   Our   analysis   pinpointed  

the   MHC   association   to   three   amino   acid   positions   (97,   67   and   156)   marking   three  

consecutive   pockets   (C,   B   and   D)   within   the   HLA-B   peptide   binding   groove,   explaining  

12.9%   of   trait   variance,   and   obviating   effects   of   previously   reported   associations   from  

population-specific   HIV   studies.   

Main  
 
The   HLA   genes   located   within   the   MHC   region   encode   proteins   that   play   essential   roles   in  

immune   responses   including   antigen   presentation.   They   account   for   more   heritability   than   all  

other   variants   together   for   many   diseases 1–4 .   It   also   has   more   reported   GWAS   trait   associations  

than   any   other   locus 5 .   The   extended   MHC   region   spans   6Mb   on   chromosome   6p21.3   and  

contains   more   than   260   genes 6 .   Due   to   population-specific   positive   selection   it   harbors  

unusually   high   sequence   variation,   longer   haplotypes   than   most   of   the   genome,   and   haplotypes  
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that   are   specific   to   individual   ancestral   populations 7,8 .   Consequently,   the   MHC   is   among   the  

most   challenging   regions   in   the   genome   to   analyze.   Advances   in   HLA   imputation   have   enabled  

population-specific   association   and   fine-mapping   studies   of   this   locus 2,9–12 .   But   despite   large  

effect   sizes,   fine-mapping   in   multiple   populations   simultaneously   is   challenging   without   a   single  

large   and   high-resolution   multi-ethnic   reference   panel.   This   has   caused   confusion   in   some  

instances.   For   example,   defining   the   driving   HLA   alleles   may   inform   the   design   of   antigenic  

peptides   for   vaccines 13,14    for   HIV-1,   which   led   to   770,000   deaths   in   2018   alone 15 .   However,  

multiple   risk   HLA   risk   alleles   have   been   independently   reported   in   different   populations 1,10,16 ,   and  

it   is   not   clear   if   they   represent   truly   population-specific   signals   or   are   confounded   by   linkage.  

Results  

Performance   evaluation   of   inferred   classical   HLA   alleles  

To   build   a   large-scale   multi-ethnic   HLA   imputation   reference   panel,   we   used   high-coverage  

whole   genome   sequencing   (WGS)   datasets 17–21    from   the   Japan   Biological   Informatics  

Consortium 20 ,   the   BioBank   Japan   Project 18 ,   the   Estonian   Biobank 22 ,   the   1000   Genomes   Project  

(1KG) 21    and   a   subset   of   studies   in   the   TOPMed   program   ( Supplementary   Note ,  

Supplementary   Table   1-2 ).   To   perform   HLA   typing   using   WGS   data,   we   extracted   reads  

mapped   to   the   extended   MHC   region   (chr6:25Mb-35Mb)   and   unmapped   reads   from   24,338  

samples.   We   applied   a   population   reference   graph 23–25 ,    for   the   MHC   region   to   infer   classical  

alleles   for   three   HLA   class   I   genes   (HLA -A,   -B    and   - C )   and   five   class   II   genes   (HLA -DQA1 ,  

- DQB1 ,    -DRB1 ,   - DPA1 ,   - DPB1 )   at   G-group   resolution,   which   determines   the   sequences   of   the  

exons   encoding   the   peptide   binding   groove .    We   required   samples   to   have   >20x   coverage  

across   all   HLA   genes   ( Supplementary   Table   1 ,    3 ).   After   quality   control   our   panel   included  

21,546   individuals:   10,187   EUR,   7,849   AA,   2,069   EAS,   952   LAT   and   489   SAS.   
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To   assess   the   accuracy   of   the   WGS    HLA    allele   calls,   we   compared   the   inferred    HLA    classical  

alleles   to   gold   standard   sequence-based   typing   (SBT)   in   955   1KG   subjects   and   288   Japanese  

subjects   and   quantified   concordance.   In   both   cohorts   we   observed   slightly   higher   average  

accuracy   for   class   I   genes,   obtaining   99.0%   (one-field,   formally   known   as   two-digit),   99.2%  

(amino   acid)   and   96.5%   (G-group   resolution),   than   class   II   genes,   obtaining   98.7%   (one-field),  

99.7%   (amino   acid)   and   96.7%   (G-group   resolution,    Methods,   Supplementary   Figure   1 ,  

Supplementary   Tables   4-5 ,    Extended   Data   1 ).  

HLA   diversity  

To   quantify   MHC   diversity,   we   calculated   identity-by-descent   (IBD)   distances 26    between   all  

individuals   using   38,398   MHC   single   nucleotide   polymorphisms   (SNPs)   included   in   the  

multi-ethnic   HLA   reference   panel   (N=21,546)   and   applied   principal   component   analysis   (PCA,  

Methods ).   PCA   distinguished   EUR,   EAS   and   AA   as   well   as   the   admixed   LAT   and   SAS   samples  

( Figure   1a ,    Supplementary   Figure   2 ).   This   reflected   widespread    HLA    allele   frequency  

differences   between   populations   ( Figure   1b-c ,    Supplementary   Figure   3 ).   Of    130    unique  

common   (frequency   >   1%)   G-group   alleles,   129   demonstrated   significant   differences   of  

frequencies   across   populations   (4   degree-of-freedom   Chi-square   test,   p-value   <   0.05/130,  

Supplementary   Figure   4 ).   The   only   exception   was    DQA1*01:01:01G    which   was   nominally  

significant   (unadjusted   p-value   =   0.047).   These   differences   may   be   related   to   adaptive   selection.  

For   example,   the    B*53:01:01G    allele   is   enriched   in   Admixed   Africans   (11.7%   in   AA   versus   0.3%  

in   others)   and   it   has   been   previously   associated   with   malaria   protection 27,28 .   Consistent   with  

previous   reports 29,30 ,   we   observed   that   HLA -B    had   the   highest   allelic   diversity   (n=443)   while  
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Extended   Data   1 ).   

 

To   understand   the   haplotype   structure   of   HLA   between   pairs   of   HLA   genes   we   calculated   a  

multiallelic   linkage   disequilibrium   (LD)   measurement   index 31–33 ,   ,   which   is   0   when   there   is   no ε  

LD   and   1   when   there   is   perfect   LD   ( Figure   2a ).   We   observed   higher     between    DQA1 ,    DQB1 , ε  

and    DRB1;    between    DPA1    and    DPB1 ;   and   between    B    and    C    ( Supplementary   Figure   7 ).   The  

heterogeneity   between   different   populations   was   underscored   by   the   presence   of  

population-specific   common   (frequency   >1%)   high   resolution   long-range   haplotypes  

(HLA- A~C~B~DRB1~DQA1~DQB1~DPA1~DPB1 ,    Figure   2b,   Supplementary   Figure   8-12 ,  

Extended   Data   2,   Methods ).   The   most   common   within-population   haplotype   was   A24::DP6  

(HLA -A*24:02:01G~C*12:02:01G~B*52:01:01G~DRB1*15:02:01G~DQA1*01:03:01G~DQB1*06 

:01:01G~DPA1*02:01:01G~DPB1*09:01:01G )   found   at   a   frequency   of   3.61%   in   EAS  

( Supplementary   Figure   8 ).   This   haplotype   is   strongly   associated   with   immune-mediated   traits  

such   as   HIV 34    and   ulcerative   colitis 35    in   Japanese   individuals.   The   next   most   common   haplotype  

was   the   well-described   European-specific   ancestral   haplotype   A1::DP1   or   8.1 36,37    (  

frequency=2.76%,  

HLA- A*01:01:01G~C*07:01:01G~B*08:01:01G~DRB1*03:01:01G~DQA1*05:01:01G~DQB1*02: 

01:01G~DPA1*02:01:02G~DPB1*01:01:01G ,    Supplementary   Figure   9 ).   This   haplotype   is  

associated   with   diverse   immunopathological   phenotypes   in   the   European   population,   including  

systemic   lupus   erythematosus 38 ,    myositis 39    and   several   other   conditions 36 .   We   observed  

long-range   haplotypes   in   admixed   populations   including    A1::DP4   in   SAS   (frequency=1.86%,  

Supplementary   Figure   10 ),   A30::DP1   in   AA   (frequency=1.18%,  

HLA -A*30:01:01G~C*17:01:01G~B*42:01:01:G~DRB1*03:02:01G~DQA1*04:01:01G~DQB1*04 
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:02:01G~DPA1*02:02:02G~DPB1*01:01:01G    ,    Supplementary   Figure   11 ),   and   A29::DP11   in  

LAT   (frequency=0.74%,  

HLA -A*29:02:01G~C*16:01:01G~B*44*03:01:G~DRB1*07:01:01G~DQA1*02:01:01G~DQB1*0 

2:01:01G~DPA1*02:01:01G~DPB1*11:01:01G ,    Supplementary   Figure   12 ).   

These   haplotypes   also   have   associations   with   multiple   diseases:   for   example    C*06:02~B*57:01  

is   associated   with    psoriasis 40    and    A*30:01~C*17:01~B*42:01    is   associated   with   HIV 41 .  

HLA   selection   signature  

Previous   studies   have   suggested   that   recent   natural   selection   favors   African   ancestry   in   the  

HLA   region   in   admixed   populations 42–45 .   To   test   this   hypothesis   in   our   data,   we   obtained   WGS  

data   from   a   subset   of   individuals   within   two   admixed   populations   (1,832   AA   and   594   LAT,  

determined   by   the   first   three   global   principal   components,    Supplementary   Figure   13 ,  

Supplementary   Note ).   Admixed   individuals   have   genomes   that   are   a   mosaic   of   different  

ancestries.   If   genetic   variations   or   haplotypes   from   an   ancestral   population   are   advantageous,  

then   they   are   under   selection   and   are   expected   to   have   higher   frequency   than   by   chance.   Using  

ELAI 46 ,   we   quantified   how   much   the   ancestry   proportions   differed   within   the   MHC   from   the  

genome-wide   average.   In   AA,   we   observed   that   the   average   genome-wide   proportion   of   African  

ancestry   was   74.5%,   compared   to   78.0%   in   the   extended   MHC   region,   corresponding   to   a   3.42  

(95%   CI:   3.35-3.49)   standard   deviation   increase.   In   LAT,   we   observed   5.76%   African   ancestry  

genome-wide   versus   16.0%   in   the   extended   MHC   region,   representing   an   increase   of   4.23  

(95%   CI:   4.14-4.31)   standard   deviations   ( Methods ,    Supplementary     Figure   14 ).   To   ensure   our  

results   are   robust   to   different   local   ancestry   inference   methods,   we   applied   an   alternative  

method   called   RFMix 47    and   observed   a   similarly   consistent   MHC-specific   excess   of   African  

ancestry   in   LAT,   and   also   an   excess   in   AA   that   was   more   modest   ( Supplementary   Figure   14) .   

7  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.16.20155606doi: medRxiv preprint 

https://paperpile.com/c/RfaRsd/hvV2
https://paperpile.com/c/RfaRsd/bF7s
https://paperpile.com/c/RfaRsd/XoKW+S01D+5N5j+hOxn
https://paperpile.com/c/RfaRsd/twNmZ
https://paperpile.com/c/RfaRsd/k3Iy
https://doi.org/10.1101/2020.07.16.20155606
http://creativecommons.org/licenses/by-nc/4.0/


Luo   et   al.  

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Construction   of   a   multi-ethnic   HLA   reference   panel   and   its   performance   evaluation  

Next,   we   constructed   a   multi-ethnic   HLA   imputation   reference   panel   based   on   classical   HLA  

alleles   and   38,398   genomic   markers   in   the   extended   MHC   region   using   a   novel   HLA-focused  

pipeline   HLA-TAPAS   (HLA-Typing   At   Protein   for   Association   Studies).   Briefly,   HLA-TAPAS   can  

handle   HLA   reference   panel   construction   ( MakeReference );   HLA   imputation   ( SNP2HLA )   and  

HLA   association   ( HLAassoc )   ( Methods ,    URLs ).   Compared   to   a   widely   used   HLA   reference  

panel   with   European-only   individuals   (The   Type   1   Diabetes   Genetics   Consortium 48    ,   T1DGC),  

this   new   reference   panel   has   a   six-fold   increase   in   the   number   of   observed    HLA    alleles   and  

non-HLA   genomic   markers   ( Supplementary   Table   7 ).   We   noted   the   difference   in   observed  

classical    HLA    alleles   is   mainly   due   to   the   inclusion   of   diverse   populations   rather   than   its   size;  

after   downsampling   the   reference   panel   to   be   the   same   size   as   T1DGC   (N=5,225),   there   was  

still   a   three-fold   increase   in   observed   alleles   ( Figure   3a ).   

 

To   empirically   assess   imputation   accuracy   of   our   reference   panel,   we   first   used   the   publicly  

available   gold-standard    HLA    types   (HLA- A ,   - B ,- C ,   - DRB1    and   - DQB1 )   of   1,267   diverse   samples  

from   AA,   EAS,   EUR   and   LAT   included   in   1KG.   We   removed   955   overlapping   samples   within   the  

reference   panel,   and   to   ensure   a   representative   analysis   we   kept   6,007   markers   overlapping  

with   the    Global   Genotyping   Array    SNPs.   Across   the   five   genes,   the   average   G-group   resolution  

accuracies   were   94.2%,   93.7%,   97.8%   and   93.7%   in   AA,   EAS,   EUR   and   LAT   ( Figure   3b-c ,  

Supplementary   Table   8 ,    Methods ,    Extended   Data   3 ).   Compared   to   the   T1DGC   panel,   our  

multi-ethnic   reference   panel   showed   the   most   improvement   for   individuals   of   non-European  

descent;   we   obtained   4.27%,   2.96%,   2.90%   and   1.05%   improvement   at   G-group   resolution   for  

AA,   EAS,   LAT,   and   EUR   individuals,   respectively   ( Figure   3d ).   Increased   diversity   was  
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responsible   for   the   improvement;   downsampling   the   reference   panel   be   the   same   size   as   the  

T1DGC   panel   still   yielded   superior   performance   ( Figure   3d ).   To   validate   our   panel   further,   we  

imputed    HLA    alleles   into   a   multi-ethnic   cohort   of   2,291   individuals   from   the   Genotype   and  

Phenotype   (GaP)   registry   genotyped   on   the   ImmunoChip   array.   We   obtained   SBT    HLA    type  

information   for   six   classical   class   I   and   class   II   loci   (HLA- A ,   - B ,   - C ,   - DQA1 ,   - DQB1 ,   - DRB1 )   in   75  

samples   with   diverse   ancestral   background   (25   EUR,   25   EAS   and   25   AA,    Supplementary  

Figure   15 ,    Methods ).   Average   accuracies   were   99.0%,   95.7%   and   97.0%   for   EUR,   EAS   and  

AA   respectively   when   comparing   SBT    HLA    alleles   at   G-group   resolution   ( Methods ,    Extended  

Data   3 ).   Similar   to   the   1KG   analysis,   the   multi-ethnic   reference   panel   showed   significant  

improvement   for   individuals   with   non-European   descent   (6.3%   and   11.1%   improvement   for   EAS  

and   African   individuals   respectively   at   G-group   resolution),   and   a   more   modest   2%   improvement  

in   EUR   ( Supplementary     Figure   16 ,    Supplementary   Table   9 ).   

Fine-mapping   causal   variants   of   HIV   jointly   in   three   populations   in   the   MHC   region  

Next   we   investigated   MHC   effects   within   human   immunodeficiency   virus   type   1   (HIV-1)   set   point  

viral   load.   Upon   primary   infection   with   HIV-1,   t he   set   point   viral   load   is   reached   after   the   immune  

system   has   developed   specific   cytotoxic   T   lymphocytes   (CTL)   that   are   able   to   partially   control  

the   virus.    It   has   been   well-established   that   the   set   point   viral   load   (spVL)   varies   in   the   infected  

population   and   positively   correlates   with   rate   of   disease   progression 49 .   Previous   studies  

suggested   that   HIV-1   infection   has   a   strong   genetic   component,   and   specific   HLA   class   I   alleles  

explain   the   majority   of   genetic   risk 10,50 .   The   existence   of   multiple   independent,   ancestry-specific,  

risk-associated   alleles   has   been   reported   in   both   European 1,10    and   African   American 16  

populations.   However,   without   a   multi-ethnic   reference   panel   it   has   not   been   possible   to  

determine   if   these   signals   are   consistent   across   different   ancestral   groups.  
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To   define   the   MHC   allelic   effects   shared   across   multiple   populations,   we   applied   our   multi-ethnic  

MHC   reference   panel   to   7,445   EUR,   3,901   AA   and   677   LAT   HIV-1   infected   subjects   ( Methods ,  

Supplementary   Table   10 ).   Imputation   resulted   in   640   classical   HLA   alleles,   4,513   amino   acids  

in   HLA   proteins   and   49,321   SNPs   in   the   extended   MHC   region   for   association   and   fine-mapping  

analysis.   We   confirmed   96.6%   imputation   accuracy   of   two-field   (or   four-digit)   resolution   with   a  

minor   allele   frequency   >   0.5%   in   this   cohort   by   comparing   imputed   classical   alleles   to   the   SBT  

alleles   in   a   subset   of   1,067   AA   subjects 16 ( Supplementary   Figure   17 ,    Extended   Data   3 ).  

 

We   next   tested   SNPs,   amino   acid   positions   and   classical    HLA    alleles   across   the   MHC   for  

association   to   spVL.   We   performed   this   jointly   in   EUR,   AA   and   LAT   population   using   a   linear  

regression   model   with   sex,   principal   components   and   ancestry   as   covariates   ( Methods ).   In  

agreement   with   previous   studies,   we   found   the   strongest   spVL-associated   classical    HLA    allele  

is    B*57    (effect   size   =   -0.84,   ).   This   corresponded   to   a   single   residue   Val97 .68 0  P binary = 8 × 1 144  

in   HLA-B   that   tracks   almost   perfectly   with    B*57    ( )   and   showed   the   strongest .995r2 = 0  

association   of   any   single   residue   (effect   size   =   -0.84,   ,    Supplementary .99 0  P binary = 5 × 1 145  

Figure   18 ).   

 

Then   to   determine   which   amino   acid   positions   have   independent   association   with   spVL,   we  

tested   each   of   the   amino   acid   positions   by   grouping   haplotypes   carrying   a   specific   residue   at  

each   position   in   an   additive   model 2,9    ( Methods ).   We   found   the   strongest   spVL-associated   amino  

acid   variant   in   HLA-B   is   as   previously   reported 1,10,16    at   position   97   ( Figure   4a-b ,    Supplementary  

Table   11 )   which   strikingly   explains   9.06%   of   the   phenotypic   variance.   Position   97   in   HLA-B   was  

more   significant   ( )   than   any   single   SNP   or   classical    HLA    allele,   including .86 0  P omnibus = 2 × 1 184  
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B*57    ( Supplementary   Figure   18 ,    Extended   Data   4 ).   Of   the   six   allelic   variants  

(Val/Asn/Trp/Thr/Arg/Ser)   at   this   position,   the   Val   residue   conferred   the   strongest   protective  

effect   (effect   size   =   -0.88,   ,    Supplementary   Figure   19 )   relative   to   the   most .32 0  P = 9 × 1 152  

common   residue   Arg   (frequency   =     47.8%).   All   six   amino   acid   alleles   have   consistent  

frequencies   and   effect   sizes   across   the   three   population   groups   ( Figure   5a-b ,    Supplementary  

Figure   20 ).   

 

We   next   wanted   to   test   whether   there   were   other   independent   effects   outside   of   position   97   in  

HLA-B.   After   accounting   for   the   effects   of   amino   acid   97   in   HLA-B   using   a   conditional   haplotype  

analysis   ( Methods ),   we   observed   a   significant   independent   association   at   position   67   in   HLA-B  

( ,    Figure   4c-d ,    Supplementary   Table   11 ).   Considering   this   might   be   an .82 0  P omnibus = 2 × 1 39  

artifact   of   forward   search,   we   exhaustively   tested   all   possible   pairs   of   polymorphic   amino   acid  

positions   in     HLA-B.   Of   7,260   pairs   of   amino   acid   positions,   none   obtained   a   better  

goodness-of-fit   than   the   pair   of   positions   97   and   67,   which   collectively   explained   11.2%   variance  

in   spVL   ( Figure   5e ,    Supplementary   Table   12 ).   At   position   67,   Met67   residue   shows   the   most  

protective   effect   (effect   size   =   -0.44,   )   among   the   five   possible   amino   acids .19 0  P = 1 × 1 59  

(Cys/Phe/Met/Ser/Tyr)   relative   to   the   most   common   residue   Ser   (frequency   =10.0%).   

 

Conditioning   on   positions   97   and   67   revealed   an   additional   association   at   position   156   in   HLA-B  

( ,    Figure   4e-f ,    Supplementary   Table   11 ).   In   agreement   with   the .92 0  P omnibus = 1 × 1 30  

stepwise   conditional   analysis,   when   we   tested   all   287,980   possible   combinations   of   three   amino  

acid   positions   in   HLA-B,   the   most   statistically   significant   combination   of   amino   acids   sites   is   67,  

97   and   156   ( ,    Supplementary   Table   13 ).   These   three   positions   explained .68 0  P = 5 × 1 244  

12.9%   of   the   variance   ( Figure   5e ).   At   position   156,   residue   Arg   shows   the   largest   risk   effect  
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(effect   size   =   0.180,   )   among   the   four   possible   allelic   variants .92 0  P = 8 × 1 14  

(Leu/Arg/Asp/Trp),   relative   to   the   most   common   residue   Leu   (frequency   =   35.1%).   

 

These   amino   acid   positions   mark   three   consecutive   pockets   within   the   HLA-B   peptide-binding  

groove    ( Figure   5c ) .   Position    97   is   located   in   the   C-pocket   and   has   an   important   role   in  

determining   the   specificity   of   the   peptide-binding   groove 51,52 .   Position   67   is   in   the   B-pocket,   and  

Met 67   side   chains   occupy   the   space   where   larger   B-pocket   anchors   reside   in   other  

peptide-MHC   structures;   its   presence   limits   the   size   of   potential   peptide   position   P2   side  

chains 52 .    Amino   acid   position    156   is   part   of   the   D-pocket   and   influences   the   conformation   of   the  

peptide-binding   region 53 .   These   results   are   consistent   with   the   observation   that   in   HLA- B*57 ,   the  

single   most   protective   spVL-associated   one-field   allele   (a   single   change   at   position   156   from  

Leu   →   Arg   or   equivalently   HLA- B*57:03   →    HLA- B*57:02 )   leads   to   an   increased   repertoire   of  

HIV-specific   epitope 41,54 .   

 

Despite   differences   in   the   power   to   detect   associations   due   to   differences   in   allele   frequencies  

( Supplementary   Figure   21 ),   we   observed   generally   consistent   effects   of   individual   residues  

across   populations   ( Figure   5d,   Supplementary   Figure   22-23 ,    Supplementary   Table   14 ).  

There   are   26   unique   haplotypes   defined   by   the   amino   acids   at   positions   67,   97   and   156   in  

HLA-B   ( Table   1 ,    Supplementary     Table   15 ).   When   we   tested   for   effect   size   heterogeneity   by  

ancestry   for   each   of   these   haplotypes   ( Methods ),   we   observed   only   2   of   26   haplotypes   showed  

heterogeneity   (F-test   P-value   <   0.05/26),   possibly   due   to   different   interplay   between   genetic   and  

environmental   variation   at   population-level.   These   results   support   the   concept   that   these  

positions   mediate   HIV-1   viral   load   in   diverse   ancestries.   
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To   assess   whether   there   were   other   independent   MHC   associations   outside   HLA-B,   we  

conditioned   on   all   amino   acid   positions   in   HLA-B   and   observed   associations   at   HLA-A,   including  

at   position   77   in   HLA-A   ( ,    Figure   4g-h ,    Supplementary   Table   11 ),   the .10 0  P omnibus = 9 × 1 7  

classical    HLA    allele    HLA-A*31    ( and   the    rs2256919    promoter   SNP   ( .45 0 )  P binary = 2 × 1 8

,    Supplementary   Figure   18 ).     These   associations   argue   for   an   effect   at   3.10 0  P binary =   × 1 16  

HLA-A,   but   larger   studies   and   functional   studies   will   be   necessary   to   define   the   driving   effects.   

Discussion  

In   our   study   we   demonstrated   accurate   imputation   with   a   single   large   reference   panel   for   HLA  

imputation.   We   have   shown   how   this   reference   panel   can   be   used   to   impute   genetic   variation   at  

eight    HLA    classical   genes   accurately   across   a   wide   range   of   populations.   Accurate   imputation   in  

multi-ethnic   studies   is   essential   for   fine-mapping.   

 

We   showed   the   utility   of   this   approach   by   defining   the   alleles   that   best   explain   HIV-1   viral   load   in  

infected   individuals.   Our   work   implicates   three   amino   acid   positions   (97,   67   and   156)   in   HLA-B  

in   conferring   the   known   protective   effect   of   HLA   class   I   variation   on   HIV-1   infection.   Combining  

all   alleles   at   these   three   positions   explained   12.9%   of   the   variance   in   spVL   ( Figure   5e ).   These  

positions   all   fall   within   the   peptide-binding   groove   of   the   respective   MHC   protein   ( Figure   5c ),  

indicating   that   variation   in   the   amino   acid   content   of   the   peptide-binding   groove   is   the   major  

genetic   determinant   of   HIV   control.   Supported   by   experimental   studies 54–57 ,   positions   highlighted  

in   our   work   indicated   a   structural   basis   for   the   HLA   association   with   HIV   disease   progression  

that   is   mediated   by   the   conformation   of   the   peptide   within   the   class   I   binding   groove.   This   result  

highlights   how   a   study   with   ancestrally   diverse   populations   can   potentially   point   to   causal  

variation   by   leveraging   linkage   disequilibrium   difference   between   ethnic   groups.  
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We   note   that   previous   studies   have   shown   position   97   in   HLA-B   has   the   strongest   association  

with   HIV-1   spVL   or   case-control   in   African   American   and   European   populations,   but   highlighted  

different   additional   signals   via   conditional   analysis   (position   45,   67   in   HLA-B   and   position   77,   95  

in   HLA-A   in   Europeans 1,10,16    and   position   63,   116   and   245   in   HLA-B     in   African   Americans 16 ).  

These   signals   do   not   explain   the   signals   we   report   here;   after   conditioning   on   positions   45,   63,  

116,   245   of   HLA-B   and   95   of   HLA-A,   the   association   of   the   four   identified   amino   acids   identified  

in   this   study   remained   significant   ( ).   In   contrast,   our   binding   groove   alleles   explain 0  P < 5 × 1 8  

these   other   alleles;   conditioning   on   the   four   amino   acid   positions   identified   in   this   study  

(positions   67,   97   and   156   in   HLA-B),   all   previously   reported   positions   did   not   pass   the  

significance   threshold   ( ,    Supplementary   Figure   24 ). 0  P > 5 × 1 8   

 

Furthermore,   defining   the   effect   sizes   for    HLA    alleles   across   different   populations   is   essential   for  

defining   risk   of   a   wide-range   of   diseases   in   the   clinical   setting.   There   is   increasing   application   of  

genome-wide   genotyping   by   patients   both   by   healthcare   providers   and   direct-to-consumer  

vendors.   The   large   effects   of   the   MHC   region   for   a   wide-range   of   immune   and   non-immune  

traits,   makes   it   essential   to   define    HLA    allelic   effect   sizes   essential   in   multi-ethnic   studies   in  

order   to   build   generally   applicable   clinical   polygenic   risk   scores   for   many   diseases   in   diverse  

populations 58–61 .   Resources   like   the   one   we   present   here   will   be   an   essential   ingredient   in   such  

studies.   
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Methods  

Individuals   included   in   the   reference   panel  

Study   participants   were   from   the   Jackson   Heart   Study   (JHS   ,   N = 3,027),   Multi-Ethnic   Study   of  

Atherosclerosis   (MESA,   N=4,620),    Chronic   Obstructive   Pulmonary   Disease   Gene   (COPDGene)  

study   (N=10,623) ,   Estonian   Biobank   (EST,   N=2,244),   Japan   Biological   Informatics   Consortium  

(JPN,   N=295),   Biobank   Japan   (JPN,   N=1,025)   and   1000   Genomes   Project   (1KG,   N=2,504).  

Each   study   was   previously   approved   by   respective   institutional   review   boards   (IRBs),   including  

for   the   generation   of   WGS   data   and   association   with   phenotypes.   All   participants   provided  

written   consent.   Further   details   of   cohort   descriptions   and   phenotype   definitions   are   described   in  

the    Supplementary   Note.   

HLA-TAPAS  

HLA-TAPAS   (HLA-Typing   At   Protein   for   Association   Studies)   is   an   HLA-focused   pipeline   that  

can   handle   HLA   reference   panel   construction   ( MakeReference ),   HLA   imputation   ( SNP2HLA ),  

and   HLA   association   ( HLAassoc ).   It   is   an   updated   version   of   the   SNP2HLA 48    to   build   an  

imputation   reference   panel,   perform    HLA    classical   allele,   amino   acid   and   SNP   imputation   within  

the   extended   MHC   region.   Briefly,   major   updates   include   (1)   using   PLINK1.9   ( URLs )   instead   of  

v1.07;   (2)   using   BEAGLE   v4.1   ( URLs )   instead   of   v3   for   phasing   and   imputation;   and   (3)  

including   custom   R   scripts   for   performing   association   and   fine-mapping   analysis   at   amino   acid  

level   in   multiple   ancestries.   The   source   code   is   available   for   download   ( URLs ).   
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Construction   of   a   multi-ethnic   HLA   reference   panel   using   whole-genome  

sequences  

To   construct   a   multi-ethnic   HLA   imputation   reference   panel,   we   used   24,338   whole-genome  

sequences   at   different   depths   ( Supplementary   Table   1 ).   Details   of   the   construction   using  

deep-coverage   whole-genome   sequencing   are   described   in   the    Supplementary   Note .   Briefly,  

alignment   and   variant-calling   for   genomes   sequenced   by   each   cohort   were   performed  

independently.   We   performed   local   realignment   and   quality   recalibration   with   the   Genome  

Analysis   Toolkit 62    (GATK;   version   3.6)   on   Chromosome   6:25,000,000-35,000,000.   We   detected  

single   nucleotide   variants   (SNV)   and   indels   using   GATK   with   HaplotypeCaller.   To   eliminate  

false-positive   sites   called   in   the   MHC   region,   we   restrict   our   panel   to   SNVs   reported   in   1000  

Genomes   Project 21    only.  

 

We   next   inferred   classical   HLA   alleles   at   G-group   resolution   for   eight   classical   HLA   genes  

( HLA-A ,   - B ,   - C ,   - DQA1 ,   - DQB1 ,   - DRB1 ,    -DPA1    and   - DPB1 )   using   a   population   reference  

graph 24,25 .   To   extend   the   reference   panel   versatility,   we   inferred   amino   acid   variation,   one-field  

and   two-field   resolution   alleles   from   the   inferred   G-group   alleles.   After   removing   samples   with  

low-coverage   and   failed   genome-wide   quality   control   ( Supplementary   Table   3 ),   we   constructed  

a   multi-ethnic   HLA   imputation   reference   panel   (N=21,546)   using   the   HLA-TAPAS  

MakeReference    module   ( URLs ,    Method ).   
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Sequence-based   typing   of    HLA    alleles  

Purified   DNA   from   the   75   donors   from   the   GaP   registry   (at   the   Feinstein   Institute   for   Medical  

Research)   was   sent   to   NHS   Blood   and   Transplant,   UK,   where    HLA    typing   was   performed.  

Next-generation   sequencing   was   done   for   HLA -A ,    -B ,    -C ,   - DQB1 ,   - DPB1    and    -DRB1 .  

PCR-sequence-specific   oligonucleotide   probe   sequencing   was   performed   for   HLA -DQA1    in   all  

samples.   These   typing   methods   yielded   classical   allele   calls   for   seven   genes   at   three-field  

(HLA- A ,   - B ,   - C    and   - DQB1 )   or   G-group   resolution   (HLA- DQA1 ,   - DPB1    and    -DRB1 ).  

 

Genomic   DNA   from   the   288   unrelated   samples   of   Japanese   ancestry   underwent   high-resolution  

allele   typing   (three-field   alleles)   of   six   classical   HLA   genes   (HLA- A ,   - B    and   - C    for   class   I;   and  

HLA- DRB1 ,   - DQA1    and   - DPB1    for   class   II) 20 .   

 

The   1000   Genomes   panel   consists   of   1,267   individuals   with   information   on   five   HLA   genes  

(HLA- A,   -B,   -C,   -DQB1 ,   and    -DRB1 )   at   G-group   resolution   among   four   major   ancestral   groups  

(AA,   EAS,   EUR   and   LAT) 7 .   

 

We   obtained   HLA   typing   of   the   1,067   African   American   subjects   included   in   the   HIV-1   viral   load  

study   as   described   previously 16,63 .   Briefly,   seven   classical   HLA   genes   (HLA- A,   -B,   -C ,    -DQA1 ,  

- DQB1    - DRB1    and    -DPB1 )   were   obtained   by   sequencing   exons   2   and   3   and/or   single-stranded  

conformation   polymorphism   PCR,   and   was   provided   at   two-field   resolution.   
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Accuracy   measure   between   inferred   and   sequence-based   typing    HLA  

genotypes  

Allelic   variants   at   HLA   genes   can   be   typed   at   different   resolutions:   one-field   HLA   types   specify  

serological   activity,   two-field   HLA   types   specify   the   amino   acids   encoded   by   the   exons   of   the  

HLA   gene,   and   three-field   types   determine   the   full   exonic   sequence   including   synonymous  

variants.   G-group   resolution   determines   the   sequences   of   the   exons   encoding   the   peptide  

binding   groove,   that   is,    exons   2   and   3   for   class   I   and   exon   2   class   II   genes.   Thus,   any  

polymorphism   occurring   in   exon   4   of   class   I   gene   or   exon   3   of   class   II   gene   was   not   defined.  

This   means    many   G-group   alleles   can   map   to   multiple   three-field   and   two-field    HLA    alleles.  

 

We   calculated   the   accuracy   at   each    HLA    gene   by   summing   across   the   dosage   of   each   correctly  

inferred    HLA    allele   or   amino   acid   across   all   individuals   (N),   and   divided   by   the   total   number   of  

observations   (2*N).   That   is,  

  , ccuracy(g)A = 2N

(A )+D (A )∑
N

i
Di 1I ,g i 2i,g

 

where     represents   the   accuracy   at   a   classical   HLA   gene   (e.g.   HLA- B ).   ccuracy(g)A Di

represents   the   inferred   dosage   of   an   allele   in   individual   ,   and   alleles   and   represent i A1i,g A2i,g  

the   true   (SBT)    HLA    types   for   an   individual   . i  

 

To   evaluate   the   accuracy   between   the   inferred   and   validated    HLA    types   obtained   from   SBT   at  

G-group   resolution,   we   translated   the   highest   resolution   specified   by   the   validation   data   to   its  

matching   G-group   resolution   based   IMGT/HLA   database   (e.g.   HLA- A*01:01   →  

HLA- A*01:01:01G ),   and   compared   it   to   the   primary   output   from    HLA*LA    or    HLA-TAPAS .   We  
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also   translated   all   G-group   alleles   to   their   matching   amino   acid   sequences,   and   compared   them  

against   the   validation   alleles,   we   referred   to   this   as   the   amino   acid   level.  

 

To   evaluate   imputation   performance   in   individual   classical    HLA    alleles   and   amino   acids,   we  

calculated   the   dosage   correlation   between   imputed   and   SBT   dosage. r2   

,  r2  = y N[∑
N

i=1
xi i  (∑N

i=1
xi)(∑N

i=1
yi) / ]

2

/ N[(∑
N

i=1
xi2    (∑N

i=1
xi)

2

/ ) N(∑
N

i=1
yi2    (∑N

i=1
yi)

2

/ )]  

where   and   represents   the   inferred   and   SBT   dosage   of   an   allele   in   individual   .   xi yi i N

represents   the   number   of   individuals.  

Principal   component   analysis  

We   performed   a   principal   component   analysis   of   the   MHC   region   based   on   the  

identity-by-descent   (IBD)   distances   between   all   21,809   individuals   included   in   the   multi-ethnic  

reference   panel.   We   computed   the   IBD   distance   using   Beagle   (Version   4.1,    URLs )   and  

averaged   over   100   runs   with   all   variants   (54,474)   included   in   the   HLA   reference   panel.   Due   to  

uneven   representation   of   different   ethnicity   groups   ( Supplementary   Table   2 ),   we   applied   a  

weighted   PCA   approach,   where   mean   and   standard   deviation   of   the   IBD   matrix   within   an  

ethnicity   group   are   weighted   inversely   proportional   to   the   sample   size.   

HLA   haplotype   frequency   estimation  

We   applied   an   expectation-maximization   algorithm   approach   implemented   in   Hapl-o-Mat 64  

( URLs )   to   estimate   HLA   haplotype   frequency   based   on   eight   classical   HLA   alleles   inferred   at  

G-group   resolution.   We   estimated   haplotype   frequencies   both   overall   and   within   five   continental  

populations   ( Extended   Data   2 ).   
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Local   ancestry   inference  

To   detect   local   ancestry   in   admixed   samples,   we   first   applied   ELAI 46    to   chromosome   6   with   1000  

Genomes   Project 21    as   the   reference   panel.   We   extracted   63,998   common   HapMap3   SNPs  

between   the   WGS   (MESA   cohort)   and   the   1000   Genome   reference   panel.   We   used   the   same  

set   of   SNPs   for   ELAI   and   RFMix   analysis.   We   applied   ELAI 46    to   1,832   African   Americans   and  

594   Latinos.   For   1,832   African   American   individuals   included   in   the   study,   we   used   genotypes   of  

99   CEU   and   108   YRI   in   the   1000   Genome   Project   as   reference   panel,   assuming   admixture  

generation   to   be   seven   generations   ago.   We   used   two   upper-layer   clusters   and   10   lower-layer  

clusters   in   the   model.   For   Latinos,   we   selected   65   Latinos   with   Native   American   (NAT)   ancestry  

>   75%   included   in   the   1000   Genomes   Project   identified   using   the   ADMIXTURE   analysis 65    and  

used   these   individuals   with   high   NAT,   as   well   as   CEU   and   YRI   from   1000   Genomes   as  

reference   panels.   We   assumed   that   the   admixture   time   was   20   generations   ago.   For   ELAI,   we  

used   three   upper-layer   clusters   and   15   lower-layer   clusters   in   the   model.   

 
 
To   address   the   technical   concerns   that   local   ancestry   methods   are   biased   by   the   high   LD   of  

MHC   region 66,67 ,   we   performed   an   alternative   method,   RFMix 47 ,   for   local   ancestry   inference   that  

accounts   for   high   LD   and   lack   of   parental   reference   panels.   Similar   deviation   from   genome-wide  

ancestry   was   observed   using   RFMix   ( Supplementary   Figure   14) ,   indicating   that   the   selection  

signals   we   observed   here   are   robust   to   different   inference   methods.  
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HLA   imputation   in   the   HIV-1   viral   load   GWAS   data   in   three   populations  

We   used   genome-wide   genotyping   data   from   12,023   HIV-1   infected   individuals   aggregated  

across   more   than   10   different   cohorts   ( Supplementary   Table   10 ).   The   details   of   these   samples  

and   quality   control   procedures   have   been   described   previously 10,68 .   Using   the   HIV-1   viral   load  

GWAS   data,   we   extracted   the   genotypes   of   SNPs   located   in   the   extended   MHC   region  

(chr6:28-34Mb,    Supplementary   Table   10 ).   We   conducted   genotype   imputation   of   one-field,  

two-field   and   G-group   classical    HLA    alleles   and   amino   acid   polymorphisms   of   the   eight   class   I  

and   class   II   HLA   genes   using   the   constructed   multi-ethnic   HLA   imputation   reference   panel   and  

the   HLA-TAPAS   pipeline.  

 

After   imputation,   we   obtained   the   genotypes   of   640   classical   alleles,   4,513   amino   acid   positions  

of   the   eight   classical   HLA   genes,   and    49,321     SNPs   located   in   the   extended   MHC   region.   We  

excluded   variants   with   MAF   <   0.5%   and   imputation     for   all   association   studies.   In   total, .5r2 < 0  

we   tested   51,358   variants   in   our   association   and   fine-mapping   study.  

HLA   association   analysis  

For   the   HIV-1   viral   loads   of   EUR,   AA   and   LAT   samples,   we   conducted   a   joint   haplotype-based  

association   analysis   using   a   linear   regression   model   under   the   assumption   of   additive   effects   of  

the   number   of   HLA   haplotypes   for   each   individual.   Phased   haplotypes   at   a   locus   (i.e.,   HLA  

amino   acid   position)   were   constructed   from   the   phased   imputed   genotypes   of   variants   in   the  

locus   (i.e.,   amino   acid   change   or   SNP)   and   were   converted   to   a   haplotype   matrix   where   each  

row   is   observed   haplotypes   (in   the   locus),   not   genotypes.   
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For   each   amino   acid   position,   we   applied   a   conditional   haplotype   analysis.   We   tested   a  

multiallelic   association   between   the   HIV-1   viral   load   and   a   haplotype   matrix   (of   the   position)   with  

covariates,   including   sex,   study-specific   PCs,   and   a   categorical   variable   indicating   a   population.  

That   is  

  β x c ,y =   0 + ∑
m1

i
β1i i + β∑

C

j
  2j

 
j  

where   is   the   amino   acid   haplotype   formed   by   each   of   the     amino   acid   residues   that   occur   at xi m  

that   position,   and     are   the   covariates   included   in   the   model. cj   

 

To   get   an   omnibus    P -value   for   each   position,    we   estimated   the   effect   of   each   amino   acid   by  

assessing   the   significance   of   the   improvement   in   fit   by   calculating   the   in-model   fit,   compared   to  

a   null   model   following   an   F-distribution   with     degrees   of   freedom.   This   is   implemented  

using   an   ANOVA   test   in   R   as   described    previously 32,69 .   The   most   frequent   haplotype   was  

excluded   from   a   haplotype   matrix   as   a   reference   haplotype   for   association.  

 

For   the   conditional   analysis ,   we   assumed   that   the   null   model   consisted   of   haplotypes   as  

defined   by   residues   at   previously   defined   amino   acid   positions.   The   alternative   model   is   in  

addition   of   another   position   with     residues.   We   tested   whether   the   addition   of   those   amino m  

acid   positions,   and   the   creation   of     additional   haplotypes   groups,   improved   on   the   previous  

set.   We   then   assessed   the   significance   of   the   improvement   in   the   delta   deviance   (sum   of  

squares)   over   the   previous   model   using   an   F-test.   We   performed   stepwise   conditional   analysis  

to   identify   additional   independent   signals   by   adjusting   for   the   most   significant   amino   acid  

position   in   each   step   until   none   met   the   significance   threshold   ( ).   We   restricted 0  P = 5 × 1 8  
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analysis   to   haplotypes   that   have   a   minimum   of   10   occurrences   within   HLA-B,   and   removed   any  

individual   with   rare   haplotypes   for   the   conditional   analysis.  

 

For   the   exhaustive   search ,   we   tested   all   possible   amino   acid   pairs   and   triplets   for   association.  

For   each   set   of   amino   acid   positions,   we   used   the   groups   of   residues   occurring   at   these  

positions   to   estimate   effect   size   and   calculated   for   each   of   these   models   the   delta   deviance   in  

risk   prediction   and   its   p-values   compared   to   the   null   model.  

Heterogeneity   testing   of   effect   sizes  

We   used   interaction   analyses   with   models   that   included   haplotype-by-ancestry   ( Haplotype   x  

Ancestry )   interaction   terms.   The   fit   of   nested   models   was   compared   to   a   null   model   using   the  

F -statistic   with   two   degrees   of   freedom,   for   which   the   association   interaction   P-value   indicated  

whether   the   inclusion   of   the    Haplotype   x   Ancestry    interaction   terms   improved   the   model   fit  

compared   to   the   null   model   that   did   not   include   the   interaction   terms.   Interaction   P-values   for   all  

haplotypes   formed   by   positions   97,   67   and   156   in   HLA-B   are   listed   in    Supplementary   Table   15 .  

Haplotypes   that   had   a   significant   Bonferroni-corrected    Haplotype   x   Ancestry    interaction  

heterogeneity   P-value   (P   <   0.05/26)   were   considered   to   show   evidence   of   significant   effect   size  

heterogeneity   between   ancestries.  

URLs  

HLA-TAPAS,    https://github.com/immunogenomics/HLA-TAPAS  

IMGT/HLA,   https://www.ebi.ac.uk/ipd/imgt/hla/;  

GATK   version   3.6,    https://software.broadinstitute.org/gatk/download/archive ;  

HLA*LA,   https://github.com/DiltheyLab/HLA-PRG-LA;  
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PLINK   1.90,    https://www.cog-genomics.org/plink2 ;  

Beagle   4.1,    https://faculty.washington.edu/browning/beagle/b4_1.html ;  

Hapl-o-Mat,    https://github.com/DKMS/Hapl-o-Mat/ ;  

1000   Genomes   gold-standard   HLA   types,  

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HLA_types/  
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Figures  
Figure   1.   Global   diversity   of   the   MHC   region.    ( a )     Principal   component   analysis   of   the  

pairwise   IBD   distance   between   21,546   samples   using   MHC   region   markers.   Allele   diversity   of  

( b )     HLA -B    and   ( c )     HLA- DQA1    among   five   continental   populations   (AA=Admixed   African;  

EUR=European;   LAT=Latino;   EAS=East   Asian;   SAS=South   Asian).   The   top   two   most   common  

alleles   within   each   population   group   are   named,   the   remaining   alleles   are   grouped   as   ‘others’.   

( a )  

 

35  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.16.20155606doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20155606
http://creativecommons.org/licenses/by-nc/4.0/


Luo   et   al.  

755

756

 

 

(b)  

 

(c)  

 

 

36  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.16.20155606doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20155606
http://creativecommons.org/licenses/by-nc/4.0/


Luo   et   al.  

757

758

759

760

761

762

763

764

765

766

767

Figure   2.   Pairwise   LD   and   haplotype   structure   for   six   classical   HLA   genes   in   five  

population   groups .   ( a )   shows   the   pairwise   normalized   entropy   ( )   measuring   the   difference   of ε  

the   haplotype   frequency   distribution   for   linkage   disequilibrium   and   linkage   equilibrium   among  

five   population   groups.   It   takes   values   between   0   (no   LD)   to   1   (perfect   LD).   ( b )   shows   the  

haplotype   structures   of   the   eight   classical   HLA   genes   in   each   population.   The   tile   in   a   bar  

represents   an    HLA    allele,   and   its   height   corresponds   to   the   frequencies   of   the    HLA    allele.   The  

gray   lines   connecting   between   two   alleles   represent    HLA    haplotypes.   The   width   of   these   lines  

corresponds   to   the   frequencies   of   the   haplotypes.   The   most   frequent   long-range   HLA  

haplotypes   within   each   population   is   bolded   and   highlighted   in   a   color   described   by   the   key   at  

the   bottom.  
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Figure   3.   The   multi-ethnic   HLA   reference   panel   shows   improvement   in   allele   diversity   and  

imputation   accuracy.    ( a ).   The   number   of   HLA   alleles   at   the   two-field   resolution   included   in   the  

multi-ethnic   HLA   reference   panel   (N   =   21,546)   compared   to   the   European   only   Type   1   Diabetes  

Genetics   Consortium 48    (T1DGC)   panel   (N   =   5,225)   as   well   as   a   subset   of   the   multi-ethnic   HLA  

panel   down-sampled   to   the   same   size   as   T1DGC.   ( b).    The   correlation   between   imputed   and  

typed   dosages   of   classical    HLA    alleles   using   the   multi-ethnic   HLA   reference   panel   at   one-filed  

(red),   two-field   (blue)   and   G-group   resolution   (black)   of   the   955   1000   Genomes   subjects.   ( c ).  

The   imputation   accuracy   for   five   classical   HLA   genes   at   one-field,   two-field   and   G-group  

resolution.   ( d ).   The   imputation   accuracy   at   G-group   resolution   of   the   1000   Genomes   subjects  

stratified   by   four   diverse   ancestries   when   using   three   different   imputation   reference   panels   as  

described   in   ( a ).  
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Figure   4.   Stepwise   conditional   analysis   of   the   allele   and   amino   acid   positions   of   classical  

HLA   genes   to   HIV-1   viral   load.    Each   circle   point   represents   the   linear   regression   -log10( 

)   for   all   classical    HLA    alleles.   Each   diamond   point   represents   -log10( )   for   the P binary P omnibus  

tested   amino   acid   positions   in   HLA   (blue=HLA- A ;   yellow=HLA- C ;   red=HLA- B ;  

lightblue=HLA- DRB1 ;   green=HLA -DQA1 ;   purple=HLA- DQB1 ,   darkgreen=HLA- DPA1 ;  

lightgreen=HLA- DPB1 ).   Association   at   amino   acid   positions   with   more   than   two   alleles   was  

calculated   using   a   multi-degree-of-freedom   omnibus   test.   The   dashed   blacked   line   represents  

the   significance   threshold   of   .   Each   panel   shows   the   association   plot   in   the   process 0  P = 5 × 1 8  

of   stepwise   conditional   omnibus   test.   ( a )   One-field   classical   allele    B*57    ( )   and .84 0  P = 9 × 1 138  

( b )   amino   acid   position   97   in     HLA-B   ( )   showed   the   strongest   association .86 0  P omnibus = 2 × 1 184  

signal.   Results   conditioned   on   position   97   in   HLA-B   showed   a   secondary   signal   at   ( c )   classical  

allele    B*81:0101:G    ( )   and   ( d )   position   67   in   HLA-B   ( ). .53 0  P = 4 × 1 23 .08 0  P omnibus = 1 × 1 40  

Results   conditioned   on   position   97   and   67   in   HLA-B   showed   the   same   classical   allele   ( e )  

B*81:0101G    ( )   and   ( f )   third   signal   at   position   156   in   HLA-B   ( .70 0  P = 2 × 1 23

).   Results   conditioned   on   position   97,   67   and   156   int   HLA-B   showed   a .92 0  P omnibus = 1 × 1 30  

fourth   signal   at   ( g )   HLA -A*31    ( )   and   ( h )   position   77   in   HLA-A   ( .45 0  P = 2 × 1 8

)   outside   HLA-B. .35 0  P omnibus = 5 × 1 7  
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Figure   5.    Location   and   effect   of   three   independently   associated   amino   acid   positions   in  

HLA-B.     ( a )   Allele   frequency   of   six   residues   at   position   97   in   HLA-B   among   three   populations.  

( b )   Effect   on   spVL   (i.e.,   change   in   log10   HIV-1   spVL   per   allele   copy)   of   individual   amino   acid  

residues   at   position   97   in   HLA-B.   Results   were   calculated   per   allele   using   linear   regression  

models,   including   gender   and   principal   components   within   each   ancestry   as   covariates.   ( c )  

HLA-B   (PDB   ID   code   2bvp)   proteins.   Omnibus   and   stepwise   conditional   analysis   identified   three  

independent   amino   acid   positions   (positions   97   (red),   67   (orange),   and   156   (green)   in   HLA-B.  

( d )   Effect   on   spVL   (i.e.,   change   in   log10   HIV-1   spVL   per   allele   copy)   of   individual   amino   acid  

residues   at   each   position   reported   in   this   and   previous   work 10,16 .   Results   were   calculated   per  

allele   using   linear   regression   models.   The   x-axis   shows   the   effect   size   and   its   standard   errors   in  

the   joint   analysis,   and   the   y-axis   shows   the   effect   size   and   its   standard   error   in   individual  

populations   (purple   =   Admixed   American;   blue   =   European   and   orange   =   Latino).   ( e )   Variance   of  

spVL   explained   by   the   haplotypes   formed   by   different   amino   acid   positions.   
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Tables  

Table   1.   Effect   estimates   for   the   haplotypes   defined   by   the   three   independent   amino  

acids   in   HLA-B   associated   with   HIV-1   viral   load.    Only   haplotypes   with   >1%   frequency   in   the  

overall   population   are   listed   ( Supplementary   Table   15 ).   Classical   alleles   of   HLA-B   are   grouped  

based   on   the   amino   acid   residues   presented   at   position   97,   67   and   156   in   HLA-B.   For   each  

haplotype,   the   multivariate   effect   is   given   as   an   effect   size,   taking   the   most   frequent   haplotype  

(97R-67S-156L)   as   the   reference   (effect   size   =   0).   Heterogeneity   p-value   (P(het))   of   each  

haplotype   is   calculated   using   a   F-statistics   with   two   degrees   of   freedom   ( Methods ).   Effect   size  

and   its   standard   error   in   each   population   are   listed   only   for   haplotypes   that   show   evidence   of  

heterogeneity   (P-value   <   0.05   /26,   bolded).   Unadjusted   haplotype   frequencies   are   given   in   each  

population.   
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